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Abstract: The topological sensitivity analysis consists in study-
ing the behavior of a shape functional when modifying the topology
of the domain. In general, the perturbation under consideration is
the creation of a small hole. In this paper, the topological asymp-
totic expansion is obtained for the Laplace equation with respect to
the insertion of a short crack inside a plane domain. This result is
illustrated by some numerical experiments in the context of crack
detection.
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1. Introduction

The detection of geometrical faults is a problem of great interest for engineers,
to check the integrity of structures for example. The present work deals with
the detection and location of cracks for a simple model problem: the steady-
state heat equation (Laplace equation) with the heat flux imposed and the
temperature measured on the boundary.

On the theoretical level, the first study on the identifiability of cracks was
carried out by A. Friedman and M.S. Vogelius (1989). It was later completed
by G. Alessandrini et al. (1996) and A. Ben Abda and associates (Andrieux and
Ben Abda, 1996; Ben Abda, Ben Ameur, Jaoua, 1999) who also proved stability
results. In the same time, several reconstruction algorithms were proposed
(Santosa, Vogelius, 1991; Baratchart, Leblond, Mandréa, Saaf, 1999; Brühl,
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Hanke, Pidcock, 2001; Ben Abda, Kallel, Leblond, Marmorat, 2002; Bryan,
Vogelius, 2001).

Concurrently, shape optimization techniques have progressed a lot. In par-
ticular, some topological optimization methods have been developed for design-
ing domains whose topology is a priori unknown (Allaire, 2002, Bendsøe, 1996,
Schumacher, 1995). Among them, the topological gradient method was intro-
duced by A. Schumacher (1995) in the context of compliance minimization.
Then J. Soko lowski and A. Żochowski (1999) generalized it to more general
shape functionals by involving an adjoint state. To present the basic idea, let
us consider a variable domain Ω of R

2 and a cost functional j(Ω) = J(uΩ) to
be minimized, where uΩ is solution to a given PDE defined over Ω. For a small
parameter ρ ≥ 0, let Ω \ B(x0, ρ) be the perturbed domain obtained by the
creation of a circular hole of radius ρ around the point x0. The topological
sensitivity analysis provides an asymptotic expansion of j(Ω \B(x0, ρ)) when ρ
tends to zero in the form:

j(Ω \B(x0, ρ))− j(Ω) = f(ρ)g(x0) + o(f(ρ)).

In this expression, f(ρ) denotes an explicit positive function going to zero with
ρ, g(x0) is called the topological gradient or topological derivative and it can be
computed easily. Consequently, to minimize the criterion j, one has to create
holes at some points x̃ where g(x̃) is negative. The topological asymptotic
expression has been obtained for various problems, arbitrary shaped holes and
a large class of cost functionals. Notably, one can cite the papers Garreau,
Guillaume, Masmoudi (2001); Guillaume, Sididris (2002, 2004); Samet, Amstutz
and Masmoudi (2003), where such formulas are proved by using a functional
framework based on a domain truncation technique and a generalization of the
adjoint method (Masmoudi, 2001).

The theoretical part of this paper deals with the topological sensitivity analy-
sis for the Laplace equation with respect to the insertion of an arbitrary shaped
crack with a Neumann condition prescribed on its boundary. In this situation,
the contributions focus on the behavior of the solution or of special criterions like
the energy integral or the eigenvalues (Maz’ya, Nazarov, 1988; Maz’ya, Nazarov
and Plamenevskij, 2000; Khludnev, Kovtunenko, 2000). To calculate the topo-
logical derivative, we construct an appropriate adjoint method that applies in
the functional space defined over the cracked domain. This approach, combined
with a suitable approximation of the solution by a double layer potential, leads
to a simpler mathematical analysis than the truncation technique. The numer-
ical part is devoted to the inverse geometrical problem described above. The
Kohn-Vogelius criterion (Kohn, Vogelius, 1987) is used as a cost functional. We
explain the procedure as well as present some numerical results.
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2. Problem formulation

Let Ω be a bounded domain of R
2 with smooth boundary Γ. We consider a

regular division Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are open manifolds, Γ0 is of
nonzero measure and Γ0 ∩ Γ1 = ∅. The source terms consist of two functions
f ∈ L2(Ω) and g ∈ H

