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Abstract: The present paper is concerned with the identifica-
tion of an obstacle or void of different conductivity included in a
two-dimensional domain by measurements of voltage and currents
at the boundary. We employ a reformulation of the given identifica-
tion problem as a shape optimization problem as proposed by Roche
and Sokolowski (1996). It turns out that the shape Hessian degener-
ates at the given hole which gives a further hint on the ill-posedness
of the problem. For numerical methods, we propose a preprocessing
for detecting the barycentre and a crude approximation of the void
or hole. Then, we resolve the shape of the hole by a regularized
Newton method.

Keywords: electrical impedance tomography, shape optimiza-
tion, boundary integral equation, Newton type descent.

1. Introduction

Let D ⊂ R
2 denote a bounded domain with boundary ∂D = Σ and assume

the existence of a simply connected subdomain S ⊂ D, consisting of mater-
ial with constant conductivity, essentially different from the likewise constant
conductivity of the material in the annular subregion Ω = D \ S. We consider
the identification problem of this inclusion if the Cauchy data of the electrical
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potential u are measured at the boundary Σ , i.e., if a single pair f = u|Σ and
g = (∂u/∂n)|Σ is known.

The problem under consideration is a special case of the general conduc-
tivity reconstruction problem and is severely ill-posed. It has been intensively
investigated as an inverse problem. We refer for example to Akduman and Kress
(2002), Chapko and Kress (2003) and Hettlich and Rundell (1998) for numerical
algorithms and to Friedmann and Isakov (1989) as well as Alessandrini, Isakov
and Powell (1995) for particular results concerning uniqueness. Moreover, we
refer to Brühl and Hanke (2000) and Brühl (2001) for methods using the com-
plete Dirichlet–to–Neumann operator at the outer boundary. We emphasize
that we focus in the present paper on exact measurements and do not consider
noisy data.

Roche and Sokolowski (1996) introduced a formulation in terms of a shape
optimization problem. Moreover, analysis and numerical results are presented
for first order shape optimization algorithms. In the present paper we investi-
gate the related second order methods, developed and applied by the authors in
Eppler and Harbrecht (2003a, b, c, 2004b). Provided that the interface Γ = ∂S
is sufficiently regular, higher order smoothness for the objective can be shown
by means of standard results. We assume the inclusion to be starshaped with
respect to a given pole x0 ∈ D and derive the second order shape derivatives
in terms of polar coordinates. Furthermore, we prove compactness of the shape
Hessian at the optimal domain Ω⋆ = D\S⋆. This degeneration implies exponen-
tial ill-posedness of the optimization problem and is of course strongly related to
the known ill-posedness of the underlying identification problem. Consequently,
it is essentially stronger then the degeneration in the illustrating example of
Dambrine (2000) and is completely different from the regular coercive situations
observed in Dambrine (2002), Eppler and Harbrecht (2004a). In particular, nei-
ther the validity of a sufficient second order condition nor quadratic convergence
of the Newton method can be established.

Using finite Fourier series to represent the boundary of the inclusion we ar-
rive at a finite dimensional optimization problem. This optimization problem
will be minimized by a Newton method which has to be regularized due to its
ill-posedness, i.e., due to the compactness of the shape Hessian at the optimal
domain. Precisely, we employ a Tikhinov regularization for adjusting the search
direction. By numerical experiments we show that our method outperforms first
order algorithms. Introducing a preprocessing for detecting the barycentre and
a first crude approximation of the inclusion, we are able to extend our approach
also to the case of small inclusions without knowing the pole in advance. Con-
cerning the further use of Newton method in shape optimization, we refer to
Fujii and Goto (1990), Novruzi and Roche (1995) and Novruzi (1997). Using
ideas from Eppler and Harbrecht (2003d), the authors recently extended the
second order approach to three dimensions (Eppler and Harbrecht, 2004a).

The present paper is organized as follows. In Section 2 we present the
physical model and reformulate the identification problem as a shape optimiza-
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tion problem. We compute the gradient and the Hessian of the given shape
functional. Then, in Section 3, we analyze the shape Hessian and prove its
degeneration at the optimal domain. In Section 4 we discretize the boundary
of the inclusion and replace the infinite dimensional optimization problem by
finite dimensional one. Moreover, we propose a boundary element method to
compute the shape functional as well as its gradient and Hessian. In Section 5,
we perform several numerical experiments to compare the regularized Newton
method with a quasi Newton method. In the last section, that is - Section 6,
we state concluding remarks.

2. Shape problem formulation

2.1. The physical model

Let D ∈ R
2 be a simply connected domain with boundary Σ = ∂D and assume

that an unknown simply connected inclusion S with regular boundary Γ = ∂S
is located inside the domain D satisfying dist(Σ, Γ) > 0, see Fig. 1.

Σ Ω Γ

Figure 1. The domain Ω and its boundaries Γ and Σ

To determine the inclusion S we measure for a given current distribution g ∈
H−1/2(Σ) the voltage distribution f ∈ H1/2(Σ) at the boundary Σ. Hence,
we are seeking a domain Ω := D \ S and an associated harmonic function u,
satisfying the system of equations

∆u = 0 in Ω,

u = 0 on Γ,

u = f on Σ,

∂u

∂n
= g on Σ.

