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Abstract: This paper deals with recent developments of topol-
ogy optimization techniques for application in some new types of
design problems. The emphasis is on recent work of the Danish re-
search groups at Aalborg University and at the Technical University
of Denmark and focus is on the central role that the choice of ob-
jective functions and design parameterization plays for a successful
extension of the material distribution approach to new design set-
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1. Introduction

Topology optimization is now a rather well-established field (for an overview, see,
for example, Bendsøe and Sigmund, 2003; Eschenauer and Olhoff, 2001) that
after almost two decades of emphasis on structural design is now being applied
for optimal design in such diverse areas as electro-magnetism and fluids.

The approach to topology design that we will apply in the following is based
on the use of sensitivity analysis and mathematical programming, and the so-
called material distribution method is the basis for the design parameterization.
The purpose of the design optimization is thus the creation of clear designs
that consist of regions within which we have a uniform use of a material, out of
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a given set of isotropic or anisotropic materials, including void (for simplicity
we denote such designs as black-and-white designs). We do not seek optimal
structures that include mixtures of the given materials and thus relaxation and
homogenization is not, per se, an integral part of the design parameterization.

We note here that other methods for handling the iterative design optimiza-
tion have been proposed (see Eschenauer and Olhoff, 2001, for an overview).
Some of these are based on such concepts as “fully stressed design”, while a more
recent approach is based on the use of a level-set method, see, e.g., Wang, Wang
and Guo (2004) and Allaire, Jouve and Toader (2004), and references therein.
In the phraseology of image processing, the material distribution method and
the level-set approach are both concerned with segmentation and one can see
many analogies between the basic concepts of image segmentation and the field
of topology design (this is for example clearly illustrated in Bourdin and Cham-
bolle, 2003).

In the material distribution method for topology design one typically works
with a fixed finite element grid model of a structural domain and introduces a
parameterization of material through one or more material densities, together
with constitutive models that relate these densities to physical parameters. This
can be stiffness for structures, but the concept can just as well be applied in other
physics models and can describe such diverse material properties as thermal
conduction, magnetic permeability, porosity, etc. In this way the concept from
structural stiffness design can be transformed to a broader range of applications
and this is the theme for this paper.

The extension of the methodology is, notwithstanding the uncomplicated
statement above, not trivial. A typical question is how to make a physically re-
alistic relation between density and physical properties that also allows for the
goal of obtaining black-and-white designs. An equally important issue is how
to formulate objective functions and constraints so that the design optimization
results are useful from an engineering point of view. For both issues it is also im-
portant to bear in mind that the resulting problems should be computationally
tractable.

2. The basics of the material distribution method

In order to set the scene for the developments of the paper, we will here con-
sider the problem of topology design for maximum stiffness of statically loaded
linearly elastic structures. This problem is equivalent to design for minimum
compliance c defined as the work done by the loading against the displacements
at equilibrium.

The FEM format of the minimum compliance problem for a structure with
given loading and prescribed volume V is shown below. For computations we
apply a mathematical programming algorithm and use the standard nested for-
mat for formulating design optimization problems. Thus, we write the problem
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as a problem in the design variables only:

min
ρρρ

c(ρρρ)

s.t. :

N
∑

e=1

veρe ≤ V, 0 < ρmin ≤ ρe ≤ 1, e = 1, . . . , N .
(1)

The equilibrium equation is considered as part of a function-call that gives the
value of the objective function c(ρρρ) (assuming linear behaviour):

c(ρρρ) = fTu , where u solves : K(ρρρ)u = f , (2)

where u and f are the displacement and load vectors, respectively. The stiffness
matrix K depends on the vector ρρρ of the element-wise constant materal densities
in the elements, numbered as e = 1, . . . , N , in such a way that we can write K

in the form

K(ρρρ) =

N
∑

e=1

ρp
e Ke , (3)

where Ke is the (global level) element stiffness matrix for element e.
For the mathematical programming approach, gradients are typically re-

quired by the optimization algorithm employed to solve (1) and these can be
derived directly or by use of the well-known adjoint method.

In the formulation above, we work on a fixed FEM mesh that describes the
design domain (the reference domain) and the structure is defined as a raster
image by the densities ρe. Also, the load f is in this basic formulation design
independent and is given in relation to the fixed mesh.

An important issue in the model problem shown here is the relation between
density and stiffness. In (3) we have used the so-called SIMP-model that models
stiffness as proportional to density in the power p where p > 1. In this way
intermediate densities are penalized (the volume is linear in ρρρ) and if one uses
p ≥ 3 the result of the optimization is typically black-and-white (Bendsøe and
Sigmund, 2003).

The apparent simplicity of the problem statement above belies the fact that
several issues have to be handled in an implementation. Firstly, the prob-
lem size means that FEM calculations and choice of optimization algorithm
are important; this is today mostly an issue in 3D calculations. Secondly, the
problem statement should be augmented by some scheme that will make the
results mesh-independent and which removes checkerboards that can appear
in the computations. There are various ways to do this, with the application
of some type of filtering technique becoming the most popular concept; such
techniques typically also assure existence of solutions in a continuum format
of the problem. These aspects are discussed in more detail in Bendsøe and
Sigmund (2003) where also relevant references can be found. For the simple
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minimum compliance problem shown here a complete program for 2D problems
including filtering, FEM analysis, optimization (by a simple optimality crite-
rion algorithm), and display of results can be written in 99 lines of Matlab code
(Sigmund, 2001).