1/2
00 (Γ1)′. We recall that, for an open manifold Σ such that

Σ̄ ⊂ Σ̃ where Σ̃ is a smooth, open and bounded manifold of the same dimension
as Σ, we have (Lions, Magenes, 1968)

H
1/2
00 (Σ) =

{

u|Σ, u ∈ H
1/2(Σ̃), u|Σ̃\Σ̄ = 0

}

. (1)

It is endowed with the norm defined for all u ∈ H1/2(Σ̃) by

‖u|Σ‖H1/2

00
(Σ)

= ‖u‖H1/2(Σ̃) .

The initial problem (for the safe domain) is the following: find u0 ∈ H1(Ω) such
that







−∆u0 = f in Ω,
u0 = 0 on Γ0,

∂nu0 = g on Γ1.
(2)

For a given x0 ∈ Ω, let us now consider the cracked domain Ωρ = Ω \ σρ,
σρ = x0 + ρσ, where ρ > 0 and σ is a fixed bounded manifold of dimension 1
and of class C1 (see Fig. 1). We assume that Ωρ is connected. Possibly changing
the coordinate system, we will suppose for convenience that x0 = 0. The new
solution uρ ∈ H1(Ωρ) satisfies















−∆uρ = f in Ωρ,
uρ = 0 on Γ0,

∂nuρ = g on Γ1,
∂nuρ = 0 on σρ.

(3)

+
−

n

Ω

ρ

ρ

σ

Γ

Figure 1. The cracked domain
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The variational formulation of this problem reads: find uρ ∈ H1(Ωρ) such
that

aρ(uρ, v) = lρ(v) ∀v ∈ Vρ, (4)

with

Vρ = {u ∈ H1(Ωρ), u|Γ0
= 0} (5)

and for all u, v ∈ Vρ,














aρ(u, v) =

∫

Ωρ

∇u.∇v, dx,

lρ(v) =

∫

Ωρ

fv dx+

∫

Γ1

gv ds.
(6)

As usual in analysis, the duality product between H
1/2
00 (Γ1)′ and H

1/2
00 (Γ1) is

denoted by an integral. When ρ = 0, that formulation is also valid for Problem
(2) by setting Ω0 = Ω in Equations (5) and (6).

Let D be a fixed open set containing the origin and such that D ⊂ Ω. We
define the functional space

W = {u ∈ L2(Ω), u ∈ H1(Ω \D)}, (7)

which is equipped with the norm

‖u‖W = (‖u‖20,Ω + ‖u‖2
1,Ω\D

)1/2.

Throughout the paper, for a given domain O, we denote by ‖u‖0,O and
‖u‖1,O the standard norms of the function u in the spaces L2(O) and H1O),
respectively. The semi-norm |u|1,O = ‖∇u‖0,O will also be used.

Consider finally a differentiable functional J : W → R. We wish to study
the asymptotic behavior when ρ tends to zero of the criterion

j(ρ) = J(uρ).

3. An appropriate adjoint method

The following adjoint method is especially constructed to apply to the above
problem. In fact, the key point is that the functional spaces fit together as
follows: for all ρ > 0,

V0 ⊂ Vρ ⊂ W . (8)

For all ρ ≥ 0, we denote by vρ the solution to the problem: find vρ ∈ Vρ such
that

aρ(u, vρ) = −DJ(u0)u ∀u ∈ Vρ. (9)

The functions u0 and v0 are respectively called the direct and adjoint states.
We assume that the following hypothesis holds.
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Hypothesis 3.1 There exist δ ∈ R and f : R+ → R+ tending to zero with ρ
such that

1. ‖uρ − u0‖W = O(f(ρ)),
2. aρ(u0 − uρ, vρ) = f(ρ)δ + o(f(ρ)).

Then, the asymptotic expansion of j(ρ) is provided by the following Propo-
sition.

Proposition 3.1 If Hypothesis 3.1 is satisfied, then

j(ρ)− j(0) = f(ρ)δ + o(f(ρ)).