This system denotes an overdetermined boundary value problem which admits
a solution only for the true inclusion S.
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Following Roche and Sokolowski (1996), we introduce the auxiliary harmon-
ical functions v and w satisfying

∆v = 0 ∆w = 0 in Ω,

v = 0 w = 0 on Γ, (1)

∂v

∂n
= g w = f on Σ,

and consider the following shape optimization problem

J(Ω) =

∫

Ω

‖∇(v − w)‖2dx =

∫

Σ

(

g −
∂w

∂n

)

(v − f)dσ → inf . (2)

Herein, the infimum has to be taken over all domains including a void with
sufficiently regular boundary. We refer to Roche and Sokolowski (1996) for the
existence of optimal solutions with respect to this shape optimization problem.

2.2. Shape calculus

For the sake of clarity in presentation, we repeat the shape calculus concerning
the problem under consideration by means of boundary variations. The shape
gradient has been computed first in Roche and Sokolowski (1996), while the
structure of the shape Hessian has been sketched in terms of material derivatives.
But we emphasize that we derive a boundary integral representation of the shape
Hessian which allows us to investigate and implement it. For a survey on the
shape calculus based on the material derivative concept, we refer the reader to
Sokolowski and Zolesio (1992) and Delfour and Zolesio (2001) and the references
therein.

Let the underlying variation fields V be sufficiently smooth such that C2,α-
regularity is preserved for all the perturbed domains. Moreover, for the sake of
simplicity, we assume in addition that the outer boundary and the measurements
are sufficiently regular such that the state functions v = v(Ω) and w = w(Ω)
satisfy

v, w ∈ C2,α(Ω̄). (3)

Then, a formal differentiation of (2) in terms of local derivatives yields imme-
diately

dJ(Ω)[V] =

∫

Γ

〈V,n〉‖∇(v − w)‖2dσ + 2

∫

Ω

〈∇(v − w),∇(dv − dw)〉dx,

where the local shape derivatives dv = dv[V] and dw = dw[V] satisfy

∆dv = 0 ∆dw = 0 in Ω,

dv = −〈V,n〉
∂v

∂n
dw = −〈V,n〉

∂w

∂n
on Γ, (4)

∂dv

∂n
= 0 dw = 0 on Σ.
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Using ∂Ω = Γ∪Σ and the known boundary data from (1) and (4), the boundary
integral representation of the shape gradient is obtained via repeated integration
by parts

dJ(Ω)[V] =

∫

Γ

〈V,n〉

[

(

∂v

∂n

)2

−

(

∂w

∂n

)2
]

dσ, (5)

see also Roche and Sokolowski (1996). Note that, as an immediate consequence
of the shape calculus, (5) implies an simplified first order necessary condition

∂v

∂n
≡

∂w

∂n
on Γ. (6)

In the case that the hole is starshaped S with respect to some pole x0 ∈ D,
the boundary Γ = ∂S can be parametrized by a function r = r(ϕ) of the polar
angle ϕ and the perturbation field V can be chosen as V = x0 + dr(ϕ)er(ϕ).
Herein, er(ϕ) := (cos ϕ, sin ϕ)T denotes the radial direction with respect to the
pole x0. The regularity requirements imply r, dr ∈ C2,α

per [0, 2π], where r is a
positive function such that dist(Σ, Γ) > 0 and

C2,α
per [0, 2π] := {r ∈ C2,α[0, 2π] : r(i)(0) = r(i)(2π), i = 0, 1, 2}.

Then, the shape gradient dJ [dr] becomes

dJ(Ω)[dr] =

∫ 2π

0

dr(ϕ) r(ϕ)

[

(

∂w

∂n

)2

−

(

∂v

∂n

)2
]

(ϕ) dϕ, (7)

where the minus sign results from the fact that 〈er,n〉 = −r/
√

r2 + r′2.
To derive the shape Hessian, we proceed similarly to Eppler (2000a, b) by

differentiating the shape gradient (7).

Lemma 2.1 The shape Hessian reads as

d2J(Ω)[dr1, dr2] =

∫ 2π

0

dr1 dr2

{

2rr′
√

r2 + r′2

[

∂v

∂n

∂2v

∂n∂t
−

∂w

∂n

∂2w

∂n∂t

]

(8)

+

(

1 −
2r2κ

√

r2 + r′2

)[

(

∂w

∂n

)2

−

(

∂v

∂n

)2
]}

+2dr1 r

{

∂w

∂n

∂dw[dr2]

∂n
−

∂v

∂n

∂dv[dr2]

∂n

}

dϕ,

where all data have to be understood as traces on the unknown boundary Γ.

Proof. We mention that our regularity assumptions provide the existence of a
shape Hessian by means of standard theory, see Delfour and Zolesio (2001),
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Sokolowski and Zolesio (1992). In particular, passing to the limit is always
allowed and only briefly indicated in some of the following transformations.
Moreover, we consider only the first part of the gradient, that is

dJ(Ω)[dr] =

∫ 2π

0

dr r

(

∂w

∂n

)2

dϕ,

since the second part is treated in complete analogy. We shall prove first the
identity

d2J(Ω)[dr1, dr2] =

∫ 2π

0

dr1 dr2 ‖∇w‖2 + dr1 dr2 r
∂

∂er
‖∇w‖2 (9)

+2 dr1 r
∂w

∂n

∂dw[dr2]

∂n
dϕ .