2.1. Extensions

The problem statement above has been the starting point for the development of
methods for topology design in a broad range of structural design settings as well
as in other areas of engineering, and a few of the more recent developments are
illustrated below. In these new problems one keeps the basic format of the design
parameterization, the problem statement, and the computational procedure.
However, several issues need to be addressed. These encompass the formulation
of objective functions and constraints that results in useful engineering designs.
Also, a central issue is how to relate grey-scale (density) to physical properties
that allow for an evaluation of these objective functions and constraints. Finally,
some scheme should be imposed to obtain black-and-white designs. These issues
should all be handled in such a way that checkerboards and mesh-dependency
are avoided (see Sigmund and Petersson, 1998 and also Bendsøe and Sigmund,
2003, for an overview) and (preferably) such that some form of existence result
can be obtained for the continuum setting of the problem.

3. New structural mechanics applications

3.1. Design with pressure loads

In the prototype problem (1) the load has to be defined in relation to the fixed
FEM mesh of the reference domain. For pressure loads we have a situation
where the external loads depend on the boundary between solid and void and
because of the design parameterization as a grey-scale raster representation one
does not have boundaries that are well defined. This means that topology design
with pressure loads is a highly challenging problem that does not directly fit into
our generic framework.

The differences in the definitions and results of the prototype problem (1)
for optimal design with fixed surface loading and a corresponding problem of
topology optimization with hydrostatic surface pressure loading are illustrated
in Figs. 1 (b) and 1 (c) by the solutions obtained to two such problems. Note that
the pressure loading in Fig. 1 (c) is design-dependent, i.e., both the locations
and directions of the loading change with change of the design.

Topology design with surface pressure loading was first undertaken by Ham-
mer and Olhoff (2000, 2001), Chen and Kikuchi (2001), Bourdin and Chambolle
(2003), and Du and Olhoff (2004a) for 2D problems with static loading (a re-
lated problem for distributed surface loads was treated in Fuchs and Moses,
2000). A method for 3D problems is published by Du and Olhoff (2004b), and
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(b) (c)

Figure 1. Difference in topology design results. (a) Admissible design domain
(volume fraction of material 50%), boundary conditions, and initial loading
conditions. Optimal topologies for the problems of optimizing with (b) fixed
surface loading, and (c) hydrostatic surface pressure loading.

an extension to topology design with time-harmonically varying hydrodynamic
pressure loading is presented in Olhoff and Du (2004).

The compliance of the structure subject to static pressure loads is written
as

c (u) =

∫

Ω

bu dΩ +

∫

Γt

tu dΓ +

∫

Γp

pu dΓ, (4)

where an extra term representing the design dependent load – here a pressure p
– acting on parts of the boundary Γp of the material domain (b is a body force
and t a boundary traction at a fixed boundary).

In the work of Hammer and Olhoff (1999, 2000) and the extensions by Du and
Olhoff (2004 a, b), the optimization process is performed by successive iterations
making use of the finite element analysis model with fixed mesh on the one hand,
and the design model with the parameterized iso-volumetric density surface for
the pressure loading on the other. The load surfaces in the design model are
controlled by the density distribution in the finite element model and in turn
fully determine the global load vector on the finite element model. Thus, the
sensitivity analysis is based on both the analysis model and the design model.
In the sensitivity analysis also the sensitivities of the load vector with respect to
a design change must be evaluated, and this is done analytically. The problem
is solved by an optimality criteria method.

3.1.1. Design with hydrodynamic pressure loads

In the design of structures and machines against vibration and noise, many
problems are concerned with hydrodynamic surface pressure loading that varies
harmonically in time. For such problems it may be an important design ob-
jective to determine the structural topology that minimizes the dynamic com-
pliance associated with a prescribed exitation frequency and amplitude of the
hydrodynamic surface pressure loading (Olhoff and Du, 2004).
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Figure 2. Topology optimization of an inlet and pressure chamber subjected
to time-harmonic hydrodynamic pressure loading, with minimization of the dy-
namic compliance as the design objective. The optimization is performed for
three different prescribed frequencies ω of the loading. (a) Admissible design
domain (with 40% volume fraction of material) and boundary conditions. Op-
timal topology designs obtained for the given loading frequencies (b) ω = 0
(static loading), (c) ω = 800 and (d) ω = 1000.

This problem constitutes an extension to the prototype topology design
problem (1) and the design problem with hydrostatic pressure loads consid-
ered above. Relative to equations (1)–(3), the mathematical formulation of the
problem consists of (1) with c(ρρρ) replaced by a new objective function cd(ρρρ)
defined by the equation

cd(ρρρ) = fT u , where u solves :
(

K(ρρρ) − ω2M(ρρρ)
)

u = f(ρρρ) . (5)

In (5), ω denotes the given circular exitation frequency and f is the global vector
of amplitudes of the design-dependent hydrodynamic pressure loads, while M

and u denote the global mass matrix and displacement amplitude response
vector, respectively.