Proof. Using the differentiability of J , Hypothesis 3.1 and Equation (9), we
obtain successively

j(ρ)− j(0) = J(uρ)− J(u0) = DJ(u0)(uρ − u0) + o(‖uρ − u0‖W)

= −aρ(uρ − u0, vρ) + o(f(ρ)) = f(ρ)δ + o(f(ρ)).

4. Asymptotic calculus

We have now to check Hypothesis 3.1 in the context of Problem (3). To simplify
the presentation, all technical estimates are reported in Section 5. In this way,
we assume for the moment that ‖uρ − u0‖W = O(ρ2), which ensures that the
first condition of Hypothesis 3.1 is fulfilled if ρ2 = O(f(ρ)). We focus here on
the determination of f(ρ) and δ such that the second part of Hypothesis 3.1
holds.

4.1. Preliminary calculus

We obtain by using the Green formula

aρ(u0 − uρ, vρ) =

∫

Ωρ

∇(u0 − uρ).∇vρ dx = −

∫

σρ

∂nu0[vρ] ds

where [vρ] = vρ|σ+
ρ
− vρ|σ−

ρ
∈ H

1/2
00 (σρ) (see Fig. 1).

Next we introduce the variation

wρ = vρ − v0.

From (9), we obtain that wρ is solution to the problem : find wρ ∈ H1(Ωρ) such
that















∆wρ = 0 in Ωρ,
wρ = 0 on Γ0,

∂nwρ = 0 on Γ1,
∂nwρ = −∂nv0 on σρ.

(10)

We are going to search for an appropriate approximation of wρ.
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4.2. Definitions and standard results about exterior problems

Let Σ be a bounded manifold of dimension 1, of class C1 and Λ = R
2 \ Σ. We

suppose that Λ is connected. The space W 1(Λ) is defined by (see e.g. Jaoua,
1977; LeRoux, 1974; Giroire, Nédélec, 1978):

W 1(Λ) =

{

u ∈ D′(Λ),
u

(1 + r) ln(1 + r)
∈ L2(Λ) and ∇u ∈ L2(Λ)

}

.

It is equipped with the norm

‖u‖W 1(Λ) =

(

∥

∥

∥

∥

u

(1 + r) ln(1 + r)

∥

∥

∥

∥

2

L2(Λ)

+ ‖∇u‖2L2(Λ)

)1/2

.

In the above expressions, the letter r denotes the distance to the origin.

Given ψ ∈ H
1/2
00 (Σ)′, let us now consider the problem







∆u = 0 in Λ,
u = 0 at ∞,

∂nu = ψ on Σ.
(11)

To solve it with the help of a potential, we need to introduce the fundamental
solution of the Laplacian in 2D:

E(x) =
1

2π
ln |x|.

We have the following theorem (see Giroire, Nédélec, 1978; Nishimura, Kobayashi,
1991).

Theorem 4.1 1. Problem (11) has a unique solution u ∈ W 1(Λ) and the

map ψ 7→ u is linear and continuous from H
1/2
00 (Σ)′ into W 1(Λ).

2. The solution u is the double layer potential

u(x) =

∫

Σ

η(y)∂nyE(x− y) ds(y) ∀x ∈ Λ,

where η = TΣψ, TΣ being a known isomorphism from H
1/2
00 (Σ)′ into

H
1/2
00 (Σ).

3. We have the jump relation for the same orientation as in Fig. 1:

[u] = u|Σ+ − u|Σ− = −η.

4. If Σ is a line segment with curvilinear abscissa s, we have for all η ∈

(H
1/2
00 ∩ C

1)(Σ) and ϕ ∈ D(Σ)

< T−1
Σ η, ϕ >= −

∫

Σ

∫

Σ

dη
ds(x)

dϕ

ds
(y)E(x − y)ds(x)ds(y).
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4.3. Estimate of wρ

Let us now come back to the approximation of the solution to Problem (10).

First approximation: We approximate wρ by hρ the solution to the exterior
problem: find hρ ∈W

1(R2 \ σρ) such that







∆hρ = 0 in R
2 \ σρ,

∂nhρ = −∂nv0 on σρ,
hρ = 0 at ∞.

(12)

Then, we use the change of variable

hρ(x) = ρHρ

(

x

ρ

)

.

