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Abstract: This paper deals with the existence question in opti-
mal design. We present a general variational technique for proving
existence, and give several examples concerning functionals of eigen-
values and of energy type. In particular, we show how the isoperi-
metric problem for the Dirichlet eigenvalues of an elliptic operator
of general order fits into this frame.
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1. Introduction

We consider a generic shape optimization problem of the form

min
Ω∈Uad

J(Ω), (1)

where the cost functional Ω → J(Ω) depends on the set Ω, which usually is
assumed to be open or quasi-open. The functional J depends on Ω via the
solution of a partial differential equation defined on Ω, or the spectrum of a
certain operator which is defined on Ω. By Uad we denote the class of admissible
sets. The question we deal with is : does problem (1) have a solution?

The answer depends of course both on how J depends on Ω and on the class
of admissible sets Uad. A collection of results concerning this topic can be found
in Bucur, Buttazzo (2002). The most classical example of a shape optimization
problem which has a solution is the isoperimetric inequality: find an open set
Ω which maximizes the volume among all open sets with fixed perimeter. A
typical example of a shape optimization problem which does not have solution
is to minimize the volume into the same class.

Since the question is not so simple and there is no a standard approach,
a general answer can not be given. Being far from giving an exhaustive tool
for the treatment of shape optimization problems, we just point out the main
difficulties of the existence question and try to give the reader some hints for
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proving existence for three classes of shape optimization problems: function-
als of eigenvalues, minimization of energies and maximization of energies. As
concrete examples, notice that the maximization of the torsional rigidity is a
minimization of energy, while the minimization of the compliance is a maxi-
mization of energy. We do not discuss here the non existence question, which
one should consider with different techniques.

An artificial way to obtain existence for a given functional J is to diminish
the class Uad. This is usually done by imposing a uniform geometric constraint
on the elements of Uad. A typical example is to work in the class of domains
which satisfy a uniform cone condition. Since these classes are not stable for
deformations by smooth vector fields, from a practical point of view, existence
results in these classes may hide what really happens to the shape functional
and do not give real information for the numerical computation. The stability
by smooth fields is necessary when writing the necessary optimality conditions.

A good existence result is a result obtained in a class Uad which is stable for
vector field deformations. In particular, this means that Uad should be large
enough and should not involve any boundary smoothness. This is one reason
for which we deal only with weak solutions (which are naturally defined on
non-smooth domains).

We present a unitary frame and give an abstract method to prove existence
for problem (1). In particular we show how to prove existence of an optimal
shape for the isoperimetric problem for the eigenvalues of an elliptic operator
of arbitrary order with Dirichlet boundary conditions (in the Sobolev space
Hm

0 (D)). For the Dirichlet-Laplacian (and operators in divergence form) this
was done by Buttazzo and Dal Maso (1993) by using the relaxed form of the
Dirichlet problem and the theory of the Γ-convergence. Without using relax-
ation, the same result was proved in Bucur, Buttazzo, Henrot (1998) in the
frame of the weak-γ convergence. In this paper, we give a simple proof issued
from the direct methods of the calculus of variations, which does not require any
knowledge of the relaxed forms or Γ or γ convergences. Neumann eigenvalues
do not fit into our abstract frame, mainly because of the lack of collective com-
pactness of the Sobolev spaces H1(Ω) into L2(RN ), for varying Ω. We moreover
discuss the shape optimization problems for the energy of the system. For min-
imization problems we give a general existence result (which is valid also for
nonlinear PDEs), while for maximization problems we only underline the main
difficulties.

We point out the fact that the answer to the existence question does not de-
pend ”too much” on the structure of the functional J , but only on its continuity
properties on moving spaces.

2. A few facts about moving spaces

We begin by giving a general definition for the convergence of spaces (see At-
touch, 1984, for more details). Let X be a reflexive Banach space and {Gn}n∈N
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a sequence of subsets of X . We denote by w−X , s−X the weak and the strong
topologies on X . The weak upper and the strong lower limits in the sense of
Kuratowski are defined as follows:

w − lim sup
n→∞

Gn = {u ∈ X : ∃{nk}k, ∃unk
∈ Gnk

such that unk

w−X
⇀ u}

s − lim inf
n→∞

Gn = {u ∈ X : ∃un ∈ Gn such that un
s−X
−→ u} .