The example in Fig. 2 models the inlet from a channel to a larger pressure
chamber subjected to a fluid with a time-harmonically varying hydrodynamic
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pressure. The material around the inlet is prescribed to be solid and non-
changeable. Here, two domains of the structural surface are acted upon by
the fluid as shown along with the admissible design domain in Fig. 2 (a). The
design objective is minimization of the dynamic compliance (which is equivalent
to maximization of the integral dynamic stiffness of the structure). The figure
shows the optimized topologies for the three prescribed loading frequencies ω =
0 (static loading) in Fig. 2 (b), ω = 800 in Fig. 2 (c), and ω = 1000 in Fig. 2(d).
It is seen that when the loading frequency is increased from 0 to 800, the optimal
topology of the structure remains the same while the shape is slightly changed.
When the loading frequency is increased to 1000, both the topology and the
shape of the structure are changed.

3.2. Laminated composite structures

The use of fiber reinforced polymers (FRP) in structural design has gained an
ever increasing popularity due to their superior mechanical properties and this
section focuses on the use of ideas from multi-material topology optimization for
optimal design of composite laminate shell structures, especially wind turbine
blades. These structures consist of stiff fiber reinforced polymers or soft core
materials stacked in a number of layers and bonded together by a resin, and
the design problem is to determine the stacking sequence by proper choice of
material and fiber orientation of each FRP layer in order to obtain the desired
structural performance. For complicated geometries like wind turbine blades
this is a very challenging design problem that calls for use of sophisticated
structural optimization tools.

Different approaches for changing the parameterization of the problem have
been investigated. In Foldager, Hansen and Olhoff (1998, 2001), ply angles were
used as design variables and the problem of non-convexity was avoided by using
the well-established technique of converting the lay-up expressed in terms of ply
angles and ply thicknesses to an expression in terms of lamination parameters
(see Hammer, Bendsøe, Lipton and Pedersen, 1997, and references therein).
In each step of the optimization process identification methods were used in
Foldager et al. (1998) for converting the optimized pseudo layup described by
lamination parameters to a physical layup described by ply thicknesses and
angles. This method is applicable to all types of laminates and loading cases,
since the feasible domains for the lamination parameters are not needed in the
process.

Another parameterization approach is called the Discrete Material Optimiza-
tion (DMO) method, see Lund and Stegman (2005) and Stegman and Lund
(2005), and it is based on the mixed materials strategy suggested by Sigmund
and co-workers (Sigmund and Torquato, 1997, Gibiansky and Sigmund, 2000)
for multi-material topology optimization, where the total material stiffness is
computed as a weighted sum of candidate materials.

In the present context this means that the stiffness of each layer of the lam-
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inated composite structure will be computed from a weighted sum of a finite
number of “plausible” constitutive matrices, each representing a given lay-up
of the layer. Consequently, the design variables are no longer the fiber angles
or layer thicknesses but the scaling factors (or weight functions) on each con-
stitutive matrix in the weighted sum. For example, we could choose a stiff
orthotropic material oriented at three angles θ1 = 0◦, θ2 = 45◦ and θ3 = 90◦

and a soft isotropic material, thereby obtaining a problem having four design
variables per layer. The objective of the optimization is then to drive the influ-
ence of all but one of these constitutive matrices to zero for each ply by driving
all but one weight function to zero. As such, the methodology is very similar
to that used in topology optimization. This is further emphasized by the fact
that penalization is used on the design variables to make intermediate values
un-economical. At the beginning of the optimization, the constitutive matrices
used in the analysis thus consist of contributions from several candidate mate-
rials, but at the end of the design optimization, the parameterization for the
weight functions has to fulfill the demand, that one distinct candidate material
has been chosen.

3.2.1. Parameterization

As in topology optimization the parameterization of the DMO formulation is
invoked at the finite element level. The element constitutive matrix, Ce, for a
single layered laminate structure may in general be expressed as a sum over the
element number of plausible material configurations, ne:

Ce =

ne

∑

i=1

wiCi (6)

where each “plausible” material is characterized by a constitutive matrix Ci.
The interpolation of true material density is done in a similar way. The weight
functions wi must all have values between 0 and 1 in order to be physically
allowable. Furthermore, in case of solving eigenfrequency problems or having a
mass constraint, it is necessary that the sum of the weight functions be 1.0, i.e.,
∑ne

i=1 wi = 1.0.
Several new parameterization schemes have been developed, and we give

here a short outline of the most effective implementation (for other possibilities,
see Stegman and Lund, 2005). We apply for each element a number of design
variables ρe

i , i = 1, . . . , ne, and write

we
i =

ŵe
i

∑ne

k=1 ŵe
k

, i = 1, . . . , ne

ŵe
i = (ρe

i )
p

ne

∏

j=1; j 6=i

(

1 − (ρe
j)

p
)

.

(7)
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To push the design variables ρe
i towards 0 and 1 the SIMP method has been

adopted by introducing the power, p, as a penalization of intermediate values
of ρe

i . Moreover, the terms (1 − ρe
j)j 6=i are introduced such that an increase

in ρe
i results in a decrease of all other weight functions. Finally, the weights

have been normalized in order to satisfy the constraint that the sum of the
weight functions is 1.0. Note that the expression (7) means that complicated
additional constraints on the design variables ρe

i are avoided and only simple
box constraints have to be dealt with.