The function Hρ ∈W 1(R2 \ σ) verifies







∆Hρ = 0 in R
2 \ σ,

∂nHρ(x) = −∂nv0(ρx) on σ,
Hρ = 0 at ∞.

By Theorem 4.1, Hρ can be written in the form

Hρ(x) =

∫

σ

qρ(y)∂nyE(x− y) ds(y) ∀x ∈ R
2 \ σ, (13)

where qρ ∈ H
1/2
00 (σ) is defined by

qρ = Tσ(−∂nv0(ρx)). (14)

Second approximation: We approximate now qρ by

q = Tσ(−∇v0(0).n). (15)

4.4. Asymptotic expansion of the cost functional

We set

E1(ρ) = −

∫

σρ

∂nu0[wρ − hρ] ds.

Then

aρ(u0 − uρ, vρ) = −

∫

σρ

∂nu0[wρ] ds = −

∫

σρ

∂nu0[hρ] ds+ E1(ρ)

= −ρ2

∫

σ

∂nu0(ρx)[Hρ] ds+ E1(ρ) .
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We denote also

E2(ρ) = −ρ2

∫

σ

∂nu0(ρx)(qρ − q) ds.

By the jump relation of Theorem 4.1, we have

aρ(u0−uρ, vρ) = ρ2

∫

σ

∂nu0(ρx)qρ ds+E1(ρ) = ρ2

∫

σ

∂nu0(ρx)q ds+E1(ρ)+E2(ρ).

Finally, we define

E3(ρ) = ρ2

∫

σ

(∂nu0(ρx) −∇u0(0).n)q ds

and we obtain

aρ(u0 − uρ, vρ) = ρ2

∫

σ

∇u0(0).nq ds+ E1(ρ) + E2(ρ) + E3(ρ).

We will prove in Section 5 that Ei(ρ) = o(ρ2) ∀i = 1, 2, 3. Therefore, we are
allowed to set

f(ρ) = ρ2, δ = ∇u0(0).

∫

σ

qn ds.

Let us introduce the so-called polarization matrix Aσ, defined as the matrix
of the linear map

V ∈ R
2 7→ AσV =

∫

σ

Tσ(V.n)n ds. (16)

In the case of a hole instead of a crack, similar matrices can be defined with the
help of a single layer potential (Schiffer, Szegö, 1949; Pölya, Szegö, 1951; Fried-
man, Vogelius, 1989; Argatov, Soko lowski, 2003; Nazarov, Soko lowski, 2003).
They are proved to be symmetric positive definite, and this is still true for a
crack. Then, we can write

δ = −∇u0(0).Aσ∇v0(0).

From Proposition 3.1, we derive the following theorem.

Theorem 4.2 If
• the cost functional J is differentiable on the space W defined by (7),
• the source terms f and DJ(u0) are of regularity H2 in a neighborhood of

the origin,
• the direct and adjoint states are solutions to (4) and (9) with aρ and lρ

defined by (6),
• the polarization matrix Aσ is defined by (16),

then the criterion admits the following asymptotic expansion when ρ tends to
zero:

j(ρ)− j(0) = −ρ2∇u0(0).Aσ∇v0(0) + o(ρ2). (17)
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4.5. Straight crack

Let σ be a line segment of length 2 centered at the origin, with unit normal n.
Using Theorem 4.1, one can check that the appropriate density evaluated at the
curvilinear abscissa s is

Tσ(V.n)(s) = 2(V.n)
√

1− s2.

We have then

AσV = π(V.n)n.

Corollary 4.1 For a straight crack of normal n, the topological asymptotic
expansion reads

j(ρ)− j(0) = −πρ2(∇u0(0).n)(∇v0(0).n) + o(ρ2). (18)

This formula extends to the case of a vector field. Denoting by ui
0 and vi

0,
i = 1 . . . P the components of u0 and v0, one gets the expansion:

j(ρ)− j(0) = −πρ2
P
∑

i=1

(∇ui
0(0).n)(∇vi

0(0).n) + o(ρ2). (19)

5. Proofs

5.1. Preliminary lemmas

Lemma 5.1 Consider ψ ∈ H
1/2
00 (σ)′ and let z ∈ W 1(R2 \ σ) be the solution to

the problem






∆z = 0 in R
2 \ σ,

z = 0 at ∞,
∂nz = ψ on σ.

