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Abstract: We consider some singular perturbations of the bound-
ary of a smooth domain. Such domain variations are not differen-
tiable within the classical theory of shape calculus. We mimic the
topological asymptotic and we derive an asymptotic expansion of the
shape function in terms of a size parameter. The two-dimensional
case of the Dirichlet energy is treated in detail. We give a full theo-
retical proof as well as a numerical confirmation of the results.
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1. Introduction

The classical shape calculus presented, for example, in Murat, Simon (1977),
Soko lowski, Żochowski (1999), Delfour (2001), is based on a perturbation ap-
proach in functional space of diffeomorphisms. This requires some regularity
on the class of domains to be considered: for example C1-deformations of the
boundary of small C1-norm. A deformation of small L∞-norm cannot be seen as
perturbation in that framework even if the Hausdorff distance between the two
domains is by definition small. Another limitation of the classical shape calculus
is the impossibility to deal with changes of topology. The so-called ”topologi-
cal asymptotic” (Masmoudi, 2002; Garreau, 2001; Lewiński, Soko lowski, 1999;
Nazarov, Soko lowski, 1994) has been introduced to deal with the possibility of
nucleations. The question this method addresses is the following: How does a
shaping function behave when a hole of radius ε is dug at a fixed point M inside
a body? One should notice that the small parameter ε is then a physical size
parameter and not a pseudo-time (or a distance in spaces of diffeomorphisms)
like in the classical methods.

In this paper, we consider the same question on a model shaping function,
except that the point M lies on the boundary of the domain. Hence, the problem



118 M. DAMBRINE, G. VIAL

we consider in this paper is a singular boundary perturbation. Such problems
have been studied by Maz’ya and Nazarov (1988) in the situation where the
material is removed at a corner point. Our geometry is a limit case of the
latter; we present here an alternative method to solve the problem with the
tools of classical shape calculus. Our way to deal with it is directly inspired
of the work of Soko lowski (Lewiński, Soko lowski, 1999; Soko lowski, Żochowski,
1999). A similar problem where angles are rounded was considered in Samet
(2003) with a different approach. Our work has two main motivations: on the
one hand, to generalize the topological asymptotic to the boundary case and,
on the other hand to consider a singular case where the classical shape calculus
is not directly operational.

More precisely, let f be a C∞-function with compact support in R2. As the
shaping function, we consider the Dirichlet energy J on the bounded domains
Ω of class C∞ in R2 such that Suppf ⊂ Ω. The Dirichlet energy is defined as

J(Ω) =
1

2

∫

Ω

|∇u|2 −

∫

Ω

fu = −
1

2

∫

Ω

|∇u|2, (1)

where u is the solution in H1
0(Ω) of the Poisson’s equation −∆u = f in Ω.

The main originality of the deformations we consider is their scale: let Ω0 be
an admissible domain, we introduce a scale parameter ε ∈ (0, ε0) and a reference
smooth domain denoted by ω. For convenience, we assume that ω is star-shaped
with respect to its gravity center O chosen as a point in the boundary ∂Ω0 of
Ω0. We denote by εω the image of ω by the homothety of center O and ratio ε.
The perturbed domain Ωε is defined as

Ωε = Ω0 \ εω. (2)

Fig. 1 makes explicit the geometrical setting.

O
•

Ω0

O
•

ω

εω

Ωε

Ωε = Ω0\εω

Figure 1. The geometrical setting

For a fixed ε, this deformation is not smooth as angular points appear at the
intersection of ∂ω and ∂Ω0. In the Hausdorff sense, this is, however, of order
ε. Hence it is a perturbation of the identity in this weak sense but not in any
smooth sense. This means that the classical differential shape calculus can not
provide Taylor-like formula in order to describe the behavior of ε 7→ J(Ωε) for
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small ε. Our goal in this work is to obtain an asymptotical expansion of J(Ωε)
starting from J(Ω0).

The leading term of the asymptotics depends of the shaping function J . Let
us consider two simple cases: the area and the perimeter. It is clear that the
leading term is of order one for the perimeter and of order two for the area.
This fact shows that the parameter ε is not appropriate to the classical shape
calculus since both the area and the perimeter are differentiable with respect to
the shape.

This paper is organized in the following way. first we establish an asymptotic
expansion of the Dirichlet energy with respect to ε. This is done in two steps:
first we derive an asymptotic expansion of the solution uε of Poisson equation
inside Ωε; then we apply this result to obtain the behavior of the cost function.
The complete, the proof of the expansion is presented in the third section. In
the last part of this work, we present some numerical work to illustrate the
results of Section 2.

2. The asymptotic expansion

2.1. Asymptotic expansion of the state function

This section is devoted to the asymptotic expansion in powers of ε of the solution
uε to the Poisson’s equation −∆uε = f in H1

0(Ωε), starting from u0, solution
of the same equation in Ω0. This is a now classical question (see Lewiński,
Soko lowski, 1999) and we follow the method introduced in that paper; the
complete expansion is written in Theorem 2.1 and justified in the proof of that
result (see Section 3).