In order to further reduce the existence of intermediate values of the weight
functions at the end of the optimization process, an explicit penalization method
has been implemented. This method is applied when, for example, 50 design
iterations have been performed and it computes a penalization term that is
added to the objective function. The penalization term Wpenal is computed as

Wpenal = Sfac

I
∑

i=1

wq
i (1 − wq

i ) (8)

where q is a power, typically 2, and the penalization scale factor Sfac is set such
that the contribution from Wpenal on the sensitivities is of the same order of
magnitude as the original sensitivities of the objective function. In this way all
weight functions, wi, are forced to 0 or 1 which is useful when the parameter-
ization given by (7) is used. However, the explicit penalization requires some
tuning of Sfac to perform well and thus is problem dependent.

The only difference between single and multi layered laminate structures is
that the interpolation given above has to be used for all layers, i.e., the layer
constitutive matrix Cl is computed as

Cl =

nl

∑

i=1

wiCi (9)

where l denotes “layer” and thus nl is the number of plausible materials for the
layer.

The design variables ρi may be associated with each finite element of the
model or the number of design variables may be reduced by introducing patches,
covering larger areas of the structure. This is a valid approach for practical
design problems since laminates are typically made using fiber mats covering
larger areas.

3.2.2. Optimization of wind turbine blade main spar

In order to demonstrate the potential of the method, maximum stiffness design
of a generic main spar model provided by the wind turbine manufacturer Vestas
Wind Systems A/S is studied. A slightly different version of this example is
published in Lund and Stegmann (2005). It should be noted that this is a
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Assembly Leading edge

Trailing edge

Flapwise bending

Edgewise
bending

Suction side shell

Main spar

Pressure side shell

Figure 3. Load carrying main spar from a wind turbine blade. Courtesy of
Lennart Kühlmeier, Vestas Wind Systems A/S.

preliminary study, and thus, the main goal with the example is to demonstrate
the method on a complicated design problem.

The wind turbine blade basically consists of two structural components, the
main spar and the aerodynamic shell, see Fig. 3.

The main spar carries most of the flapwise bending loads whereas the shell
carries most of the edgewise bending loads. In this study the main spar is
subjected to the most critical load case which is the flapwise bending load that
arises when the turbine has been brought to a standstill due to high wind and
the blade is hit by the 50 year extreme wind.

In the model used only the main spar is considered, i.e., the two shell parts
are removed. In order to account for their contribution to the stiffness of the
main spar, the thicknesses of the shells in direct contact with the main spar
are added to the top of the flanges of the main spar. Thus, the local stiffness
contribution is included but the support conditions from the shells are ignored.
The finite element model used is shown in Fig. 4 and consists of 9600 four node
shell elements.

The finite element model of the main spar is divided into 77 patches, i.e.,
regions with the same layup and thickness. The length of the part of the main
spar studied is 15 meters and the flapwise bending is applied using two nodal
forces at the end as shown in Fig. 4. The model is clamped at the root end, i.e.
all displacements and rotations are fixed. With these boundary conditions the
dominant state will be bending, which results in tension/compression in the top
and bottom flanges and shear in the wedges. Furthermore, due to the geometry
of the spar, which twists its cross section along the length due to aerodynamic
considerations, the spar will also be subjected to torsion when subjected to
flapwise bending. These basic considerations will be used as a guideline for
interpreting the results of the optimization.

For the stiffness optimization problem it has been chosen first to use patch
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Figure 4. Finite element model with loads used for maximum stiffness design of
the load carrying main spar.

design variables, i.e, the design variables will be linked to all finite elements
associated with a given patch covering a larger area of the main spar, and next
the design variables are associated to each finite element.

There are two materials, a stiff GFRP material and a softer isotropic ma-
terial, and the mass constraint is set such that 15% of the total volume should
be filled with soft material. The number of layers for the patch design variable
model is set to 16, and the soft material can only be chosen for the 14 inte-
rior layers since this material is not a realistic choice for the skin layers. For
simplicity, the GFRP material can only be oriented at 0◦, ±45◦, and 90◦, and
therefore the number of design variables is 4 for the inner and outer layers, and
5 for all 14 interior layers. The total number of design variables becomes 6006.
All layers in a given patch have uniform thicknesses, and the overall thickness
is equal to the original one in each patch.

In Fig. 5 the optimized material directions for the glass fiber are shown for
the 16 layers. If the soft material has been chosen, then no directions are shown.
Layer 1 is the inner (bottom) layer and layer 16 the outer (top) layer.

The results for the patch design variable model suggest that several layers
are quite similar, and therefore 8 layers have been chosen for the element-wise
design variable model in order to reduce the number of design variables. Again,
only stiff material can be chosen in the skin layers, and the number of design
variables for this model becomes 364800. The results for the element-wise design
variable model can be seen in Fig. 6.