The domain Ω respective boundary Γ can be identified with its parametrization,
i.e., with the function r : [0, 2π] → Γ. Similarly, we can identify the perturbed
domain Ωε respective boundary Γε with the function rε = r + εdr2. Therefore,
we find

dJ(Ωε)[dr1] − dJ(Ω)[dr1] =

∫ 2π

0

dr1

{

rε

(

∂wε

∂nε

)2

− r

(

∂w

∂n

)2
}

dϕ,

where wε is the solution of the state equation with respect to the perturbed
domain Ωε and nε is the outer normal of Ωε at Γε. Inserting rε = r + ε dr2

yields

dJ(Ωε)[dr1] − dJ(Ω)[dr1] =

∫ 2π

0

ε dr1 dr2

(

∂wε

∂nε

)2

dϕ

+

∫ 2π

0

dr1 r

{

(

∂wε

∂nε

)2

−

(

∂w

∂n

)2
}

dϕ.

The first term in this expression will give the first term in (9). Hence, it remains
to consider the difference

(

∂wε

∂nε

)2

−

(

∂w

∂n

)2

= 〈∇wε

∣

∣

Γε
,∇wε

∣

∣

Γε
〉 − 〈∇w

∣

∣

Γ
,∇w

∣

∣

Γ
〉.

By Taylor’s expansion r2
ε = r2 + 2ε r dr2 + O(ε2) we conclude

〈∇wε

∣

∣

Γε
,∇wε

∣

∣

Γε
〉 = 〈∇wε

∣

∣

Γ
,∇wε

∣

∣

Γ
〉 + 2εdr2

∂

∂er
〈∇wε

∣

∣

Γξ
,∇wε

∣

∣

Γξ
〉,

where Γξ is defined via the radial function rξ = r + ξdr2, 0 < ξ < ε. Inserting
the local shape derivative dw(Ω)[dr] (4) we find

∇wε

∣

∣

Γ
= ∇w

∣

∣

Γ
+ εdr2∇dw[dr2]

∣

∣

Γ
+ O(ε2),
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and arrive at

(

∂wε

∂n

)2

−

(

∂w

∂n

)2

= 2εdr2
∂

∂er
〈∇wε

∣

∣

Γξ
,∇wε

∣

∣

Γξ
〉

+ 2εdr2〈∇dw[dr2 ]
∣

∣

Γ
,∇w

∣

∣

Γ
〉 + O(ε2).

Computing now limε→0{dJ(Ωε)[dr1] − dJ(Ω)[dr1]}/ε proves (9) due to

〈∇dw[dr2]
∣

∣

Γ
,∇w

∣

∣

Γ
〉 =

∂w

∂n
〈∇dw[dr2]

∣

∣

Γ
,n〉 =

∂w

∂n

∂dw[dr2]

∂n
.

The homogeneous Dirichlet data w|Γ = 0 imply the identity

(‖∇w‖2)|Γ =

(

∂w

∂n

)2

.

Moreover, observing −
√

r2 + r′2∂/∂t = ∂/∂φ, we can decompose

∂

∂er

(

‖∇w‖2
)

=
2

√

r2 + r′2
∂w

∂n

{

r
∂2w

∂n2
− r′

∂2w

∂n∂t

}

,

where ∂2w/∂2n := 〈∇2w · n,n〉 and ∂2w/(∂n∂t) := 〈∇2w · n, t〉. Since w
is harmonical, admitting homogeneous Dirichlet data on Γ, we arrive at the
identity

∂2w

∂n2
= −κ

∂w

∂n
,

where κ denotes the curvature with respect to Γ, see Eppler and Harbrecht
(2003b) for details. Hence, we can simplify (9) in accordance with (8).

3. Analyzing the shape Hessian

3.1. Boundary integral equations

In this subsection we compute the unknown boundary data of the state functions
v and w by boundary integral equations. We introduce the single layer and the
double layer operator with respect the boundaries Φ, Ψ ∈ {Γ, Σ} by

(VΦΨu)(x) := −
1

2π

∫

Φ

log ‖x − y‖u(y)dσy, x ∈ Ψ,

(KΦΨu)(x) :=
1

2π

∫

Φ

〈x − y,ny〉

‖x− y‖2
u(y)dσy , x ∈ Ψ.

Note that VΦΨ denotes an operator of order −1 if Φ = Ψ, i.e. VΦΦ : H−1/2(Φ) →
H1/2(Φ), while it is an arbitrarily smoothing compact operator if Φ 6= Ψ since
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dist(Γ, Σ) > 0. Likewise, if Σ, Γ ∈ C2, the double layer operator KΦΦ :
H1/2(Φ) → H1/2(Φ) is compact while it smoothes arbitrarily if Φ 6= Ψ. We
refer the reader to Hackbusch (1989), Kress (1989) for more details concerning
boundary integral equations.