For convenience and in order to simplify the computations, we assume for
a while that the boundary ∂Ω0 is flat around O. The general smooth case is
much more complicated. The origin is chosen as O, the axis are taken as the
tangent and normal to Ω0 at O oriented so that Ω0 locally lies in the upper half
plane around O.

Even a localized perturbation of the domain induces a variation of the solu-
tion of Poisson’s equation in the whole domain. This variation is not supported
locally around O, but nevertheless mainly concentrated around it. Hence, the
first step is to consider a blow-up around O – that is the center of the hole
dug in the domain. We introduce the scaled (or fast) variable y = x/ε (here
x = (x1, x2) and y = (y1, y2) belong to R2). This canonical change of variables
maps the ball B(0, ε) into the unit ball and introduces the right scale to study
our equations independently of ε.

Since ω is star-shaped with respect to O, its boundary has a parametrization
(ρ(θ), θ), θ ∈ [0, 2π] in polar coordinates. The function ρ is non-negative, and
smooth because of the regularity assumption on Ω0. Let ∂ω+ denote ∂ω∩{x2 >
0}. To fix the scale we assume that ρ(0) = ρ(2π) = 1. With passing to the limit
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as ε→ 0, Ωε tends in this blow-up to the limit domain

Ω∞ =
{

(r, θ), r > ρ(θ) and θ ∈ (0, π)
}

. (3)

ω

∂ω+

Ω∞

Figure 2. The limit domain

We consider the new problem satisfied by the difference u = uε − u0:

−∆u = 0 in Ωε,

u = 0 on ∂Ωε \ ε∂ω
+,

u = −u0(εy) on ε∂ω+.

From the regularity assumptions on both Ω0 and f , u0 is known to belong to
C∞(Ω0). Therefore, we can write a Taylor formula for u0: for x = εy ∈ ∂Ωε, we
get:

[uε−u0](εy) = −u0(εy) = −

[

u0(O) +

n
∑

i=1

1

i!
D(i)u0(O)[εy, . . . , εy]

]

+o(εn)

= −
n
∑

i=1

εiwi(y) + o(εn),

with an obvious definition of wi. Since −∆(uε − u0) = 0 in Ωε, the difference
uε−u0 is the harmonic extension of its trace on ∂Ωε. The idea is to approximate
this harmonic function by harmonic extensions of the approximated boundary
conditions. Precisely, we have the following lemma. It can be proven by sym-
metry with respect to the line x2 = 0 and the image method (see Tychonoff,
Samarski, 1963, or Nédélec, 2000, for details).

Lemma 2.1 There exists a unique function Vi defined on Ω∞ by

−∆Vi = 0 in Ω∞, (4)
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and the boundary conditions:

Vi(y) = 0 on ∂Ω∞ \ ∂ω+, (5)

Vi(y) = wi for y ∈ ∂ω+, (6)

with the following expansion as an asymptotic series at infinity (with smooth
functions ψi

n and Ψi
n)

Vi(y) ∼
∑

n≥1

ψi
n(θ)|y|−n and ∇Vi(y) ∼

∑

n≥2

Ψi
n(θ)|y|−n as |y| → +∞. (7)

The functions (Vi), called profiles, describe the behavior of uε in the neigh-
borhood of O. Since they are defined in the infinite domain Ω∞, we need to
truncate them: let χ : R2 → R be a C∞-cut-off function such that

|x| ≤ 1/2 ⇒ χ(x) = 1 and |x| ≥ 1 ⇒ χ(x) = 0. (8)

We now state the main result of this section: it is a two-scale asymptotic
expansion of uε at every order. In fact, we need only the order two version
but for its proof we use a bootstrapping method that requires the complete
expansion.

Theorem 2.1 (Complete expansion of the state function) Let Ω0 be a
C∞ admissible domain with O ∈ ∂Ω0. For any admissible reference domain ω
and any ε ∈ (0, ε0), we define Ωε by (2) and uε as the solution in H1

0(Ωε) of the
Poisson’s equation −∆uε = f .

Then, for all n ∈ N, there exists a function zε
n defined on Ωε such that

uε(x) = u0(x) + χ(x)

[

n
∑

i=1

εiVi

(x

ε

)

]

+

n−1
∑

i=1

εi+1ui(x) + zε
n(x), (9)

where the profile Vi solves the Dirichlet problem (4)-(6). The functions ui are
solutions of

−∆ui = ϕi in Ωε, (10)

ui(x) = 0 on ∂Ωε, (11)

where ϕi arises from derivatives of the cut-off function, see (31) and Remark 2.1.