Definition 2.1 If {Gn}n∈N are closed subspaces in X, it is said that Gn s−K

converges to G if G ⊆ s − lim infn→∞ Gn. It is said that Gn w − K converges
to G if w − lim supn→∞ Gn ⊆ G.

Note that the s − K and w − K limits of a sequence (Gn)n are not unique.
In particular Gn w − K converges to X and s − K converges to {0}.

If {Gn}n∈N are closed subspaces in X , it is said that Gn converges in the
sense of Mosco to G if Gn converges both in s − K and w − K to G. Since
s− lim infn→∞ Gn ⊆ w − lim supn→∞ Gn, the Mosco limit is unique. Note that
in general s− lim infn→∞ Gn ⊆ w− lim supn→∞ Gn. Therefore, if Gn converges
in the sense of Mosco to G, then

s − lim inf
n→∞

Gn = G = w − lim sup
n→∞

Gn.

Definition 2.2 A family of sets G ⊆ P(X) is said to be weak Kuratowski com-
pact (simply w−K) if for every sequence (Gn)n ⊆ G there exists a subsequence
(Gnk

)k and an element G ∈ G such that

w − lim sup
k→∞

Gnk
⊆ G.

The family is said to be strong Kuratowski compact (simply s − K) if for every
sequence (Gn)n ⊆ G there exists a subsequence (Gnk

)k and an element G ∈ G
such that

G ⊆ s − lim inf
k→∞

Gnk
.

3. Functionals depending on eigenvalues

The main situations we have in mind concern the Laplacian with Dirichlet or
Neumann boundary conditions, and the bi-Laplacian with Dirichlet conditions
(the clamped plate or the buckling load). We begin by giving first an abstract
frame which can be used to discuss all these situations (the Neumann boundary
conditions fit only partially into the general theory).

Let V ,H be two real Hilbert spaces such that V ⊆ H. On V we have the scalar
product (., .)V and the norm |.|V and on H we have the scalar product (., .)H and
the norm |.|H. In order to cover both the Dirichlet and Neumann Laplacian,
we assume for the moment that the injection mapping V →֒H is continuous, but
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not necessarily compact. Let also a : V × V → R be a continuous, symmetric,
coercive bilinear form.

Let now consider a sequence of closed Hilbert subspaces of V , denoted
{Vn}n∈N and {Hn = clHVn}n∈N. We assume that Vn is compactly embed-
ded in Hn. Since by definition Vn is dense in Hn, the dual space V ′

n can be

identified through Hn, Vn

compact
→֒ Hn →֒ V ′

n. Let an be the restriction of a to
Vn × Vn and consider the associate operator

An : Vn → V ′
n,

defined by a(u, v) =< Anu, v >V ′
n
×Vn

, for all u, v ∈ Vn. The operator An is also
an isomorphism from its domain D(An) onto Hn and A−1

n is compact on Hn;
A−1

n : Hn → D(An) ⊆ Vn ⊆ Hn, D(An) is dense in Hn. From Dautray, Lions
(1988), the spectrum of An consists only of eigenvalues, which can be computed
by using the usual Rayleigh formula.

Let us denote by λk(Vn) the k-th eigenvalue of the operator An counted with
its multiplicity. Then

λk(Vn) = min
S∈Sk(Vn)

max
u∈S\{0}

a(u, u)

|u|2H
,

where Sk(Vn) is the family of all subspaces of dimension k of Vn.
The following conventions are made. If the number of eigenvalues is finite,

we complete the sequence with λk(Vn) = +∞. If Vn = {0} then ∀k ≥ 1
λk(Vn) = +∞.