For the sake of simplicity we suppose that diamΩ < 1 to ensure that VΦΦ is
invertible, see Hsiao and Wendland (1977). Then, the normal derivative of w is
given by the Dirichlet-to-Neumann map

[

VΓΓ VΣΓ

VΓΣ VΣΣ

] [

∂w
∂n

∣

∣

Γ
∂w
∂n

∣

∣

Σ

]

=

[

1/2 + KΓΓ KΣΓ

KΓΣ 1/2 + KΣΣ

][

0

f

]

, (10)

see (1). Likewise, the unknown boundary data of v are determined by

[

VΓΓ −KΣΓ

−VΓΣ 1/2 + KΣΣ

][

∂v
∂n

∣

∣

Γ

v|Σ

]

=

[

1/2 + KΓΓ −VΣΓ

−KΓΣ VΣΣ

] [

0

g

]

. (11)

Note that here and in the sequel the operators (1/2+KΦΦ), Φ ∈ {Γ, Σ}, have to
be understood as continuous and bijective operators in terms of (1/2 + KΦΦ) :
H1/2(Φ)/R → H1/2(Φ)/R.

The unknown boundary data of the local shape derivatives dv = dv[dr] and
dw = dw[dr] are derived by

[

VΓΓ VΣΓ

VΓΣ VΣΣ

] [

∂dw
∂n

∣

∣

Γ
∂dw
∂n

∣

∣

Σ

]

=

[

1/2 + KΓΓ KΣΓ

KΓΣ 1/2 + KΣΣ

] [

−〈V,n〉∂w
∂n

∣

∣

Γ

0

]

(12)

and
[

VΓΓ −KΣΓ

−VΓΣ 1/2 + KΣΣ

][

∂dv
∂n

∣

∣

Γ

dv|Σ

]

=

[

1/2 + KΓΓ −VΣΓ

−KΓΣ VΣΣ

][

−〈V,n〉 ∂v
∂n

∣

∣

Γ

0

]

. (13)

3.2. Compactness of the Hessian at the optimal domain

Next, we will investigate the shape Hessian at the optimal domain Ω⋆, that
is, if the given inclusion is detected and the first order necessary condition (6)
holds. Consequently, all quantities arising in the considerations are related to
the optimal domain Ω⋆ throughout this subsection. Since there holds v = w
in (1) at Ω⋆, the first two terms in (8) vanish and the shape Hessian simplifies
according to

d2J(Ω⋆)[dr1, dr2] =

∫ 2π

0

2 dr1 r
∂v

∂n

{

∂dw[dr2]

∂n
−

∂dv[dr2]

∂n

}

dϕ. (14)

Lemma 3.1 There holds

∂dw[dr]

∂n
≡

∂dv[dr]

∂n
on Γ
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if and only if the Dirichlet data of the local shape derivatives at Γ, that is

dv[dr] = dw[dr] = dr
r

√

r2 + r′2
∂v

∂n
on Γ,

are identical to zero. Moreover, dw[dr] − dv[dr] ≡ const. in Ω⋆ holds only if
const. = 0.

Proof. The harmonic function u := dw[dr] − dv[dr] satisfies the overdetermined
boundary value problem

∆u = 0 in Ω,

u = 0 on Γ,

u = −dv[dr] on Σ,

∂u

∂n
=

∂dw[dr]

∂n
on Σ.

The identity u ≡ 0 is equivalent to dv[dr]|Σ, (∂dw[dr]/∂n)|Σ ≡ 0. Hence, since
(∂dv[dr]/∂n)|Σ, dw[dr]|Σ ≡ 0 due to the boundary conditions in (4), we con-
clude that u ≡ 0 is equivalent to dv[dr], dw[dr] ≡ 0.

Integration by parts shows the identity

d2J(Ω⋆)[dr, dr] =

∫

Ω⋆

‖∇(dv[dr] − dw[dr])‖2dx.

Consequently, since nontrivial measurements f, g 6≡ 0 imply (∂v/∂n)|Γ 6≡ 0, the
above lemma leads immediately to

d2J(Ω⋆)[dr, dr] =

∫

Ω⋆

‖∇(dv[dr] − dw[dr])‖2dx > 0 for all dr 6≡ 0,

which means that the shape Hessian is positive. However, we emphasize that
the domain Ω⋆ is only a regular strict minimizer of second order if the shape
Hessian is strict H1/2(Γ)-coercive, that is d2J(Ω⋆)[dr, dr] ≥ c‖dr‖2

H1/2(Γ)
, see

Dambrine and Pierre (2000), Dambrine (2002). We shall show next that strict
H1/2(Γ)-coercivity is not satisfied.

Lemma 3.2 Let (3) hold, then the multiplication operator

M : H1/2(Γ) → H1/2(Γ), Mdr := dr ·
r

√

r2 + r′2
∂v

∂n

∣

∣

∣

Γ
(15)

is continuous.
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Proof. Abbreviating u := r/
√

r2 + r′2(∂v/∂n)|Γ we may write Mdr = dr · u.
Due to results of Triebel (1983) or Maz’ja and Shaposhnikova (1985), the mul-
tiplication operator M is continuous from H1/2(Γ) to H1/2(Γ), provided that
u ∈ C0,α(Γ) for some α > 1/2. From (3) we conclude u ∈ C1,α(Γ) which implies
the assertion.