There exists c > 0, independent of ρ and ψ, such that

|z|1, 1
ρ (Ω\D) ≤ cρ‖ψ‖H1/2

00
(σ)′

.

Proof. According to Theorem 4.1, there exists η ∈ H
1/2
00 (σ) such that

z(x) =

∫

σ

η(y)∂nyE(x− y) ds(y), ∀x ∈ R
2 \ σ,

where η = Tσψ. Using a Taylor expansion of E computed at the point x and
the continuity of Tσ, we have that

|∇z(x)| ≤
c

|x|2
‖ψ‖

H
1/2

00
(σ)′

,

from which we deduce the result.
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Lemma 5.2 Consider g ∈ H
1/2
00 (Γ1)′, ρ ≥ 0, h ∈ H

1/2
00 (σρ)′ and let z ∈ H1(Ωρ)

be the solution to the problem














∆z = 0 in Ωρ,
z = 0 on Γ0,

∂nz = g on Γ1,
∂nz = h on σρ.

(20)

There exist some positive constants denoted by c independent of ρ, g and h such
that for all ρ small enough

‖z‖0,Ωρ ≤ cρ
2‖h(ρx)‖

H
1/2

00
(σ)′

+ c‖g‖
H

1/2

00
(Γ1)′

,

|z|1,Ωρ ≤ cρ‖h(ρx)‖
H

1/2

00
(σ)′

+ c‖g‖
H

1/2

00
(Γ1)′

,

‖z‖1,Ω\D ≤ cρ
2‖h(ρx)‖

H
1/2

00
(σ)′

+ c‖g‖
H

1/2

00
(Γ1)′

.

Proof. The function z is split into z1 + z2 respective solutions to







∆z1 = 0 in R
2 \ σρ,

z1 = 0 at ∞,
∂nz1 = h on σρ,















∆z2 = 0 in Ωρ,
z2 = −z1 on Γ0,

∂nz2 = g − ∂nz1 on Γ1,
∂nz2 = 0 on σρ.

The function z̃1(x) = z1(ρx)/ρ is a solution to






∆z̃1 = 0 in R
2 \ σ,

z̃1 = 0 at ∞,
∂nz̃1 = h(ρx) on σ.

By elliptic regularity, we have

‖z̃1‖W 1(R2\σ) ≤ c‖h(ρx)‖
H

1/2

00
(σ)′

.

Lemma 5.1 yields

|z̃1|1, 1
ρ (Ω\D) ≤ cρ‖h(ρx)‖

H
1/2

00
(σ)′

.

Then, a change of variables brings

‖z1‖0,Ωρ ≤ cρ
2‖h(ρx)‖

H
1/2

00
(σ)′

,

|z1|1,Ωρ ≤ cρ‖h(ρx)‖
H

1/2

00
(σ)′

,

‖z1‖1,Ω\D ≤ cρ
2‖h(ρx)‖

H
1/2

00
(σ)′

.

Moreover, we have by elliptic regularity

‖z2‖1,Ωρ ≤ c‖z1‖1,Ω\D + c‖g‖
H

1/2

00
(Γ1)′

,

which completes the proof.
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5.2. Proof of Theorem 4.2

The result is a consequence of Proposition 3.1 if we prove that ‖uρ − u0‖W =
O(ρ2) and that Ei(ρ) = o(ρ2) for i = 1, 2, 3.

5.2.1. Estimate of the variation of the solution

It is an immediate application of Lemma 5.2 that

‖uρ − u0‖W = O(ρ2).

5.2.2. Estimate of the remainders

We will denote by c any positive constant independent of ρ.
1. We have

|E1(ρ)| = ρ

∣

∣

∣

∣

∫

σ

∂nu0(ρx)[(wρ − hρ)(ρx)] ds

∣

∣

∣

∣

≤ ρ‖∂nu0(ρx)‖
H

1/2

00
(σ)′
‖[(wρ − hρ)(ρx)]‖

H
1/2

00
(σ)

≤ cρ‖[eρ(ρx)]‖
H

1/2

00
(σ)
,

where eρ = wρ − hρ is solution to















∆eρ = 0 in Ωρ,
eρ = −hρ on Γ0,

∂neρ = −∂nhρ on Γ1,
∂neρ = 0 on σρ.