Moreover, if Φε,ε0
denotes a given diffeomorphism mapping Ωε into Ωε0

,
there exists a constant C, independent of ε such that

‖zε
n ◦ Φ−1

ε,ε0
‖H1(Ωε0

) ≤ C εn+1. (12)

We first give some remarks and comments on this result.
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Remark 2.1 The remainder zε
n and the functions ui depend of the choice of the

cut-off function χ. The terms ui are corrector terms that compensate for the
cut-off effect away of the origin point, they are not of the same nature as the
singular profiles which are intrinsic and not χ dependant. Let us make precise
the construction of the first one: by definition, we have

∆zε
1 = ε∆χ(x)V1(

x

ε
) + 2〈∇χ(x)∇V1(

x

ε
)〉. (13)

Thanks to the expansion (7) at infinity of V1(y), we obtain ∆zε
i = ε2ϕ1 + o(ε2).

The term ϕ1 is corrected by u1 while the leading terms will be handled at the
next steps.

Remark 2.2 The fact that these functions are controlled in H1
0(Ωε0

) indepen-
dently of ε is crucial for the applications to shape calculus we have in mind.
Therefore, we have to transport the functions on a domain independent of the
parameter ε in order to remove all dependency with respect to ε of our upper
bounds even hidden in the functional spaces.

Remark 2.3 Another important implication of this result for the rest of this
work is the following constatation. Whereas the state function is continuous
with respect to the parameter ε, its gradient is not continuous: The main-order
discontinuity is completely described by the first singular profile V1. Hence this
first singular profile will appear for shape function involving the gradient of the
state.

For the application to the shape functional we consider in this paper, we only
need the second order expansion. We can be more explicit for the functions w1

and w2 involved in the problems defining the profiles: For y ∈ ∂ω+, we have

w1(y) = −〈∇u0(O), y〉 = −ε∂nu0(O)y2,

w2(y) = −
ε2

2
D2u0(O)(y, y).

Sketch of the proof of Theorem 2.1. The proof itself is postponed to
Section 3. First we rewrite everything on the fixed domain Ωε0

. Let Φε,ε0
be a

diffeomorphism mapping Ωε into Ωε0
. We set

zε
n(x) = uε(x) − u0(x) − χ(x)

n
∑

i=1

εiVi

(x

ε

)

−
n−1
∑

i=1

εi+1ui(x). (14)

Our task is to find an estimation of z̃ε
n = zε

n ◦ Φ−1
ε,ε0

in H1(Ωε0
). This estimate

must be uniform with respect to ε. This will be done through the use of the
classical estimates for elliptic equations in Sobolev spaces. If we apply the
Laplace operator to the rest zε

n we get

∆zε
n = gn,χ in Ωε,

zε
n = 0 on ∂Ωε \ ε∂ω

+,

zε
n = wn on ε∂ω+.
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The problem solved by z̃ε
n writes

Lεv = gn,χ ◦ Φ−1
ε,ε0

in Ωε0
, (15)

v = 0 on ∂Ωε0
\ ε0∂ω

+,

v = wn ◦ Φ−1
ε,ε0

on ε0∂ω
+,

where Lε is the elliptic operator obtained from −∆ after transport (see Section
3 for its expression) and wn is the rest in the boundary condition after the n-th
order Taylor approximation

wn(x) = −u0(x) −

[

n
∑

i=1

εiVi

(x

ε

)

]

= εnrn(x, ε), (16)

∇wn(x) = −∇u0(x) −

[

n
∑

i=1

εi−1∇Vi

(x

ε

)

]

= εn−1Rn(x, ε), (17)

where rn and Rn are smooth bounded functions with limit 0 when x→ 0. The
right-hand side in (15) arises from the cut-off function; it is supported in the
annulus where the derivatives of the truncation function χ are supported and
satisfies (see Section 3 for details)

‖gn,χ‖L2(Ωε) = O(εn+1).

To use classical estimates, we precise Φε,ε0
to obtain uniform constants of el-

lipticity and continuity for Lε. Then we need to obtain uniform estimates for
the H1/2-norm of the trace and for the H1-norm of the right hand side. The
estimates obtained in this way are sub-optimal and we use a bootstrap method
to recover the desired estimates.

2.2. Asymptotic expansion of the shaping function

We consider the Dirichlet energy of this problem that is the functional J defined
on the class of open subsets Ω of R2 by (1). Considering the perturbations Ωε

defined formerly, we seek an asymptotic expansion of the real-valuated function

j(ε) = J(Ωε)

around 0. Obviously, the classical differential shape calculus cannot be applied
directly. However, if we fix for a while δ > 0, the Taylor expansion of j(δ + ε)
with respect to ε can be computed. Then a continuity argument allows to pass
to the limit ε → 0. In the following lines, we will use indifferently cartesian or
polar coordinates.
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The deformation field. Let R be the maximal size of acceptable pertur-
bations. Let ξ be a cut-off function distinct from χ and depending of ε, such
that

|x| < ε/3 or |x| > 2R/3 =⇒ ξ(x) = 0 and ε/2 < |x| < R/2 =⇒ ξ(x) = 1.

We define the deformation field in polar coordinates as V = δρ(θ)ur . Here,
ur is the unit radial vector of the polar coordinates. The cut-off function ξ
is needed to first avoid the singularity at the origin and to leave invariant the
boundary ∂Ω0 away from the point O. In the annulus ε/2 < r < R/2 where
the deformations take place, the vector field is constant along the radial lines.
The family of deformed domains is then Tt[Ω(ε)] = Ωε+t where Tt stands for
the flow of the vector field V. Hence for t = δ we have Ω(δ) = Ωε+δ.