Lemma 3.3 The operator associated with the difference of the Dirichlet-to-
Neumann maps with respect to the Dirichlet data h[dr] := Mdr

Λ : H1/2(Γ) → H−1/2(Γ), Λ(h[dr]) :=
∂dw[dr]

∂n

∣

∣

∣

Γ
−

∂dv[dr]

∂n

∣

∣

∣

Γ
. (16)

is compact.

Proof. We deduce from (12) and (13) that

[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

] ∂dv

∂n

∣

∣

∣

Γ
= [1/2 + KΓΓ

−KΣΓ(1/2 + KΣΣ)−1KΓΣ

]

h,

[

VΓΓ − VΣΓV −1
ΣΣ VΓΣ

] ∂dw

∂n

∣

∣

∣

Γ
=
[

1/2 + KΓΓ − VΣΓV −1
ΣΣ KΓΣ

]

h.

Since in both equations the operators on the left as well as on the right hand
side are invertible and their difference is compact, we conclude

A
∂dv

∂n

∣

∣

∣

Γ
= Bh, [A + C1]

∂dw

∂n

∣

∣

∣

Γ
= [B + C2] h,

where A and B are bijective and continuous and C1 and C2 are compact pertur-
bations in the associated spaces. Therefore we arrive at

∂dw

∂n

∣

∣

∣

Γ
−

∂dv

∂n

∣

∣

∣

Γ
=
[

(A + C1)
−1(B + C2) − A−1B

]

h

which is the desired result, since

(A + C1)
−1(B + C2) − A−1B = (A + C1)

−1C2 +
[

(A + C1)
−1 − A−1

]

B

is compact.

In order to illustrate the compact behaviour of the operator Λ we consider
an analytic example concerning the situation of a ringshaped domain given by
two concentric circles.

Example 3.1 Let D = B1(0) ⊂ R
2 be the unit circle and S = BR(0) for some

0 < R < 1. Then we have Ω = D \ S := {(ρ, ϕ) : ρ ∈ (R, 1), ϕ ∈ [0, 2π)}, Σ =
{(ρ, ϕ) : ρ = 1, ϕ ∈ [0, 2π)}, and Γ = {(ρ, ϕ) : ρ = R, ϕ ∈ [0, 2π)}. Harmonic
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functions on such ringshaped domains can be represented via an ansatz in polar
coordinates

u(ρ, ϕ) = A0+B0 log ρ+
∞
∑

n=1

(

Anρn +
A−n

ρn

)

cosnϕ+

(

Bnρn +
B−n

ρn

)

sin nϕ.

Expanding the Dirichlet data h = dv|Γ = dw|Γ in a Fourier series

h = h0 +

∞
∑

n=1

hn cosnϕ + h−n sin nϕ,

and observing the boundary condition dw|Σ = 0, we arrive at

dw(ρ, ϕ) = h0
log ρ

log R
+

∞
∑

n=1

Rn

1 − R2n

(

1

ρn
− ρn

)

(hn cosnϕ + h−n sin nϕ).

Similarly, from (∂dv/∂n)|Σ = (∂dv/∂ρ)|ρ=1 = 0, we conclude that

dv(ρ, ϕ) = h0 +

∞
∑

n=1

Rn

1 + R2n

(

1

ρn
+ ρn

)

(hn cosnϕ + h−n sin nϕ).

Employing (∂dw/∂n)|Γ = −(∂dw/∂ρ)|ρ=R and likewise for dv, we find that

∂dw

∂n

∣

∣

∣

Γ
−

∂dv

∂n

∣

∣

∣

Γ
=

h0

R log R
− 4

∞
∑

n=1

nR2n−1

1 − R4n
(hn cosnϕ + h−n sin nϕ).

The exponential decay of the resulting Fourier coefficients clearly indicates the
compactness of the map Λ. Moreover, the decay is the faster the smaller the
radius R of the inclusion.

Obviously (14) defines a continuous bilinear form on H1/2(Γ) × H1/2(Γ),
namely

d2J(Ω⋆)[dr1, dr2] = 〈2Mdr1, Λ(Mdr2)〉, (17)

where 〈·, ·〉 denotes the canonical L2(Γ)-inner product. According to the Lem-
mas 3.2 and 3.3 we conclude the final result.

Proposition 3.1 The shape Hessian

H : H1/2(Γ) → H−1/2(Γ), H = 2M⋆ΛM : H1/2(Γ) → H−1/2(Γ),

is compact at the optimal domain Ω⋆.
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This proposition implies the ill-posedness of the optimization problem itself,
which is completely characterized by the nature of the shape Hessian at the
critical domain. However, our considerations specify no detailed information
on the eigenvalues of the shape Hessian. If Γ is analytical the eigenvalues of
the shape Hessian decrease exponentially. This issues from the fact that the
boundary integral operators, which transfer the data from Σ to Γ, are arbitrarily
smooth. Hence, (∂v/∂n)|Γ is analytical, even though g ∈ H−1/2(Σ), and the
multiplication operator M : Hs(Γ) → Hs(Γ) becomes continuous for any s ∈ R.
Since Λ : H−s(Γ) → Hs(Γ) is compact for any s ∈ R, strict Hs(Γ)-coercivity of
any finite order is not satisfied for the problem under consideration. Therefore,
the exponential ill-posedness of the inverse problem is completely reflected by
the shape Hessian at the optimal domain Ω⋆.