Theorem 3.1 Let Vn, V be closed subspaces of V. Assume that Vn
s−V
→ V . Then

λk(V ) ≥ lim sup
n→∞

λk(Vn).

Proof. Let ε > 0 and S ∈ Sk(V ) such that

λk(V ) + ε ≥ max
u∈S\{0}

a(u, u)

|u|2
.

Let u1, . . . , uk an H-orthonormal basis of S. Let un
1 , . . . , un

k be k-sequences given
by the hypothesis V ⊆ s − lim infn→∞ Vn, such that un

i → ui in V-strong. We
can assume that (un

i , un
j )H = δij , otherwise we apply a usual orthonormalisation

procedure.
Let us denote

Sn = span (un
1 , . . . , un

k),

and let un ∈ Sn be such that |un|H = 1 and

max
u∈Sn

a(u, u)

|u|H
=

a(un, un)

|un|H
.
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For a subsequence, still denoted using the same index, we have un → u, strongly
in V and H. Then

a(u, u)

|u|H
= lim

n→∞

a(un, un)

|un|H
.

Consequently

λk(V ) + ε ≥
a(u, u)

|u|H
= lim

n→∞

a(un, un)

|un|H
≥ lim sup

n→∞
λk(Vn).

Taking ε → 0, we conclude the proof.

Theorem 3.2 Let Vn, V be closed subspaces of V. Assume that Vn
w−V
→ V , and

moreover assume that the injection
⋃

n Vn →֒ H is compact. Then

λk(V ) ≤ lim inf
n→∞

λk(Vn).

Proof. Let ε > 0 and Sn ∈ Sk(Vn) such that

λk(Vn) + ε ≥ max
u∈Sn\{0}

a(u, u)

|u|2H
.

Let un ∈ Vn be a maximizer of maxu∈Sn\{0}
a(u,u)
|u|2

H

such that |un|2H = 1. Let

un
1 , . . . , un

k be an H-orthonormal basis of Sn. We can assume that

lim inf
n→∞

λk(Vn) < ∞

and for a subsequence (still denoted using the same index) we have

∀i = 1, . . . , k un
i ⇀ ui weakly in V .

By the collective compactness assumption
⋃

n Vn →֒ H, we get (ui, uj)H = δij

and w− lim supn→∞ Sn = span (u1, . . . , uk) := S, which is a space of dimension
k.

For every u ∈ S, there exists a sequence unk
∈ Snk

which converges weakly
to u in V . Consequently,

lim inf
n→∞

a(unk
, unk

)

|unk
|H

≥
a(u, u)

|u|H
.

Taking the maximum in the right hand side, we get

lim inf
n→∞

λk(Vn) + ε ≥ max
u∈S

a(u, u)

|u|H
≥ λk(V ).

Remark 3.1 If
⋃

n Vn →֒ H is compact and Vn converges in the sense of Mosco
to V , then from Theorems 3.1 and 3.2 we get that

∀k ≥ 1 λk(Vn) → λk(V ).
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In fact, under these hypotheses, even a stronger result can be obtained using
the norm convergence of the resolvent operator (see Dunford, Schwartz, 1963).
Since Hm

0 (D) is compactly embedded in Hm−1(D), this result covers the stability
of the eigenvalues of the Dirichlet-Laplacian and both the clamped plate and
the buckling load for the bi-Laplacian. In particular, the collective compactness
hypothesis of Theorem 3.2 holds.

It is well known that the spectrum of the Neumann-Laplacian is highly un-
stable for the geometric domain variation. We point out the fact that this is due
mainly to the collective compactness condition of Theorem 3.2 which is very dif-
ficult to be satisfied, unless the perturbation of the geometric boundary respects
a uniform cone condition, for example.

If the injection
⋃

n Vn →֒ H is not compact, the convergence of the spectrum
does not hold in general, even though Vn converges in the sense of Mosco to V .
We refer the reader to the classical example of Courant and Hilbert (1953).