The two optimization models yield quite similar results and, as expected,
most of the soft material has been put in the webs in the internal layers close to
the root of the main spar in lightly stressed areas. Looking at the two models
in detail it is apparent that the element-wise design variable model shown in
Fig. 6 chooses to use soft material in all internal layers of the web, distributed
continuously over approximately the first third of the main spar. In contrast the
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Layer 1 Layers 2 and 3

Layers 4 and 5 Layers 6, 7, 8 and 9

Layers 10 and 11 Layers 12 and 13

Layers 14 and 15 Layer 16

Figure 5. Optimized material directions for the GFRP material in the 16 layers
using 77 patches. There are 4 DMO variables (0◦, ±45◦, and 90◦) for the GFRP
material, and void indicates that the soft material has been chosen.
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Layer 1 Layer 2

Layer 3 Layer 4

Layer 5 Layer 6

Layer 7 Layer 8

Figure 6. Optimized material directions for the GFRP material in all 8 layers
using element-wise design variables. There are 4 DMO variables (0◦, ±45◦, and
90◦) for the GFRP material, and void means that the soft material has been
chosen.
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patch design variable model in Fig. 5 only places soft material in parts of the
internal layers in two distinct regions rather than continuously. This illustrates
that choice of material and orientation for each patch is a compromise between
all elements in the patch while in the element-wise design variable model, the
properties of each element can be set individually.

The orientation of the GFRP material also corresponds well to what was
expected from the basic considerations made earlier regarding the load carrying
mechanisms of the spar. In the flanges all layers are dominated by 0◦ orientation,
i.e. along the length of the spar, to account for bending while the webs are
dominated by ±45◦ to account for shear in the element-wise design variable
model. Due to the compromises made over larger areas in the patch design
variable model most of the GFRP material in the webs is oriented at 0◦ because
the bending load dominates the patches in the webs. In both models most
GFRP material in the last third of the webs is oriented at ±45◦ due to shear
and some torsion as the main spar is slightly twisted along the length.

The patch design variable solution is by far the easiest to realize, from a
manufacturing point of view, since it encompasses large and well defined regions
as opposed to the complex solution of the element-wise design variable model.
However, the results will depend on the chosen patches and as such the element-
wise design variable model gives much more detail about the best solution.

The results presented here are somewhat crude in that only five candidate
materials have been used, and the natural next step would be to expand the
design space and allow for a larger variation of fiber angles in order to obtain
a more detailed design. However, Figs. 5 and 6 still illustrate very well the
potential of the method to solve the combinatorial problem of proper choice of
material, stacking sequence and fiber orientation simultaneously on a real life
complicated structure like a wind turbine blade main spar for maximum stiffness
design.

4. Other physics models

Recently, the topology optimization method has been extended and applied in
several other physics settings than that of structures. We will here briefly discuss
two of these applications namely the application in wave-propagation problems
and the application in fluid problems.

4.1. Wave propagation problems

The governing equation for a number of different wave-propagation problems is
the scalar Helmholtz equation

∇ · (A∇u) + ω2Bu = 0, (10)

where, depending on the physics problem considered, the field u (in 2D or 3D)
as well as the material constants will have different physical meanings. For the
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case of acoustic waves, u is the pressure, A is the inverse of the mass density
and B is the inverse of the bulk modulus. For the case of elastic shear waves, u
is out of plane elastic displacements, A is the shear modulus and B is the mass
density. For the case of planar transverse electromagnetic polarized waves (the
TE-mode), u is the electric field, A is the inverse of the dielectric constant and
B is the product of the vacuum permitivity and vacuum permeability, whereas
for the other polarization (transverse magnetic waves - the TM-mode), u de-
notes the magnetic field value, A = 1 and B equals the product of the dielectric
material value, the vacuum permitivity and the vacuum permeability. Hence, if
one can perform topology optimization in problems modelled by the Helmholtz
equation, simple exchange of parameter values allows one to perform optimiza-
tion of several different physics problems.

Different goals for the optimization may be considered and after some exper-
imenting it has been found useful to apply either the so-called Poynting vector
in order maximize the wave energy transport or to extremize a local amplitude
measure. The latter measure is defined as

ûout =
1

Ωout

∫

Ωout

|u| dΩ, (11)

i.e., the average of the magnitude of the field in the output region Ωout which is
a subset of the total design domain Ω. The Poynting vector (see, e.g., Landau
and Lifshitz, 1975) averaged over a time-period is for this scalar case calculated
as

I =
ω

2

∫

Γout

Aℜ(i u ∇u) dΓ, (12)

where Γout is a line through which the energy flow is measured and ℜ denotes
the real part of a complex number.

Boundary conditions for the governing equation (11) may be of Neumann,
Dirichlet or absorbing type and we also use Perfectly Matching Layers (PML)
to exclude any unwanted boundary effects from absorbing boundaries.

The topology optimization problem in discretized form may now be written
as

min
ρρρ

c = Φ(u)

s.t. : (K + i ω C− ω2M) u = f ,

N
∑

e=1

veρe ≤ V, 0 < ρe ≤ 1, e = 1, . . . , N ,

(13)

where K, C and M, are the stiffness, damping and mass like system matrices
resulting from the discretization of the Helmholtz equation (11) and the bound-
ary conditions. For this problem the sensitivities of the objective function can
be obtained by the adjoint method.
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The material properties in these design problems are for simplicity (see com-
ments below) interpolated linearly between the two material phases, i.e.

A(ρe) = ρeA1 + (1 − ρe)A2

B(ρe) = ρeB1 + (1 − ρe)B2.
(14)

In many applications discrete solutions with distinct material phases (no
intermediate values of ρ) are automatically the outcome of the optimization
process since maximum contrast gives the best wave-confinement. However, in
some cases "grey solutions" with intermediate densities may appear. In those
cases 0 − 1 designs can be obtained by introducing some artificial damping in
one of the material phases or we introduce a penalization damping term (we call
it the "pamping" term) which introduces artificial high damping in intermediate
density elements. This procedure is described in detail elsewhere (Jensen and
Sigmund, 2005).