We will illustrate this exponential ill-posedness by two examples. The first
example given below is computed analytically. The second one, concerned with
the constellation of Fig. 1, is presented in Section 5, where we compute the
eigenvalues numerically.

Example 3.2 We consider the same configuration as in Example 3.1, i.e., Ω =
{(ρ, ϕ) : ρ ∈ (R, 1), ϕ ∈ [0, 2π)}. If we choose for example the Dirichlet data
f := (x2 − y2)|ρ=1 = cos 2ϕ we conclude g = 2(1 + R4)/(1 − R4) cosϕ and
(∂v/∂n)|Γ = (∂w/∂n)|Γ = −4R/(1 − R4) cosϕ. Straightforward calculation
leads to

d2J(Ω⋆)[cos kϕ, cos lϕ] = d2J(Ω⋆)[sin kϕ, sin lϕ]

=















32R4π
(1−R4)2

[

(k−2)R2k−4

1−R4k−8 + (k+2)R2k+4

1−R4k+8

]

, if k = l > 2,

32R4π
(1−R4)2

(k+2)R2k+4

1−R4k+8 , if |k − l| = 4 and k, l > 2,

0, if |k − l| 6= 0, 4 and k, l > 2.

and d2J(Ω⋆)[cos kϕ, sin lϕ] = 0 for all k, l > 2. Consequently, the shape Hessian
is a banded matrix with coefficients exhibiting an exponential decay with respect
to higher frequencies.

Despite the fact that we have not introduced any finite dimensional approx-
imation of the minimization problem yet, we have to keep in mind exponentially
growing condition numbers of the discrete shape Hessian when increasing the
degrees of freedom. However, the shape Hessian consists of two well-posed parts,
namely the parts associated with v and w. Consequently, the numerical approx-
imation of its coefficients is not affected by this degeneration and only governed
by the discretization error of the boundary element method.
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4. Discretization

4.1. Finite dimensional approximation of boundaries

Since the infinite dimensional optimization problem cannot be solved directly,
we replace it by a finite dimensional problem. Based on polar coordinates, we
can express the smooth function r ∈ C2,α

per ([0, 2π]) by the Fourier series

r(φ) = a0 +

∞
∑

n=1

an cosnφ + a−n sin nφ.

Hence, it is reasonable to approximate the radial function by a truncated Fourier
series

rNr(φ) = a0 +

Nr
∑

n=1

an cosnφ + a−n sin nφ. (18)

If r is analytical, the Fourier series rNr converges to r exponentially in Nr, which
means that rNr is a p-approximation of r.

Since rNr admits 2Nr +1 degrees of freedom a−Nr , a1−Nr , . . . , aNr , we arrive
at a finite dimensional optimization problem in the open set

ANr := {a−Nr , a1−Nr , . . . , aNr ∈ R : rNr (φ) > 0, φ ∈ [0, 2π]} ⊂ R
2Nr+1.

Hence, via the identification rNr ⇔ ΩNr , the finite dimensional approximation
of shape minimization problem (2) reads as

J(ΩNr) → min . (19)

The associated gradients and Hessians have to be computed with respect to all
directions dr, dr1, dr2 = cosNrφ, cos(Nr − 1)φ, . . . , sin(Nr − 1)φ, sin Nrφ.

4.2. Treating the optimization problem

The minimization problem defined by (19) implies finding of its stationary points
Ω⋆

Nr

dJ(Ω⋆
Nr

)[dr] = 0 (20)

for all directions dr ∈ {cosNrφ, cos(Nr − 1)φ, . . . , sin(Nr − 1)φ, sin Nrφ}.
To solve (20), we consider on the one hand a method which is based only

on first order information, namely a quasi Newton method updated by the
inverse BFGS-rule without damping, see Gill, Murray and Wright (1982), and
Grossman and Terno (1993) for details.

On the other hand, we perform a Newton method which we regularize since
the shape Hessian is compact at the optimal domain Ω⋆. Namely, abbreviating
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the discrete gradient by Gn and the associated Hessian by Hn, we consider in
the n-th iteration step the descent direction

hn := −(H2
n + αnI)−1HnGn,

where αn > 0 is an appropriately chosen regularization parameter. This descent
direction hn solves the minimization problem

‖Hnhn − Gn‖
2 + αn‖hn‖

2 → min

and corresponds to a Tikhinov regularization of equation (20). Moreover, note
that we employ in both methods a quadratic line search with respect to the
functional (2).