The starting point. We have:

j(ε+ δ) = j(ε) +

∫ δ

0

DJ(Ω(t); V)dt, (18)

where DJ(Ω(t); V) is the classical shape derivative (see Dambrine, Soko lowski,
Żochowski, 2003, for more details on the justification of the derivation in the
smooth case). An additional difficulty is caused here by the presence of two
singular points at the intersection of (ε+ t)∂ω+ and ∂Ω0. The angles in the do-
main Ω(t) are of opening less than π. Therefore the solutions uε+t are H2(Ωε+t)
(see Nazarov, Plamenevsky, 1994, Grisvard, 1985, Castabel, Douge, 1994, for
details on equations in domain with corners). Hence 〈∇uε+t,V〉 ∈ H1(Ωε+t)
and 〈∇uε+t,V〉 ∈ H1/2(∂Ωε+t) and that is enough to allow this differentiation.

DJ(Ω(t); V) = −
1

2

∫

∂Ωε+t

|∇uε+t|
2 〈V,n(t)〉 dσ∂Ω(t).

Notice that, in fact, the integrand vanishes outside of the ball B(O, ε + t). Let
us make explicit this integral. The normal component of V(t) writes simply

〈V,n(t)〉 =
1

√

ρ2 + (ρ′)2
〈δur,−ρur + ρ′uθ〉 = −

δρ2

√

ρ2 + (ρ′)2
.

We now turn to the term in gradient of uε+t. We know from Theorem 2.1 that
for y ∈ ∂ω+

∇uε+t((ε + t)y) = [∇u0(O) + o(ε + t)] + [∇V1(y) + o(ε + t)] .

Since the problem solved by u0 has homogeneous Dirichlet boundary conditions,
the gradient is normal to the boundary: ∇u0(O) = ∂nu0(O)n and we get for
x ∈ (ε+ t)∂ω+
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∇uε+t (x) =















∂1V1

(

x

ε + t

)

∂nu0(0) + ∂2V1

(

x

ε+ t

)















+ o(ε + t).

In order to regroup all the dependency in ∂nu0, we introduce the normalized
profile V1 defined as V1/∂nu0(O); it solves

−∆V1 = 0 in Ω∞, (19)

V1(y) = 0 on ∂Ω∞ \ ∂ω+; (20)

V1(y) = y2 for y ∈ ∂ω+ i.e. V1 (ρ(θ), θ) = ρ(θ) sin θ for θ ∈ (0, π). (21)

Then a straightforward computation leads to

|∇uε+t(x)|2 = |∂nu0(O)|2

[

(

1 + ∂2V1

(

x

ε+ t

))2

+

(

∂1V1

(

x

ε+ t

))2
]

+o(ε+ t).

To simplify the notations in the following lines, we confound V1(θ) for V1(y) if
y = (ρ(θ), θ) ∈ ∂ω+. For convenience, we rewrite the shape derivative as an
integral on a fixed (with respect to the pseudo-time t) boundary ∂ω+. First,
we notice that the dilatation of ratio 1/(ε+ t) maps (ε+ t)∂ω+ onto ∂ω+. The

arc-length dσ∂ω+ is given by dσ =
(

ρ2(θ) + (ρ′)2(θ)
)1/2

dθ. We get:

DJ(Ωε+t; V) = −
1

2

∫

(ε+t)∂ω+

|∇uε+t|
2 〈V,n(t)〉 dσ(ε+t)∂ω+ ;

= −
|∂nu0(O)|2

2

∫

∂ω+

[

(1 + ∂2V1(y))
2

+ (∂1V1(y))
2

+o(ε+ t)] 〈V,n(t)〉 (ε + t)dσ∂ω+ ,

=
(ε + t)|∂nu0(O)|2

2

∫ π

0

[

(1 + ∂2V1(θ))
2

+ (∂1V1(θ))
2

+ o(ε+ t)
]

ρ2(θ)dθ,

=
(ε + t)|∂nu0(O)|2

2
[A(ρ) + o(ε+ t)] ,

Here A(ρ) is a shape-dependent number, an important point is that it does not
depend on the pseudo-time t. This is caused by the particular choice of the
deformation field that forces all the deformed boundaries to be dilation of the
same original one. If this property of self-similarity is not fulfilled because of
the assumption of flatness of ∂Ω0 around O, the first singular profile V1 would
change during the deformations from ε to ε+ δ and the computation would be
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much more delicate to perform. Hence we have:

j(ε+ δ) = j(ε) +
|∂nu0(O)|2

2

∫ δ

0

(A(ρ) + o(ε + t)) (ε+ t)dt

= j(ε) + δ2|∂nu0(O)|2
[

A(ρ)

4
+ o(ε + δ)

]

.