A set A ⊆ R
N is said to be quasi-open (see Bucur, Buttazzo, 2002, for

details) if for every ε > 0 there exists an open set Aε such that A ⊆ Aε, and
cap (Aε \ A) < ε. A property is said to hold quasi everywhere (or simply q.e.)
if it holds in the complement of a set of zero capacity. A function u : R

N → R

is said quasi continuous if for every ǫ > 0 there exists an open set Aǫ such that
cap (Aǫ) < ǫ and u|RN\Aǫ

is continuous in R
N \Aǫ. Every function u ∈ H1(RN )

has a unique quasi continuous representative (up to a set of zero capacity).
Let D be a smooth bounded open set (called design region) and H1

0 (D) the
usual Sobolev space. Let us denote

Ac(D) = {H1
0 (A) : A ⊆ D, A quasi-open, |A| ≤ c}.

The Sobolev space H1
0 (A) is seen as closed subspace of H1

0 (D),

H1
0 (A) = {u ∈ H1

0 (D) : u = 0 q.e. on D \ A}.

In the previous relation, u is a quasi continuous representative. It was proved by
Hedberg (1981, Theorem 3.1) that this space coincides with the usual Sobolev
space as soon as A is open.

We give first the following

Theorem 3.3 The family Ac(D) is compact for the w − K convergence.

Proof. The proof is trivial if c ≥ |D|. Indeed, in this case, every sequence
H1

0 (An) w − K converges to H1
0 (D). If c < |D|, the proof is related to the

fine behaviour of Sobolev functions. In Buttazzo, Dal Maso (1993) the authors
use the relaxation of the Dirichlet problem for the Γ-convergence to prove the
assertion. We refer also to Dal Maso, Mosco (1987) for more details concerning
this topic.

Let wAn
∈ H1

0 (An) be the function which satisfies −∆wAn
= 1 in H1

0 (An)
(in the sense given by the bilinear form a(u, v) =

∫
An

∇u∇vdx). Since D is

bounded, the sequence (wAn
)n is bounded in H1

0 (D).
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For a subsequence, still denoted using with the same indices, we have

wAn

H1

0
(D)

⇀ w.

The convergence being strong in L2(D) and since |{wAn
> 0}| ≤ c we get

|{w > 0}| ≤ c. We set A = {w > 0} and prove that H1
0 (An)

w−K
−→ H1

0 (A) in
H1

0 (D).

Let un ∈ H1
0 (An), such that for a subsequence unk

H1

0
(D)

⇀ u. We have to

prove that u ∈ H1
0 (A). Let fnk

= −∆unk
∈ H−1(D). Then fnk

H−1(D)
⇀ f =

−∆u. Consequently, if vnk
∈ H1

0 (Ank
) satisfies in H1

0 (Ank
) −∆vnk

= f , then
un − vnk

⇀ 0 in H1
0 (D), hence vnk

⇀ u in H1
0 (D). For every ε > 0, we consider

fε ∈ L∞(D) such that |fε − f |H−1(D) ≤ ε. If we denote vε
nk

the solution in
H1

0 (Ank
) of −∆vε

nk
= fε, then we get from the maximum principle

0 ≤ |vε
n| ≤ |fε|∞wAn

.

Any weak limit of vε
nk

will vanish quasi everywhere on {w = 0}, hence it will
belong to H1

0 (A). Making ε → 0, we get that u ∈ H1
0 (A).

Let m ∈ N
∗ and Hm

0 (D) be the usual Sobolev space on D. For a quasi
open set A ⊆ D, we define by induction the following space (which by abuse of
notation is still denoted with Hm

0 )

Hm
0 (A) = {u ∈ Hm

0 (D) : u ∈ H1
0 (A),∇u ∈ Hm−1

0 (A)}.

Note that for an open set A, the space defined above coincides with the usual
Sobolev space, provided that A satisfies a Keldysh like stability property (see
Keldysh, 1996): u = 0 q.e. on D \A implies that u = 0 m-q.e. on D \A (i.e. in
the sense of the m-capacity). Here, we do not develop this point; we just notice
that if A is slightly smooth, this property holds from the Hedberg theorem.