Denoting by B some ball containing σ, we obtain by using the trace the-
orem

‖[eρ(ρx)]‖
H

1/2

00
(σ)

= inf
γ∈R

‖[eρ(ρx) + γ]‖
H

1/2

00
(σ)
≤ c inf

γ∈R

‖eρ(ρx) + γ‖1,B\σ

≤ c|eρ(ρx)|1,B\σ.

A change of variable and the elliptic regularity yield

‖[eρ(ρx)]‖
H

1/2

00
(σ)
≤ c|eρ|1,Ωρ ≤ c inf

γ∈R

‖eρ + γ‖1,Ωρ

≤ c inf
γ∈R

‖hρ + γ‖1,Ω\D ≤ c|hρ|1,Ω\D.

Next, a change of variable and Lemma 5.1 yield

‖[eρ(ρx)]‖
H

1/2

00
(σ)
≤ cρ|Hρ|1, 1

ρ (Ω\D) ≤ cρ
2‖∂nv0(ρx)‖

H
1/2

00
(σ)′

.

Finally,

|E1(ρ)| ≤ cρ3.
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2. We have

|E2(ρ)| ≤ ρ2‖∂nu0(ρx)‖
H

1/2

00
(σ)′
‖qρ − q‖H1/2

00
(σ)

≤ cρ2‖qρ − q‖H1/2

00
(σ)
.

By the continuity of the operator Tσ, we have

‖qρ − q‖H1/2

00
(σ)
≤ c‖∂nv0(ρx)−∇v0(0).n‖

H
1/2

00
(σ)′

≤ c‖∂nv0(ρx)−∇v0(0).n‖C0(σ).

Yet, v0 is of class C2 in a neighborhood of the origin. Thus,

‖qρ − q‖H1/2

00
(σ)
≤ cρ (21)

and

|E2(ρ)| ≤ cρ3.

3. We have

|E3(ρ)| ≤ ρ2‖∂nu0(ρx)−∇u0(0).n‖
H

1/2

00
(σ)′
‖q‖

H
1/2

00
(σ)
.

As u0 is of class C2 in a neighborhood of the origin,

‖∂nu0(ρx)−∇u0(0).n‖
H

1/2

00
(σ)′
≤ ‖∂nu0(ρx)−∇u0(0).n‖C0(σ) ≤ cρ.

Hence,

|E3(ρ)| ≤ cρ3.

6. Numerical applications

In this numerical study, we use Formula (19) to detect and locate cracks with
the help of boundary measurements. The context is the one of the steady-state
heat equation.

6.1. The inverse problem

Let Ω be a domain containing a perfectly insulating crack σ∗ whose location,
orientation, shape and length are to be retrieved. We dispose of the temperature
θ measured on the boundary Γ for a heat flux ϕ prescribed: θ = u(σ∗)|Γ, where
u(σ∗) is the solution to the PDE







∆u(σ∗) = 0 in Ω \ σ,
∂nu(σ∗) = ϕ on Γ,
∂nu(σ∗) = 0 on σ.

(22)
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To ensure well-posedness of the above system, we assume the normalization
condition

∫

Γ

ϕds = 0

and we impose that the mean value of the solution is equal to zero:
∫

Ω\σ∗

u(σ∗) dx = 0.

In practice, several measurements, corresponding to different fluxes, may be
needed. But for the clarity of the presentation, let us consider the simplest case
of one measurement.

6.2. The cost functional and the topological gradient

Since the boundary conditions (θ, ϕ) are overspecified, one can define for any
crack σ ⊂ Ω two forward problems:

• the “Dirichlet” problem:







∆uD(σ) = 0 in Ω \ σ,
uD(σ) = θ on Γ,

∂nuD(σ) = 0 on σ,
(23)

• the “Neumann” problem:







∆uN(σ) = 0 in Ω \ σ,
∂nuN(σ) = ϕ on Γ,
∂nuN(σ) = 0 on σ.