Now we pass to the limit ε→ 0 in this formula. Using the well-known continuity
of this functional with respect to the shape (see Delfour, Zolésio, 2001, for
example) to see that j(ε) → j(0) when ε→ 0, we get the wanted expansion.

Theorem 2.2 (Asymptotic behavior of the shape function) The shaping
function J behaves like

J(Ωδ) = J(Ω0) + δ2|∂nu0(O)|2A(ω) + o(δ2) (22)

with

A(ω) =
1

4

∫ π

0

[

(1 + ∂2V1(θ))
2

+ (∂1V1(θ))
2
]

ρ2(θ)dθ. (23)

Remark 2.4 The quantity A(ω) depends only on the geometry of the hole we
dug and not at all on the position on the center of the hole and of the state
function. It plays exactly the same role as the so-called polarization matrix. By
analogy, we call it the polarization number.

Remark 2.5 Formulæ (22) and (23) correspond to the results stated in Theorem
4.1 in Maz‘ya, Nazarov (1988), though the singular profiles used by these authors
are not written in the same way. Our approach underlines the links between the
shape gradient – which is not defined for the present singular perturbation of the
domain – and the leading term in the asymptotic of the functional. In Maz‘ya,
Nazarov (1988), the term ∂nu0(O) derives from the expansion into singular
functions. It turns out that the Taylor expansion of u0 at point O coincides
with the singular expansion at a corner point in the limit case where the opening
equals π; hence ∂nu0(O) is nothing but the first singular coefficient of u0 at O.

3. Complete proof of Theorem 2.1

As the leading line of that proof has been explained in Section 2, we just provide
the complete technical arguments in this section. For convenience C will denote
any non negative constant (independent of ε).

Construction of the diffeomorphism Φε,ε0
and geometrical preliminar-

ies. We take advantage of the geometry and hence we use the polar coordi-
nates. We search this diffeomorphism Φε,ε0

under the form

Φε,ε0
(reiθ) = P (r, θ)eiθ .
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For r big enough, we search P (r) = r and we require P (ερ(θ), θ) = ε0ρ(θ). The
idea is to use an interpolation polynomial for the small r with conditions at
r = ε and a smooth connection up to order 2 to P (r) = r at some point to be
determined.

First consider the following fact of calculus. Let a, b, c be three real numbers
such that 0 < a < b < c. The polynomial P[a,b,c] defined by

P[a,b,c](X) =
b− a

(a− c)3
(X − c)

3
+X.

satisfies the interpolation conditions:

P[a,b,c](a) = b, P[a,b,c](c) = c, P ′
[a,b,c](c) = 1, P ′′

[a,b,c](c) = 0.

Moreover, if 3b− 2a < c then ∀x ∈ [a, c],

1 = P ′
[a,b,c](c) ≥ P ′

[a,b,c](x) ≥ P ′
[a,b,c](a) =

2a+ c− 3b

c− a
> 0, (24)

and P[a,b,c] is a bijection from [a, c] into [b, c]. For any θ ∈ (0, π), we can choose
a = ερ(θ), b = ε0ρ(θ) and c = 3ε0‖ρ‖∞ := R0 and satisfy to the condition
3b− 2a < c. Let P (r, θ) be P[ερ(θ),ε0ρ(θ),R0](r). It writes:

P (r, θ) =
(ε0 − ε)ρ(θ)

(R0 − ερ (θ))3
(r −R0)3 + r. (25)

We define a increasing function φε on [ε,+∞) by

φε(r, θ) =

{

P (r, θ) if r ∈ (ε,R0],
r if r ≥ 2ε0.

(26)

Let Φε,ε0
be the diffeomorphism of R2 \B(0, ε) into R2 \B(0, ε0) defined in

polar coordinates by

Φε,ε0
(r, θ) = (φε (r, θ) , θ) . (27)

Far away from 0 (i.e. for r > 2ε0), Φε,ε0
is nothing but the identity and

therefore we get Φε,ε0
(Ωε) = Ωε0

. Moreover, we have Φε,ε0
(Ωε ∩ B(0, R0)) =

Ωε0
∩B(0, R0).
To obtain bounds on the coefficients of Lε we need the derivatives of Φε,ε0

.
The non-trivial case is |x| < R0. Let x ∈ Ωε ∩B(0, 2ε0) and let Ψ be the change
of coordinates application that is Ψ(r, θ) = (r cos θ, r sin θ). We consider the
diffeomorphism Φε,ε0

= Ψ ◦ Φε,ε0
◦ Ψ−1 to deal with Cartesian coordinates and

we get at the point x = (r cos θ, r sin θ):

DΦε,ε0
(x) = DΨ

[

Φε,ε0
◦ Ψ−1(x)

]

.DΦε,ε0

[

Ψ−1(x)
]

.DΨ−1 [x] ,

=

(

cos θ −φε(r, θ) sin θ
sin θ φε(r, θ) cos θ

)(

∂rφε(r, θ) 0
∂θφε(r, θ) 1

)





cos θ sin θ

−
sin θ

r

cos θ

r



 .
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Hence, we get

detDΦε,ε0
=
φε(r, θ)∂rφε(r, θ)

r
and detDΦ−1

ε,ε0
=

r

φε(r, θ)∂rφε(r, θ)
.