4.3. Numerical method to compute the state

Given the formulas (2), (7) and (8), the functional, its gradient as well as its
Hessian can be computed from the knowledge of the boundary data of the state
equations (1) and (4). These data are given by the boundary integral equa-
tions (10)–(13). Hence, it is rather convenient to employ a boundary element
method to compute the required boundary data of the state equations. We
use a Galerkin discretization by NΦ piecewise linear functions {θΦ

i }
NΦ

i=1 on each
boundary Φ ∈ {Σ, Γ}. For Φ, Ψ ∈ {Σ, Γ}, we introduce the system matrices

VΦΨ = −
1

2π

[
∫

Ψ

∫

Φ

log ‖x − y‖θΦ
i (y)θΨ

j (x)dσydσx

]

i=1,...,NΦ, j=1,...,NΨ

,

KΦΨ =
1

2π

[
∫

Ψ

∫

Φ

〈x − y,ny〉

‖x− y‖2
θΦ

i (y)θΨ
j (x)dσydσx

]

i=1,...,NΦ, j=1,...,NΨ

,

and the mass matrices

MΦ =

[
∫

Φ

θΦ
i (x)θΦ

j (x)dσx

]

i,j=1,...,NΦ

,

and the load vectors of Dirichlet data fΦ and Neumann data gΦ

fΦ =

[
∫

Φ

θΦ
i (x)f(x)dσx

]

i=1,...,NΦ

, gΦ =

[
∫

Φ

θΦ
i (x)g(x)dσx

]

i=1,...,NΦ

.

Then, the linear system of equations
[

VΓΓ VΣΓ

VΓΣ VΣΣ

] [

aΓ

aΣ

]

=

[

1/2MΓ + KΓΓ KΣΓ

KΓΣ 1/2MΣ + KΣΣ

] [

M−1
Γ fΓ

M−1
Σ fΣ

]

, (21)

gives us the Neumann data aΓ =
∑NΓ

i=1[aΓ]iθ
Γ
i on Γ and aΣ =

∑NΣ

i=1[aΣ]iθ
Σ
i on

Σ from the Dirichlet data on Γ and Σ. Likewise, the system
[

VΓΓ −KΣΓ

−VΓΣ 1/2MΣ + KΣΣ

] [

bΓ

aΓ

]

=

[

1/2MΓ + KΓΓ −VΣΓ

−KΓΣ VΣΣ

] [

M−1
Γ gΓ

M−1
Σ fΣ

]

, (22)
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yields the Dirichlet data bΓ =
∑NΓ

i=1[bΓ]iθ
Γ
i on Γ and the Neumann data aΣ =

∑NΣ

i=1[aΣ]iθ
Σ
i on Σ from the Neumann data gΓ on Γ and the Dirichlet data fΣ

on Σ.
Observing that

∂

∂φ

∂v

∂n
= −

1
√

r2 + r′2
∂2v

∂n∂t
on Γ

due to homogeneous Dirichlet conditions at Γ, the variables
(

∂2v/(∂n∂t)
)∣

∣

Γ
and

likewise
(

∂2w/(∂n∂t)
)
∣

∣

Γ
, required for the shape Hessian, can be computed by

differentiating the piecewise linear representations of (∂v/∂n)|Γ and (∂w/∂n)|Γ,
respectively.

We mention that the appearing system matrices have to be computed only
once for each domain while the systems (21) and (22) have to be solved very often
with different right hand sides to obtain the local shape derivatives. Hence, we
recommend to use a wavelet Galerkin scheme which yields quasi sparse system
matrices. We refer to Eppler and Harbrecht (2003a, b, c, d) for more details
on the wavelet based fast solution of boundary integral equations appearing in
shape optimization.

5. Numerical results

5.1. Quasi Newton versus regularized Newton method

In our first example we consider the situation depicted in Fig. 1, i.e., we choose
the ellipse with semiaxes 0.45 and 0.3 as the domain D. The inclusion centered
in x = (0, 0)T is described by 15 Fourier coefficients. The Dirichlet data on
Σ = ∂D are chosen as f = (x2 − y2)|Σ while the Neumann data g on Σ are
computed numerically with high accuracy.

The Hessian d2J(Ω⋆)[dr1, dr2] discretized via 65 Fourier coefficients (Nr =
32) is visualized in Fig. 2. A plot of its eigenvalue distribution can be found in
Fig. 3. We mention that the first 16 eigenvalues are smaller than zero which
results from numerical roundoff errors, even though we applied NΓ = NΣ =
1024 boundary elements. The plot exhibits clearly the exponential decay of the
eigenvalues. The ℓ2-condition number of the discrete Hessian is about 109.

We employ the circle of radius 0.25 indicated by the dashed line in Fig. 4 as
the initial guess in our regularized Newton method. It turns out that setting
αn = 2−n in the n-th step of the regularized Newton method is the best choice
of the regularization parameter. Thus, in each step we reduce the regularization
parameter by the factor of 2. We observe that, similarly to multiscale methods,
in the first steps the low frequencies of the boundary are approximated while the
high frequencies are increasingly resolved during the iteration. Let us mention
that the line search prevents the divergence of the method, particularly in the
last iteration steps. The dash-dotted line in the right plot of Fig. 4 indicates
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Figure 2. Logarithmic moduli of the coefficients of the discrete Hessian
d2J(Ω⋆)[dr1, dr2].
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Figure 3. The eigenvalues of the discrete Hessian.
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the solution in the case of 33 Fourier coefficients (Nr = 16) obtained after 50
steps of the regularized Newton method using 512 boundary elements on each
boundary (NΓ = NΣ = 512). The right plot contains the solution after 50 steps
of the quasi Newton method.

Figure 4. Initial guess and final approximation of the inclusion for 33 Fourier
coefficients in case of the regularized Newton method (left) and the quasi Newton
method (right).