Otherwise, the implementation follows the standard density based topology
optimization approach as described in detail by Bendsøe and Sigmund (2003)
and the optimization method is the Method of Moving Asymptotes, see Svan-
berg (1987, 2002).

4.1.1. Example: Acoustics

We show one example of topology optimization of wave propagation problems
applied to the design of an inverse acoustic horn. The design problem is sketched
in Fig. 7a. The square shaped modelling domain (filled with air) has absorbing
boundary conditions and there is an incoming wave over the mid-half of the left
boundary. At the right boundary there is a channel through which we want to
maximize the energy flow by distributing 25% aluminum in the design domain
(dotted rectangle). The objective function is thus defined as the maximization
of the horizontal component of the Poynting vector (12) in the channel.

The correct physical modelling of this problem would require a complicated
model with coupling between the acoustic waves in air and elastic waves in
the aluminum. However, due to the huge impedance ratio between air and
aluminum, waves propagating through air will hardly enter into the aluminum
and therefore we can model the hole problem by the Helmholtz equation. This
assumption has been verified by numerical tests. A thin wall of aluminum in the
modelling domain efficiently stops wave propagation. The material properties
we use are ρair = 1.3kg/m3, ρalu = 2643kg/m3, κair = 141kN/m2 and κalu =
68.7GN/m2.

We perform the topology optimization for three different wave loads. First
we optimized the material distribution for loading frequency ω = 0.07. The re-
sulting horn is shown in Fig. 7b and the frequency response is shown in the bot-
tom of Fig. 7. Then we optimized the material distribution for loading frequency
ω = 0.15. The resulting horn is shown in Fig. 7c. We note that the higher the
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Figure 7. Topology optimization of a wave propagation problem. Top: a) initial
design and wave pattern, b) topology optimized inverse horn for ω = 0.07, c)
topology optimized inverse horn for ω = 0.15 and d) topology optimized inverse
horn for the frequency interval ω = [0.07, 0.15]. Bottom: Frequency response
for the 4 structures.
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frequency, the more fragmented and irregular the optimized structure becomes.
This can be understood by considering that the wavelength becomes smaller
for the higher frequency and since the wave shape determines the topology, the
resulting topology is likely to have finer details for higher frequencies1.

From the frequency response plot (bottom of Fig. 7) we see that both designs
have high transmission values for the frequencies they are optimized for but they
have fairly bad transmission for other frequencies. In order to obtain a structure
that is good for a wider frequency band, we solve a max-min problem consisting
in maximizing the minimum of 10 transmission values in the frequency interval
ω = [0.07, 0.15]. Since the minimum values may change during optimization,
we developed an active set strategy, where the frequencies of the minimum
transmission values in 10 sub-intervals are updated every 10 iterations based
on a Padé approximation of the frequency response (see Jensen and Sigmund,
2005, for more details). The resulting structure is seen in Fig. 7d and we note
that the frequency response is now almost constant and high over the considered
interval although not as efficient as the one-frequency-optimized structures at
their optimization frequencies.

Many more examples of topology optimization in wave-propagation problems
are given in the references Borel et al. (2004), Jensen (2003), Sigmund and
Jensen (2003, 2005), and Jensen and Sigmund (2004, 2005).

4.1.2. Example: A Z-bend in photonics

The planar photonic crystal is an optical nano-material with periodic modula-
tion of the refractive index. The modulation is designed to forbid propagation
of light in certain wavelength ranges, so-called photonic bandgaps. Breaking the
crystal symmetry by introducing line defects and other discontinuities allows for
control of the light on a sub-wavelength scale in the photonic crystals. There-
fore, photonic devices based on the bandgap effect may be up to one million
times smaller than traditional integrated optical devices.

The idea behind these devises are as follows. Light propagates as waves
and if transmitted through a transparent medium like glass, it will propagate
essentially without losses. However, if one perforates the glass structures with
a periodic arrangement of air holes with hole distances a little less than the
wave length of the light (this means that we are talking about length scales
smaller than micrometers, i.e. nano-scale), waves at certain frequencies will no
more propagate through the glass structure. This effect can be used to produce
mirrors in nano-scale or it can be used to guide light in optical chips. The latter
can be obtained by filling some of the air holes in channel-like patterns as seen
for a Z-bend in Fig. 8. Since the light cannot travel through the perforated
structure, it will stay within the channel and can be led around sharp corners

1Another effect of the wave-dependency of the optimized topologies is that we rarely see

mesh-depedency. This may be explained by the wave length imposing a length scale in the

design problem.
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and may be manipulated in other ways. Such photonic crystal structures will in
the future provide the basic building blocks for optical devices and computers.

Figure 8. Top, left: Standard Z-bend waveguide. Top, right: The optimized
design. Bottom, left: TE polarized light propagating through the topology
optimized Z-bend. Bottom, right: The manufactured device.