By construction of φε, we have both

ε0ρ(θ)

R0
≤
φε(r, θ)

r
≤
R0

ε
,

(2ε− 3ε0)ρ(θ) +R0

R0 − ερ(θ)
≤ ∂rφε ≤ 1.

Hence, we have the upper bounds,

| detDΦε,ε0
| ≤

R0

ε
and | detDΦ−1

ε,ε0
(Φε,ε0

(x))| ≤
ε0ρ(θ)

R0 − 3ε0ρ(θ)
. (28)

Moreover, in this proof, we use of the surfacic Jacobian Φε,ε0
= det(DΦε,ε0

‖t

(DΦε,ε0
)−1nε‖) on the boundary of the holes. Here the boundaries are homo-

thetic hence Φε,ε0
= ε0/ε the ratio of the dilatation.

Uniform ellipticity of L(ε). Taking advantage of the geometrical configura-
tion, we write the problem (15) solved by z̃ = z ◦Φ−1

ε,ε0
in polar coordinates (we

are only interested in the case r < R0 where the operator Lε is not the Laplace
operator):

[

(P ′)2 +
(ρ′)2

r2

]

∂2
rr z̃+

1

r2
∂2

ttz̃+

[

P ′′ +
P ′

r
+
ρ′′

r2

]

∂r ṽ = gχ◦Φ−1
ε,ε0

in Ωε0
∩B(0, R0).

(29)

By construction, P and its derivatives are uniformly bounded and there exist
two constants λ and Λ such that for all ε < ε0 we have

ai,j(ε, x)ξiξj ≥ λ|ξ|2 and
∑

|ai,j(ε, x)|2 ≤ Λ2

for all x ∈ Ωε0
and all ξ ∈ R2. This very classical result (ellipticity is preserved

by transport) is simply caused by the continuity of the eigenvalues of the matrix
(ai,j) with respect to ε. Moreover, there exists also a third constant which
dominates the coefficient in the order one derivatives of z̃.

Estimate of the boundary condition ‖z̃ε
n‖H1/2(Ωε0

). The natural way to

control a norm in an H1/2 space on a boundary is to compute the H1-norm
of well-chosen extension. This is not appropriate for this problem since the
H1/2-norm is non-local and hence we can not take advantage of the support
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of z̃n. The boundary term z̃ε
n = w ◦ Φ−1

ε,ε0
of the problem (15) is a piecewise

C∞ continuous function and belongs to H1(∂Ωε0
). Since this trace vanishes

outside B(O, ε0), the H1-norm is an integral over ∂Ωε0
∩ ∂B(0, ε0) and we have

‖z̃ε
n‖H1/2(Ωε0

) ≤ ‖z̃ε
n‖H1(Ωε0

). We will estimate it to derive a bound on ‖z̃ε
n‖

1/2
H .

Inside B(0, ε0), that function is C∞ and vanishes outside this ball, hence we get:

‖z̃ε
n‖

2
H1(∂Ωε0

) =

∫

∂Ωε0
∩ ∂B(0,ε0)

|z̃ε
n|

2 + |∇z̃ε
n|

2

=

∫

∂Ωε0
∩∂B(0,ε0)

|wn ◦ Φ−1
ε,ε0

|2 + |∇(wn ◦ Φ−1
ε,ε0

)|2.

We transport this on the boundary ∂Ωε in order to use our assumptions. The
expression of the transport of a tangential derivative can be found for example
in the appendix to Dambrine, Soko lowski, Żochowski (2003).

‖z̃ε
n‖

2
H1(∂Ωε0

) =

∫

ε∂ω+

|wn|
2Φε,ε0

+ I with

I =

∫

ε∂ω+

|DΦ−1
ε,ε0

[∇wn − 〈∇wn,n〉n

−
1

‖DΦ−1
ε,ε0 6= ‖2

〈DΦ−1
ε,ε0

∇wn, DΦ−1
ε,ε0

6=〉 6=]|2Φε,ε0
.

Remember that Φε,ε0
= det

(

DΦε,ε0
‖ t(DΦε,ε0

)−1 6= ‖
)

= ε0/ε is the sur-
facic Jacobian and that 6= denotes the unit normal vector to ∂Ωε pointing to
the exterior. The first term of the sum is

∫

∂Ωε∩∂B(0,ε)

|w|2Φε,ε0
=

∫

ε∂ω+

ε2n|rn(x)|2
ε0
ε
dσ = ε0ε

2n‖rn‖
2
L∞ .

By (17) and Cauchy-Schwarz inequality, we have

|I| ≤

∫

ε∂ω+

Cε2(n−1)‖Rn‖
2
∞

ε0
ε

≤ Cε0‖Rn‖
2
∞ε

2(n−1).