The progress of the minimization of the shape functional during the iteration
and the corresponding shape approximation errors measured by the ℓ2-norm
of the Fourier coefficients are plotted in Fig. 5. The solid and dashed lines
correspond to the regularized Newton and quasi Newton method, respectively.
One observes faster convergence and higher accuracy for the regularized Newton
scheme. In particular, one recognizes from the plot concerning the functional
that the objective is 2.8 · 10−3 in the case of the initial guess and 3.5 · 10−11 in
the last step.
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Figure 5. The values of the shape functional (left) and the ℓ2-norm of the shape
approximation errors (right).
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Figs. 4 and 5 confirm that the regularized Newton method computes the
given inclusion more exactly than the quasi Newton method.

5.2. Preprocessing: Detecting the barycentre

To apply the shape calculus from Subsection 2.2 for a refined resolution of the
interface, the position of the pole of the polar coordinate system has to be
detected in advance. To our experience the determination of this pole should be
combined with a first crude predetermination of the shape of the given inclusion.

From the general formula (5), for a constant shift field V ≡ a we derive the
directional derivatives

dJ [a] =

∫

Γ

〈a,n〉

[

(

∂v

∂n

)2

−

(

∂w

∂n

)2
]

dσ =

〈

a,

∫

Γ

n

[

(

∂v

∂n

)2

−

(

∂w

∂n

)2
]

dσ

〉

.

Based on these directional derivatives, the implementation of a first order opti-
mization algorithm is straightforward.

Figure 6. Approximation of the inclusion for the best fitting ball.

We choose the same setup as in the first example but consider a lengthy
inclusion centered in x = (0.1, 0), see Fig. 6. The preprocessing step performed
with the best fitting circle does not yield satisfying results since the circle is
placed too close to the right boundary, see Fig. 6 (dashed line). Neither first
nor second order optimization methods detect the left boundary if this circle is
used as initial guess for a refined resolution of the boundary (dash-dotted line).

Hence, we should consider more degrees of freedom with respect to the
boundary. To ensure that the pole is equal to the barycentre, the radial function
shall fulfill r(ϕ) = r(ϕ + π). In our experience, the best choice to get a crude
approximation of the shape is the use of periodic cubic splines. We subdivide
the interval [0, 2π) equidistantly into eight intervals and denote the smoothest
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Figure 7. Preprocessing using B-splines and final approximation using the reg-
ularized Newton method (left) and the quasi Newton method (right).

n-th 2π-periodic cardinal B-spline of order three on the given partitioning by
B3

n. The ansatz r(ϕ) =
∑8

n=1 bnB3
n(φ) yields the conditions bn = bn+4 to ensure

r(ϕ) = r(ϕ+π). Hence, we have to consider the four directions dr = B3
n +B3

n+4

in addition to the shift fields a = [1, 0]T , [0, 1]T . These are six degrees of freedom
which we minimized in the preprocessing step. The result of this preprocessing
is indicated by the dashed line in Fig. 7.

The final approximation via 33 Fourier coefficients and 30 iterations of the
regularized Newton method is presented in the left plot Fig. 7. The plot on
the right hand side shows the final approximation in case of 50 quasi Newton
iterations. Again, the regularized Newton method resolves the inclusion more
exactly, particularly the left part of its boundary. We remark that after the
45th iteration step of the regularized Newton method the ℓ2-condition number
of the Hessian is greater than 1016.

In both calculations, the preprocessing has been performed by 30 iteration
steps of a quasi Newton method updated by the inverse BFGS-rule without
damping, where the initial guess has been the circle of radius 0.1 and midpoint
(0, 0). We mention that only a few boundary elements are required for the
preprocessing. In fact, we chose NΓ = NΣ = 64. For the refined resolution of
the boundary we set αn = 2−n and NΓ = NΣ = 512.

5.3. Scaling the inclusion

In our last example we employ again the setup of the previous subsections but
consider different scaled inclusions centered in (−0.1,−0.05). The preprocess-
ing is performed like above by using B-splines and 30 quasi Newton iterations.
We iterate 30 times the regularized Newton scheme setting αn = 2−n and
NΓ = NΣ = 512. The solutions are presented in Fig. 8. As these plots con-
firm, the resolution of the boundary seems to be the more inexact the smaller
the inclusion. Nevertheless, the results confirm the stability of the regularized
Newton method.
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Figure 8. Preprocessing and final approximation by the regularized Newton
method while reducing the size of the inclusion.

Figure 9. Approximation of the inclusion by the quasi Newton method.
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Compared to the solution of the quasi Newton method, the resolution of the
inclusion is more precise. For example, in Fig. 9, the solution obtained after 50
steps of the quasi Newton method is depicted. It corresponds to the right hand
plot in the middle of Fig. 8.

6. Conclusion

The present paper is concerned with the second order methods for the identifica-
tion of voids or inclusions. The problem under consideration is well known to be
severely ill-posed. Since the shape Hessian is compact at the optimal domain,
we propose a regularized Newton method for the resolution of the inclusion.
Combined with a preprocessing step to detect the barycentre and a first crude
approximation of the inclusion, the numerical results evince that the regularized
Newton method resolves the given inclusion more exactly than the first order
methods.
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