(24)

The solution to this latter system is defined up to an additive constant, which
is determined by the equation

∫

Ω\σ

uN(σ) dx = 0. (25)

This condition plays the same role as the fact of prescribing a Dirichlet condition
on a part of the boundary, which was chosen for simplicity in the theoretical
study. The actual crack σ∗ is reached (σ = σ∗) when there is no misfit between
both solutions, that is, when the cost functional

J (σ) = J(uD(σ), uN (σ)) =
1

2
‖uD(σ)− uN (σ)‖2L2(Ω) (26)

vanishes. This is the so-called Kohn-Vogelius criterion (Kohn, Vogelius, 1987).
To compute the corresponding topological gradient, we need to solve numeri-
cally:
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• the two direct problems on the safe domain
{

∆uD = 0 in Ω,
uD = θ on Γ,

(27)















∆uN = 0 in Ω,
∂nuN = ϕ on Γ,
∫

Ω

uN dx = 0,
(28)

whose solutions are denoted by uD and uN instead of uD(∅) and uN (∅) to
simplify the writing,
• two adjoint problems (defined on the safe domain too)

{

−∆vD = −(uD − uN) in Ω,
vD = 0 on Γ,

(29)















−∆vN = +(uD − uN)− uD in Ω,
∂nvN = 0 on Γ,

∫

Ω

vN dx = 0,
(30)

with

uD =
1

meas (Ω)

∫

Ω

uD dx.

The above adjoint problems are derived directly from their variational formu-
lations (a quotient functional space is needed to define the Neumann problem).
The existence of the solution to Problem (30) comes from Equation (25). Using
a vector field U = (uD, uN), Corollary 4.1 provides the following expression of
the topological asymptotic for that cost functional and the insertion of a small
straight crack:

J (σx,ρ,n)− J (∅) = −πρ2[(∇uD(x).n)(∇vD(x).n) + (∇uN (x).n)(∇vN (x).n)]

+ o(ρ2),

where σx,ρ,n is the line crack of length 2ρ, centered at the point x and of unit
normal n. One can also write the corresponding topological gradient

g(x,n) = −π[(∇uD(x).n)(∇vD(x).n) + (∇uN (x).n)(∇vN (x).n)]

as follows:

g(x,n) = nTM(x)n,

where M(x) is the symmetric matrix defined by

M(x) = −πsym (∇uD(x) ⊗∇vD(x) +∇uN (x)⊗∇vN (x)).
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The notation sym (X) stands for the symmetric part of the square matrix X :
sym (X) = (X +XT )/2 and the tensor product of two vectors means U ⊗ V =
UV T . According to that expression, g(x,n) is minimal at the point x when the
normal n = n1 is an eigenvector associated to the smallest eigenvalue λ1(x) of
the matrix M(x). Then, g(x,n1) = λ1(x). Henceforth, we will call topological
gradient this value.

6.3. Numerical result in one iteration without noise

Let us now describe a simple and very fast numerical procedure. First, we solve
the two direct problems and the two adjoint problems (Dirichlet and Neumann).
Then, in each cell of the mesh, we compute the matrix M(x) and its eigenvalues.
By regarding the unknown crack as the addition of small straight cracks whose
interactions are neglected and by using the previous asymptotic analysis, one
expects that crack to lie in the regions where the topological gradient is the
most negative.

Let Ω be the unit disc and σ∗ be a line segment crack. The heat flux ϕ
is imposed on Γ by ϕ(x) = x2, the second coordinate of the point x. In this
experiment, the flux inside the safe domain is not parallel to the crack, so
that only one measurement is needed for the reconstruction (see Andrieux, Ben
Abda, 1996). We apply the procedure described above. The location of the
unknown crack as well as the topological gradient are indicated in Figs. 2 and 3.
We observe that the most negative values of the topological gradient are located
near the actual crack.

6.4. Numerical results in one iteration with noise

6.4.1. Case of a single crack

We focus here on simulated noisy measurements. A white noise is added to the
exact data. Fig. 4 shows the results obtained for 5%, 10% and 20% of noise. We
observe that the inversion procedure is quite robust with respect to the presence
of noise in the measurements.