Hence we get

‖z̃ε
n‖H1/2(Ωε0

) ≤ Cεn−1. (30)

Estimation of the norms of gn,χ. We give here more details on the definition
of the correctors ui. We will show, by induction, that gn,χ = ∆zε

n has an
expansion in integer powers of ε. This is clear for n = 1 thanks to (13) and (7).
Let us assume the following expansion for ∆zε

n−1:

∆zε
n−1 = εnϕn−1 + εn+1ϕ

[1]
n−1 + εn+2ϕ

[2]
n−1 + · · · , (31)
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with functions ϕ
[i]
n−1 independent of ε. Let us now consider zε

n: By construction,
we obviously have

∆zε
n = ∆zε

n−1 − εn∆un−1 − εn−1∆(χVi(
x

ε
))

=
∑

i≥1

εn+iϕ
[i]
n−1 − εn[∆χVn(

x

ε
) + 2ε−1∇χ · ∇Vn(

x

ε
)].

Since ∆χ and ∇χ are supported in an annulus R1 < |x| < R2, the second
term of the above right-hand side is governed by the behavior of the profiles at
infinity. Indeed, thanks to relations (7) we obtain the following expansion:

∆zε
n =

∑

i≥1

εn+iϕ
[i]
n−1 −

∑

i≥1

εn+iζ [i]
n ,

which yields to (31) at rank n, with ϕn = ϕ
[1]
n−1 + ζ

[1]
n . We can deduce the

estimate for gn,χ:

‖gn,χ‖L2(Ωε) ≤ C(χ)εn+1. (32)

Now the real right-hand side gχ ◦ Φε,ε0
has the same L2 norm as gχ since Φε,ε0

is nothing but the identity on the support of gχ. Hence the jacobian is just 1
and

‖gn,χ ◦ Φε,ε0
‖L2(Ωε0

) ≤ C(χ)εn+1. (33)

The bootstrap. Applying classical elliptic a priori estimates in Ωε0
to the

solution of (15), we obtain from (30) and (33) the first estimate

∀n ∈ N, ‖z̃ε
n‖H1(Ωε0

) ≤ C(Ωε0
)εn−1.

We also have

zε
n(x) = zε

n+2(x) − εn+1χ(x)Vn+1

(x

ε

)

− εn+2χ(x)Vn+2

(x

ε

)

− εn+1un(x)

+εn+2un+1(x).

Using uniform estimates on both the profiles and the corrector, we obtain

‖z̃ε
n‖H1(Ωε0

) ≤ C(Ωε0
)εn+1 + Cεn+1 + Cεn+2 +Cεn+1 +Cεn+2 ≤ Cεn+1.

This is the expected upper bound (12) and the proof is completed.

4. The particular case of circular holes

The general case developed in Section 2 applies to the particular case where
ω is a ball. However, in this specific case, the computations can be carried
out completely: The singular profiles and the polarization number A(ρ) can be
computed explicitly. We think these results can have practical use hence we
present them in this section. This explicit computation will be used for the
numerical validation as well.
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The singular profiles. We introduce Ω∞ = {y = (y1, y2), y2 > 0, |y| > 1},
the limit domain. From the regularity assumptions on both Ω0 and f , u0 is
known to be C∞(Ω0). Therefore, we get that for all n ≥ 1:

u0(εy) =

n
∑

i=1

εiwi(y) + εnzε
n(ε, y). (34)

The functions wk are defined by the derivatives of u0. Namely, one has for the
fist orders:

w1(y) = 〈∇u0(0), y〉 and w2(y) =
1

2
D2u0(0).[y, y].

Using the polar coordinates in Ω∞, we get directly:

w1(θ) = |∂nu0| sin θ.

The second term w2 can also be described. The matrix D2u0 is a hessian and
therefore is symmetric. Because of the state equation, the matrixD2u0(0) writes

D2u0(0) =

(

a b
b −a

)

. Then, we get

w2(θ) =
1

2

(

cos θ sin θ
)

(

a b
b −a

)(

cos θ
sin θ

)

= b+ 2a sin 2θ.

To respect the boundary conditions (5), the wi satisfy

wi(0) = 0 and wi(π) = 0. (35)

Therefore, we get that b = 0 and that detD2u0(0) = −a2 and

w2(θ) =
1

2

√

− detD2u0(0) sin 2θ.

Taking advantage of the specific form of the wi, namely wi(θ) = ci sin iθ, and
of the geometry, we use an inversion to pose the problem in the unit ball, then
the Poisson kernel to solve

−∆u = 0 in Ω∞, (36)

u = 0 on y2 = 0, |y| ≥ 1,

u = wi(θ) on θ ∈ [0, π].

The obtained singular profiles are

Vi(r, θ) = ci
sin iθ

ri
. (37)
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This is in particular the case for i = 1, 2. We get

V1(r, θ) = ∂uu0(O)
sin θ

r
and V1(x1, x2) =

x2

x2
1 + x2

2

(38)

V2(r, θ) =
1

2

√

− detD2u0(0)
sin 2θ

r2
. (39)

Note that, obviously, these functions satisfy the announced behavior at infinity.