The idea of loss-less transmission of optical waves through photonic crystals
outlined above is a truth with modifications. In reality, the transmission is less
than 100% because of leaking waves and reflections at channel corners. It is quite
obvious that the efficiency may be optimized by changing the shape, number
and position of the holes along the channels. Therefore, the design of photonic
crystals is an obviously interesting application for the topology optimization
method.

Fig. 8 shows the result of the design process for a Z-bend. If we had just
removed air holes to obtain a Z-shaped bend, the light transmitted through
the bend would have been less than 50% due to losses and reflections. For
topology optimization it was chosen to utilize only the outer parts of the two
bend regions as design areas. Although one could choose much larger design
areas, the numerical experiments showed that relatively small design areas were
enough to yield the wanted improvement in efficiency. Had the efficiency been
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unsatisfactory, the design areas could have been enlarged in order to introduce
more freedom in the design. In order to reduce the bend loss, the transmitted
energy flow measured by the Poynting vector through the Z-bend waveguide is
maximized in the topology optimization procedure (see Fig. 8). The optimiza-
tion can be performed for any number of frequencies simultaneously, e.g., in a
min-max formulation. In the case of the Z-bend it was found that the use of a
single frequency in the optimization is sufficient to produce a large bandwidth
with low loss.

The result of the topology optimization process resulted in a close to 100%
transmission in a wide frequency range. Fig. 8 shows the optimized design and
the resulting wave propagation through the optimized waveguide. The opti-
mized Z-bend was manufactured by e-beam lithography techniques at the Cen-
ter for Optical Communication (COM) at DTU (see Fig. 8). The manufactured
device performs very well with record breaking bandwidth and transmission
properties.

4.2. Flow problems – initial steps

In fluid flow problems we are also faced with the problem of describing fields and
material properties across interfaces, here between solid and fluid. In Borrvall
and Petersson (2003) a model is suggested which in strong form is written as

µ∇ ·
(

∇u + (∇u)
T
)

+ αu = ∇p − f

∇ · u = 0
(15)

where u is the velocity, p the pressure, f body forces and µ the dynamic viscosity
of the fluid (for this and the subsequent PDEs we will assume that appropriate
boundary conditions are given). The design coefficient α represents the porosity
and we see that the extra term αu (as compared to the Stokes flow problem) has
the form of an absorption term, which ensures zero velocities at the penalized
points controlled by α. Thus the variable α allows for fluid flow and (almost)
solid to be covered in one model and one can formulate design problems that
can determine the optimal lay-out of fluid flow.

Note that equation (15) is known as the Brinkman Equation (Gartling,
Hickox and Givler, 1996) for the interpolation between Stokes flow and porous
flow. In Borrvall and Petersson (2003) the model (15) is derived via a modelling
of a Couette flow, i.e. a flow between plates with a distance of 2γ2. In that
case we have α(γ) = 5µ

2γ2 . However, with the interpretation as a Brinkman flow
problem the idea generalizes to three dimensions also.

We are now ready to formulate the optimization problem. We will take
γe ∈ [γmin, 1] as the design variable and set α(γ) = 5µ

2γ2 . A prescribed amount

2In order for this assumption to hold, it is assumed that the height of the channel is much

smaller than the width.
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of fluid is allowed in the design domain, i.e. the sum of the γe’s is constrained.
We want to minimize the energy dissipation in the system. This corresponds to
maximizing the “flow compliance”. The optimization problem may then in the
FEM form be stated as

min
γγγ

f = −FTU

s.t. :

[

K −G

−GT 0

] {

U

P

}

=

{

F

0

}

,

N
∑

e=1

veγe ≤ V ∗, 0 < γmin ≤ γe ≤ 1, e = 1, . . . , N .

(16)

This optimization problem can be solved along similar lines as described
earlier. We remark here that no penalization is required to obtain designs that
only achieve the extreme values of the design parameter – the optimal design
will automatically satisfy this objective (see Borrvall and Petersson, 2003, for
the mathematical details).

4.2.1. Increasing the Reynolds number

Stokes flow is a linear problem with a Reynolds number Re = 0. Increasing Re
results in a non-linear problem with increasing inertia forces. We simplify the
problem by considering flows at moderate Reynolds numbers. Pipe flow can be
assumed laminar up to approximately Re = 2000, thus as long as we stay well
below this value, the flow field is stable and steady-state and the corresponding
FE problem well-posed. The governing equations become

Re u · ∇u = −∇p + ∇ ·
(

∇u + (∇u)
T
)

+ f

∇ · u = 0
(17)

where all quantities are non-dimensional.

To gain control over the flow with optimization in mind, we use the absorp-
tion term introduced in the previous section. Further, we consider the case with
no body forces f = 0 and obtain

Re u · ∇u − α(γ)u = −∇p + ∇ ·
(

∇u + (∇u)
T
)

∇ · u = 0 .
(18)

The optimization problem for Re > 0 is therefore similar to (16) just with a
non-linear FE problem representing the weak solution to (18). The sensitivity
analysis should thus be modified to take this into account.



28 M. BENDSØE, E. LUND, N. OLHOFF, O. SIGMUND

4.2.2. Examples

We show two examples of topology optimization in flow problems. The first is
flow in a structure with two parallel inlets and outlets (Fig. 9); this example
is repeated from Borrvall and Petersson (2003) and compare favourably to an
example that can be found in Pironneau (1973). The second example illustrates
the effect of inertia.