Let us denote

Am
c (D) = {Hm

0 (A) : A quasi open A ⊆ D, |A| ≤ c}.

Theorem 3.4 The family Am
c (D) is compact for the w − K convergence in

Hm
0 (D).

Proof. We prove this theorem by induction, namely that Hm
0 (An) w − K con-

verges to Hm
0 (A), where A = {w > 0} is defined in the proof of Theorem

3.3. Suppose the assertion true up to m − 1 and let us prove it for m. Let
(An)n be a sequence of quasi open sets from which we extract a subsequence

(still denoted using the same indices) such that Hm−1
0 (An)

w−K
−→ Hm−1

0 (A) and

H1
0 (An)

w−K
−→ H1

0 (A).
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From the definition of the Sobolev spaces Hm
0 on quasi open sets, we directly

get Hm
0 (An)

w−K
−→ Hm

0 (A) in Hm
0 (D).

Remark 3.2 Following the same lines, one can prove that for every m ∈ N and
1 < p < +∞, the family

{Wm,p
0 (A) : A quasi open A ⊆ D, |A| ≤ c}

is w − K compact in W
m,p
0 (D).

In the sequel we give an existence theorem concerning the eigenvalues of
general operators issued from symmetric, continuous and coercive bilinear forms
on Hm

0 (D). For example, this is the case of the m-Laplacian (−∆)m with
Dirichlet boundary conditions. This result was obtained by Buttazzo and Dal
Maso (1993). Their proof relied on the relaxed form and on the Γ-convergence
theory. Here, we give a simple proof issued from the direct methods of the
calculus of variations.

Let a(·, ·) be a symmetric, continuous and coercive bilinear form on Hm
0 (D).

For every quasi open set A ⊆ D, let us denote by λ1(A), . . . , λk(A) the first k

eigenvalues of the bilinear form restricted to Hm
0 (A).

Theorem 3.5 Let Φ : R
k

+ → R be a lower semicontinuous function, increasing
in each variable. Then the problem

min{Φ(λ1(A), . . . , λk(A)) : A quasi open A ⊆ D, |A| ≤ c}

has at least one solution.

Proof. Let Hm
0 (An) be a minimizing sequence. From the compactness result of

Theorem 3.4, there exists a subsequence (still denoted using the same indices)

such that Hm
0 (An)

w−k
−→ Hm

0 (A), and Hm
0 (A) ∈ Am

c (D).
Following Theorem 3.2 we have that ∀i = 1, . . . , k

λi(A) ≤ lim inf
n→∞

λi(An).

For a subsequence (still denoted using the same indices) there exists x1, · · · , xk ∈
R such that λi(A) → xi. The lower semicontinuity property of Φ gives that

Φ(x1, · · · , xk) ≤ lim inf
n→∞

Φ(λ1(An), . . . , λk(An)).

The monotonicity of φ in each variable together with the inequalities λi(A) ≤ xi

give

Φ(λ1(A), . . . , λk(A)) ≤ lim inf
n→∞

Φ(λ1(An), . . . , λk(An)).

Using the monotonicity of the functional Φ, we conclude the proof by pointing
out that A 6= ∅.
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Remark 3.3 Notice that, contrary to the proof of Buttazzo and Dal Maso for
elliptic operators in divergence form in the case m = 1, we do not know whether
or not x1, · · · , xk are eigenvalues of a certain operator. In Buttazzo, Dal Maso
(1993), a precise description of the relaxed operator having x1, . . . , xk as first k

eigenvalues was given.

Remark 3.4 Notice also, that Theorem 3.5 does not have a natural extension
to Neumann boundary conditions, i.e. to the Sobolev spaces Hm(A), mainly
because the collective compactness required by Theorem 3.2 does not hold. In-
deed, the collective compactness hypothesis should be satisfied by the minimizing
sequence of spaces, consequently no hypothesis can be made a priori.