The polarization number. We apply formula (23) in the particular case
ρ(θ) = 1. We use (38) and get

A(ω) =
1

4

∫ π

0

[

(1 + ∂2V1(θ))
2

+ (∂1V1(θ))
2
]

dθ,

=
1

4

∫ π

0

(1 + cos 2θ)2 + (sin 2θ)2 dθ =
1

2

∫ π

0

(1 + cos 2θ) dθ.

Hence, we have

A(ω) =
π

2
. (40)

An example of geometry with complete explicit quantities. We con-
sider the case of the upper half-disk: Ω0 = {(r, θ), θ ∈ [0, π] and r < 1}. For
this particular domain, we consider Poisson’s equation with the right hand side
f(r, θ) = − sin θ. This right hand side has not a compact support in Ω0. How-
ever, this assumption is not necessary and was made for convenience and we
still have the expected behavior. We can carry out the computations explicitly:

u0(r, θ) =
1

3
sin θ(r2 − r),

|∂nu0(O)|2 =
1

9
,

J(Ω0) = −
π

144
,

uε(r, θ) =
1

3
sin θ

ε2(1 − r2) + (1 + ε)(r3 − r2)

(1 + ε)r

J(Ωε) = −
π

144
+

π

18
ε2 −

π

9
ε3 +O(ε4).

We recover the expression (40) and the expansion (22).
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5. The numerical validation

In this section, we present some numerical experiments, which illustrate the
expansion (22). We consider the square Ω0 = (− 1

2 ,
1
2 )× (0, 1), on the boundary

of which we dig a semi-circular hole: The domain Ωε is the defined as

Ωε = {x ∈ Ω0 ; |x| > ε}.

As before, we denote by uε resp. u0 the solution in H1
0(Ωε) resp. H1

0(Ω0) of
−∆u = f with

f(x1, x2) =

{

1 if |x1| <
1
4 and |x2 −

1
2 | <

1
4 ,

0 otherwise.

The data f has a compact support in Ωε (for ε < 3
4 ), but it is not smooth as

required in the previous sections. Actually, it is sufficient for f to be smooth
near x = 0 since we only use the regularity of u0 near this point.

We used the finite element library Mélina (see Martin, 2004) to compute
an approximation of both uε and u0 for ε = 2−i with i = 2, . . . , 10. Fig. 3 shows
the high order (isoparametric Q8-type) meshes used for the values ε = 1/4 (8
elements, 561 degrees of freedom) and ε = 1/8 (12 elements, 825 degrees of
freedom). We emphasize the fact that the geometry has to be approximated in
a precise way, since the asymptotic phenomenon we want to observe is fine (see
the error of order 10−10 in Fig. 5). The use of high-order elements is particularly
adapted in the case of domain with curved boundaries.

Figure 3. The Q8-mesh of the domain Ωε for ε = 0.25 and ε = 0.125
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Fig. 5 presents the results of the computations (done on a calculator at the
École Normale Supérieure de Cachan Bretagne, IBM Risc6000). In the table
on the left, the values of J(Ωε) for ε = 2−i (i = 2, . . . , 10) are given, and can
be compared with J(Ω0). The graph on the right shows – in logarithmic axes –
the evolution of J(Ωε) with respect of ε. Since it is a straight line of slope −2,
the numerical results validate the dependency in ε2 of the expansion (22).

ε J(Ωε)
0.25 −5.4441191.10−4

0.125 −5.4897622.10−4

0.0625 −5.4997119.10−4

0.03125 −5.5021303.10−4

0.015625 −5.5027309.10−4

0.0078125 −5.5028808.10−4

0.00390625 −5.5029183.10−4

0.001953125 −5.5029277.10−4

0.0009765625 −5.5029300.10−4

0 −5.5029307.10−4
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Figure 4. Comparison between J(Ωε) and J(Ω0) with respect to ε (logarithmic
axes)

In order to highlight the factor A(ω) = π
2 , we have done a computation with

the following right-hand side:

f(x1, x2) = 2π2 cos(πx1) sin(πx2),

for which we know the exact solution for ε = 0: u0(x1, x2) = cos(πx1) sin(πx2)
(however, we do not have any explicit expression for the solution uε). In this
case,

∂nu0(0, 0) = −π and J(Ω0) = −
π2

4
.

In Table 1, we show the evolution of the quantity

E(ε) =
J(Ωε) − J(Ω0)

ε2∂nu0(0, 0)2

with respect to ε. We clearly see the convergence to π
2 , predicted by for-

mula (22).
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Table 1. Quantities J(Ωε) and E(ε) = J(Ωε)−J(Ω0)
ε2∂nu0(0,0)2

ε J(Ωε) E(ε)
0.25 −1.664808 1.301116
0.125 −2.236814 1.495258
0.0625 −2.407592 1.551334
0.03125 −2.452308 1.565902
0.015625 −2.463619 1.569580
0.0078125 −2.466455 1.570502
0.00390625 −2.467165 1.570730
0.001953125 −2.467342 1.570783
0.0009765625 −2.467386 1.570778
0 −2.467401 1.570796
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