6.4.2. Case of multi-cracks

The computation of the topological gradient does not depend on the number of
cracks inside the domain. This remark is illustrated by the following experiment.
The actual cracks and the topological gradient are shown in Fig. 5. We use now
two fluxes ϕ1(x) = x1 and ϕ2(x) = x2. We take as a cost functional the sum
of the two quadratic misfits. Hence, the matrix M(x) is assembled by adding
the two corresponding contributions. We emphasize that these results are again
obtained in only one iteration.
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Figure 2. The unknown crack
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Figure 3. On the left: the topological gradient; on the right: superposition of
the actual crack and a negative isovalue of the topological gradient
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Figure 4. Representation of a negative isovalue of the topological gradient for
5%, 10% and 20% of noise, respectively
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Figure 5. Respectively 5%, 10% and 20% of noise.

6.5. Identification of cracks with incomplete data

It is a more realistic situation where a part only of the border is accessible to
measurements. Let Ω be the unit disc with boundary Γ = Γ0∪Γ1. The heat flux
ϕ is prescribed on Γ and the temperature θ is measured on Γ1, here a quarter
of the whole boundary. For any crack σ ⊂ Ω, we consider the two following
problems:
• the “Neumann-Dirichlet” problem:















∆uD(σ) = 0 in Ω \ σ,
uD(σ) = θ on Γ1,

∂nuD(σ) = ϕ on Γ0,
∂nuD(σ) = 0 on σ,

(31)

• the “Neumann” problem:






∆uN(σ) = 0 in Ω \ σ,
∂nuN(σ) = ϕ on Γ,
∂nuN(σ) = 0 on σ,

(32)

with the normalization condition
∫

Ω\σ

uN (σ) dx =

∫

Ω\σ

uD(σ) dx .
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We use the same cost functional as before (see Equation (26)), but for the
above fields. Hence we have the same topological gradient expression and the
numerical procedure remains unchanged. The results are represented in Fig. 6.
The cracks are located in a satisfactory manner.
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Figure 6. Topological gradient with incomplete data (no noise)

6.6. An iterative method

The algorithm consists in inserting at each iteration an insulating element (that
is, numerically, an element whose thermal conductivity is very small) where the
topological gradient is the most negative. The process is stopped when the cost
functional does not decrease any more.

Algorithm

Initialization: Choose the initial domain Ω0 and create a mesh which will
remain fixed during the process. That domain is identified with the set of its
finite elements: Ω0 = {xn, n = 1, ..., N}.

Set k = 0.

Repeat:

1. Solve the direct and adjoint problems in Ωk,
2. Compute the topological gradient gk,
3. Search for the minimum of the topological gradient: yk = argmin(gk(x), x ∈

Ωk),
4. Set Ωk+1 = Ωk \ {yk},
5. k← k + 1.

We wish here to recover two cracks with the help of one flux ϕ(x) = x2

(complete data, no additive noise). The final image and the convergence history
of the cost functional are shown in Fig. 7.
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Figure 7. On the left: the actual cracks and the reconstructed cracks after a
few iterations; on the right: the convergence history of the criterion

7. Conclusion

The mathematical framework presented in this paper can be adapted to deter-
mine the sensitivity with respect to the insertion of a small crack for a large
class of linear and elliptic problems.

The topological gradient leads to fast methods for detecting and locating
cracks in that it only requires to solve the direct and adjoint problems and
satisfactory results are obtained after a small number of iterations performed
on a fixed grid. These methods can provide a good initial guess for more accurate
classical shape optimization algorithms (Kubo, Ohji, 1990; Santosa, Vogelius,
1991).
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rique pour les sciences et les techniques. Masson, Collection CEA.

Friedman, A. and Vogelius, M.S. (1989) Determining cracks by boundary
measurements. Indiana Univ. Math. J. 38 (3), 527–556.

Friedman, A. and Vogelius, M.S. (1989) Identification of small inhomo-
geneities of extreme conductivity by boundary measurements: a theorem
of continuous dependence. Arch. Rational Mech. Anal. 105 (4), 299–326.

Garreau, S., Guillaume, Ph. and Masmoudi, M. (2001) The topological
asymptotic for PDE systems: the elasticity case. SIAM J. Control. Op-
tim. 39 (6), 1756–1778.
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de Rennes.

Lions, J.L. and Magenes E. (1968) Problèmes aux limites non homogènes
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