In Fig. 10 we demonstrate the difference between Stokes flow (Re = 0) and
faster flow (Re = 850). We consider the design of a bend. The bend has
sharp corners for Stokes flow, but the corners become rounder with increasing
Reynolds number in response to the growth of the inertia term. Note however,
that we had to relax the assumption behind the parabolic flow profile modelling
in order to obtain this result. In order for the model to hold, the height of the
channel should be small compared to the width. With this constraint, however,
we find that inertia hardly has an effect on the optimal topology, hence the
layout of micro fluidic channels is governed by the rule that the overall wall-
length should be minimal. An implication of this is that the optimal 90 degree
bend has sharp corners.

For other channel geometries (e.g. comparable width to height ratios), it is
necessary to do a full 3D modelling and the conclusions above might be different.

a)

b) d)

c)

Figure 9. Minimization of flow resistance in structures with two parallel inlets
and outlets for 30% fluid volume. a) Design domain with aspect ratio 1:1 and
solution b). c) Design domain with aspect ratio 3:2 and solution d). The flow
resistance of d) is 22% lower than for a topology with two straight pipes as in
b) due to the lower resistance of the single wide channel.
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Figure 10. Design of a flow bend. a) Design domain and boundary conditions,
b) topology optimized for Re = 0 c) topology optimized for Re = 850 and d)
difference between c) and b).

For more discussion and examples of topology optimization on fluid flow
problems with moderate Reynolds numbers we refer the reader to Gersborg-
Hansen, Sigmund and Haber (2004). An important observation is that a large
Reynolds number (larger than those associated with microfluidic devices) is
required for inertia to have a significant effect on the design.

5. Other developments

The developments illustrated above represents only some of the work carried out
in Denmark over the last years in connection with shape and topology design.
This effort has not only been concerned with extending the basic notion to a
broader range of structural design problems and to other engineering disciplines,
but has also been concerned with the investigation of new concepts for modelling
and of methods for improving computational performance (stability and speed).
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5.1. Topology design

One of the important issues in topology design is the ability to control geometric
features in the final design. This may be for production purposes as well as for
more mundane reasons of controlling unwanted features of the computational
results (such as artificial hinges in mechanism design). Recent work3 on geom-
etry control by applying a single and global constraint has been presented in
Poulsen (2002a, 2003), while the application of concepts from multiscale analy-
sis and wavelet design representations can be found in Poulsen (2002b), Yoon,
Kim, Bendsøe and Sigmund (2004), and Chellappa, Diaz and Bendsøe (2004).

In the area of mechanics a method for design of support conditions for struc-
tures and mechanisms has been developed (Buhl, 2002). In the realm of mech-
anism design for snap behaviour for compliant mechanisms (Bruns, Sigmund
and Tortorelli, 2002) and design of articulated mechanism has also been consid-
ered (Kawamoto, Bendsøe and Sigmund, 2004; Stolpe and Kawamoto, 2005).
Here the latter work represents a new development in terms of the application
of global optimization techniques. Also, much effort has been devoted to the
development of concepts and analysis models for design for crashworthiness (see
Pedersen, 2003a, 2004 and references therein), and developments of techniques
for handling vibration problems can be found in Pedersen and Pedersen (2003)
and Jensen and Pedersen (2005).

Related to the material design of band-gap materials mentioned earlier is
the work on improving the buckling behaviour of composites (Neves, Sigmund
and Bendsøe, 2002); other recent material design work can be found in Ro-
drigues, Guedes and Bendsøe (2002), Guedes, Rodrigues and Bendsøe (2003),
and Pedersen (2003b).

Finally, as an illustration of the range of possibilities to apply the basic
notion and computational techniques of topology design we mention the work
by Bywater et al. (2004) on the design of proteins (molecular structures).

5.2. Shape design

In many situations the results of topology design requires refinement through
the application of shape design. Moreover, many physical situations require very
precise information about the interface between different media and in such cases
the methods of shape design are crucial for succes. Here the strong position of
Danish pump and wind-turbine industry has made it natural for a continued
interest in this field, both for fluid-solid interaction problems (Lund, Møller
and Jakobsen, 2002; Lund, Møller and Jakobsen, 2003) and for noise reduction
problems (Langthjem and Olhoff, 2004a,b). In both cases the analysis and
especially the sensitivity analysis poses great challenges in order to give reliable
results for these very sensitive, nonlinear problems.

3In this and the following paragraphs we limit ourselves to references from 2002 and later.
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In the realm of development of new approaches in this area work has also
been performed on mixing ideas from shape design and topology design. Thus
work on a geometry projection method (Norato et al., 2004) for shape design
may also have implications for a level-set approach for topology design based
on sensitivity analysis and mathematical programming.

6. Perspectives

In the sections above we have illustrated some of the possibilities for using the
basic material density concept for topology design on a range of new problems,
not only in structures, but also in other engineering areas.

One of the most interesting problem areas for future research will be the
development of methods that can handle topology design of multiphysics prob-
lems where interfaces between phases have a central importance and where
natural extensions of fields do not seem reasonable. The approach of extending
fields over interfaces are central for the traditional material distribution method
and has been succesfully applied in design of electrothermomechanical actuators
(Jonsmann, Sigmund, Bouwstra, 1999).
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