Remark 3.5 In Bucur, Buttazzo, Henrot (1998), the authors introduced the
concept of weak-γ convergence which is somehow related to the w − K conver-
gence. In order to prove existence results for monotonous shape functionals, a
fundamental property had to be satisfied by the couple of γ and weak- γ- con-
vergences. Note that this property is not required here, and it is not at all clear
that such a property could be verified, since the spaces we deal with (for m ≥ 2)
are not reticular. We also refer to Buttazzo, Trebeschi (2000) for a review of
the role of the monotonicity in shape optimization. In this paper, existence re-
sults are proved in the frame of γ and weak- γ- convergences (which can not be
applied here).

4. Energy type functionals

We give here, in an abstract frame, two semicontinuity results of energy type
functionals for the Kuratowski convergences. From a practical point of view,
these cases will cover the shape optimization problems where the functional
Ω → J(Ω) is precisely the energy.

Let X be a reflexive Banach space and

E : X 7→ R

be a functional satisfying the following coerciveness property:

∃ α, β > 0, ∀u ∈ X E(u) ≥ α|u|X − β.

Theorem 4.1 If the functional E is weakly lower semicontinuous then the func-
tional

J : P(X) → R

defined by

J(v) = inf
u∈V

E(u)

is w − K l.s.c.
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Proof. Let (Vn)n, V be elements of P(X) such that

w − lim sup
n→∞

Vn ⊆ V.

Then, for every ε > 0, we take vn ∈ Vn such that

E(vn) ≤ inf
u∈Vn

E(u) + ε.

If lim infn→∞ J(Vn) < +∞, then the coerciveness of E gives that the sequence
(vn)n is bounded in X . Without loss of generality we can assume that vn ⇀ v

in X-weak. The Kuratowski convergence gives that v ∈ V and the weak-l.s.c.
of E gives

E(v) ≤ lim inf
n→∞

E(vn).

Hence

J(V ) ≤ E(v) ≤ lim inf
n→∞

J(Vn) + ε.

Taking ε → 0, we get that J is w-K l.s.c.

Theorem 4.2 Let E be a weakly l.s.c., coercive functional on Hm
0 (D). Then

the shape optimization problem

min
Hm

0
(A)∈Am

c
(D)

min
u∈Hm

0
(A)

E(u)

has at least one solution.

Proof. Apply Theorems 4.1 and 3.4.

Following Remark 3.2, this theorem is also valid in W
m,p
0 (D) for 1 < p < +∞.

Example 4.1 Let, for simplicity, fix m = 1, and a bounded design region D.
The energy functional associated to the Dirichlet-Laplacian on variable domains,
fits under the hypotheses of the previous theorem. We set X = H1

0 (D). We also
set f ∈ L2(D). Then E := H1

0 (D) → R is defined by

E(u) =
1

2

∫
D

|∇u|2dx −

∫
D

fudx.

Following Theorem 4.1, the mapping Ω → minu∈H1

0
(Ω) E(u) is w − K lower

semicontinuous.
Several shape optimization problems, such as the maximization of the tor-

sional rigidity for example, fit into this frame. Indeed, the problem reads:

max
A⊆D

∫
A

|∇uA|
2dx, (2)
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where uA is the minimizer in H1
0 (A) of E. Since

∫
A
|∇uA|2dx = −2E(uA),

problem (2) becomes

min
A⊆D

E(uA),

or

min
A⊆D

min
u∈H1

0
(A)

1

2

∫
D

|∇u|2dx −

∫
D

fudx.

Using the w−K compactness of Ac(D) together with the result of Theorem 4.1,
we get via Theorem 4.2 the existence of a solution for the shape optimization
problem (2).

Theorem 4.3 If E is strongly upper semicontinuous on X, then the functional

J : P(X) → R

defined by

J(v) = inf
u∈V

E(u)

is s − K upper semicontinuous.

Proof. Let (Vn)n, V be elements of P(X) such that

V ⊆ s − lim inf
n→∞

Vn.

Let ε > 0 and u ∈ V be such that

E(v) ≤ inf
u∈V

E(u) + ε.

There exists vn ∈ Vn such that vn → v strongly in X . Hence

E(v) ≥ lim sup
n→∞

E(vn),

consequently

J(V ) + ε ≥ lim sup
n→∞

J(Vn).

Making ε → we conclude the proof.

Remark 4.1 A similar result as Theorem 4.2 can not be stated for maximization
problems, since there are no suitable s − K compact classes. Moreover, a new
difficulty appear when applying the abstract frame to concrete shape optimization
problems, because the space {0} is an abstract solution which does not correspond
to any shape. In Example 4.3 below, we make a short analysis of the Cantilever
problem, and point out the main difficulties.
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Example 4.2 The energy functional defined in Example 4.1 satisfies the hy-
potheses of Theorem 4.3.

Example 4.3 A significant example of a shape optimization problem where the
energy is to be maximized is the Cantilever problem. The main feature of this
problem is that on the unknown part of the boundary the natural condition is of
Neumann type.

The first difficulty is that the Sobolev spaces corresponding to Neumann
boundary conditions do not embed naturally into a fixed space. Indeed, for a
non-smooth set Ω, there is no injection of H1(Ω) into H1(D). For this reason,
H1(Ω) is seen as a subspace of L2(D) × L2(D, RN ) via the following injection

H1(Ω) ∋ u → (1Ωu, 1Ω∇u) ∈ L2(D) × L2(D, RN ).

The second difficulty is that compactness results for the Kuratowski conver-
gences are more difficult to obtain. Up to our knowledge, there is no suitable
general compactness result for the s − K convergence (this is the one which is
important for the Cantilever problem, for example). In the last section we re-
fer to some compactness results which can be used to obtain existence for the
Cantilever problem in the class of domains with a prescribed number of holes.

The third difficulty is that from the abstract setting the space {0} could be a
solution since it is an s − K limit of any sequence of spaces. This degenerated
situation has to be eliminated, since there is no shape supporting this space (un-
less the empty-set)! In practice, this is done by a careful study of the minimizing
sequence (see Bucur, Buttazzo, Varchon, 2002; Chambolle, 2003).

5. Further remarks

A quite large class of functionals involved in the optimal design fit in one of
the frames introduced in the previous sections. The very difficult question does
not concern the structure of the shape functional, but is precisely related to
finding compact classes for the Kuratowski convergences. The compactness is
exclusively related to the functional spaces! This fact supports the idea that in
a shape optimization problem the existence question is not so much related to
the shape functional and to the PDE, but only to the functional space which,
in our considerations, is of Sobolev type.

There are very few reliable compact classes of domains for the Kuratowski
or Mosco convergences in Sobolev spaces, which are also stable by vector field
transformations.

Given l ∈ N
∗, for every N ≥ 2 and every p > N − 1, the class

{W 1,p
0 (Ω) : Ω open Ω ⊆ D, ♯Ωc ≤ l}

is compact for the Mosco convergence in W
1,p
0 (D). Here D is a bounded open

set of R
N and ♯Ωc denotes the number of the connected components of R

N \Ω.
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For p = N = 2 this was proved by Šveràk (1993) and for arbitrary values of p

and N by Bucur and Trebeschi (1998).

Concerning the s−K compactness for problems involving Neumann bound-
ary conditions, we refer to the result of Bucur, Varchon (2002), concerning the
Dirichlet spaces L1,2(Ω). These are the natural spaces which replace H1(Ω) for
shape functionals without zero order term (see Bucur, Buttazzo, Varchon, 2002;
Chambolle, 2003). This space is embedded into L2(D, RN ) by

L1,2(Ω) ∋ u → 1Ω∇u ∈ L2(D, RN ),

and a somehow similar result to the one of Sverak is proved for the family

{L1,2(Ω) : Ω ⊆ D ⊆ R
2, ♯Ωc ≤ l}.

We refer to Dal Maso, Ebobisse, Ponsiglione (2003) for an extension to nonlinear
spaces and to Chambolle (2003) to the elasticity one.
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