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Abstract: We consider optimization problems with a small im-
plicitly defined feasible region, and with an objective function cor-
rupted by irregularities, e.g. small noise added to the function val-
ues. Known mathematical programming methods with high conver-
gence rate can not be applied to such problems. A hybrid technique
is developed combining random search for the feasible region of a
considered problem, and evolutionary search for the minimum over
the found region. The solution results of two test problems and of a
difficult real world problem are presented.
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1. Introduction

In a standard optimization problem

minX∈Af(X), (1)

the feasible region A ⊂ Rn is defined explicitly by equalities and/or inequalities,
and the objective function is defined not only inside but also outside of the fea-
sible region. However, in some applications there occur optimization problems
with implicitly defined feasible regions and objective functions not defined out-
side of the feasible region. The problem is especially difficult in the cases where
the feasible region A is small with respect to the known rectangular enclosure
B. An example of a problem from the oil industry of such a type is considered in
Žilinskas, Fraga, Mackute and Varoneckas (2004) and is briefly discussed below.
Let us give a formal statement of the problem. We need to find the minimum
value and a minimizer for the problem (1), where f(X) is not defined for X /∈ A,
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A ⊂ B ⊂ Rn, B = {X : bi− ≤ xi ≤ bi+}, and A itself is defined by an indicator
function I(X)

I(X) =

{

1, X ∈ A,
0, X /∈ A.

Since the region A is small with respect to B, even the finding of feasible
points is a challenging task. If a feasible point is known and the objective
function is smooth, the construction of a descent trajectory nevertheless is dif-
ficult because of difficulty to assess a qualitative measure of constrains viola-
tion. We aim to consider the problems whose objective functions are obtained
by modelling packages including solution of auxiliary problems with modest
accuracy acceptable from the engineering point of view. Therefore the non-
differentiability of the objective function should be assumed as well as other
irregularity features. For example, in the problems considered in Fraga and
Žilinskas (2003) the objective is obtained by means of computer simulation
causing discontinuous behavior and some small noise added to the function val-
ues.

The properties of the problem leave few possibilities to construct a rational
search procedure not only for a minimum but also for feasible points. However,
the following assumptions, generalizing properties of the problem, see Žilinskas,
Fraga, Mackute and Varoneckas (2004), make the situation not so hopeless.
First, we assume that the feasible region A is not disjoint. Second, we assume
the possibility to construct enclosures for A. A θ-enclosure of A, denoted Aθ,
is defined by the inclusions A ⊂ Aθ ⊂ B, 0 < θ < 1, and Aθ ⊂ Aπ , π < θ.
We assume, that A = A1, and that the ratio vol(A)/vol(B) is of the order
of 10−4 − 10−6, where vol(·) denotes hypervolume. The hypervolume of A0

constitutes about one percent of the hypervolume of B.

Examples of real world problems corresponding to the assumptions above
are typical for optimal design of some technological process which are modelled
by means of software packages allowing limited access to the implemented mod-
els. A problem related to processing raw hydrocarbon feed stock into oil and
gas products is considered below. The optimal values of some of the physical
parameters of the technological process should be found. For the given vector
of variable parameters the objective, profit of the process, is calculated using
a modelling package. The objective is calculated using the technological para-
meters, obtained via modelling the physical processes, and market data. The
package returns the objective function value in cases where the design parame-
ters are feasible, and the package returns 1020 in the cases where the design
parameters are infeasible. The reasonable intervals of the variables are known,
and they constitute the hyper-rectangle set B, however, only very small part of
B is feasible. Some quantitative data of the problem are discussed below; for
the details we refer to Žilinskas, Fraga, Mackute and Varoneckas (2004).
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2. Random search for feasible region

Because of possible irregularities, especially multimodality, of f(·), a search
technique for a global minimizer of f(·) needs a representation of the whole
feasible region A. Information on A in the considered problem may be obtained
only via points recognized as belonging to A. Therefore the aim is to construct a
sample of points uniformly distributed over A. Such a sample may be obtained
by selecting feasible points from the points generated randomly with uniform
distribution over B. However, such a brute force approach is very inefficient.

The idea of our algorithm is to use the contracting enclosures of A. Let a
sequence 0 = θ1 < θ2 < ... < θr = 1 be fixed. A sample of points uniformly
distributed over B is generated. The points belonging to Aθ1

are selected, and
their set is denoted by Z1. The size, configuration and orientation of the set
Aθ1

may be estimated by analyzing Z1. We approximate Aθ1
by the minimal

rectangular box B1 oriented along the principal coordinates of the set of points
Z1, and containing all points of Z1. Further the following three steps of the
algorithm are repeated:

• generating random uniformly distributed points over Bi,
• selecting Zi, i.e. the set of points in Aθi+1

,
• constructing the box Bi+1 oriented along the principal coordinates of Zi.

The number of reductions r, and the values of θi, i = 1, ..., r should be
chosen depending on the character of decrease of vol(Aθ)/vol(B), as well as
on the shape and hypervolume of A. Frequently, these characteristics are not
known and may only be guessed by relying on the experience and heuristic
considerations.

The motivation of the algorithm may be described in the language of evo-
lutionary computing, since the algorithm indeed was inspired by the paradigm
of evolutionary computing, see Bäck (1996), Goldberg (1989), Micvhalewich
(1996), Schwefel (1995). Assume that a phenotype characteristics of a popula-
tion correspond to B and there are no advantages for specific phenotypes. Then
a current generation of the population may be modeled by the uniform distri-
bution of random points over B irrespective of the mechanism of reproduction.
The change in environmental conditions is modeled by the sequence of values
of the parameter θ increasing towards 1. A new generation adapts to the en-
vironmental changes, i.e. individuals of the new generation, whose phenotype
does not belong to Aθ ⊂ B, die. However, all individuals whose phenotype cor-
responds to Aθ equally fit to the new conditions. Therefore, a new generation
may be modeled by the points uniformly distributed over Aθ.

In Žilinskas, Fraga, Mackute and Varoneckas (2004) a new generation is pro-
duced using an evolutionary algorithm where a vector of variables X is inter-
preted as a floating-point encoding of a chromosome. The chromosomes of the
descendants are modeled in Žilinskas, Fraga, Mackute and Varoneckas (2004)
by means of crossover. The survivable parents have higher selection probability
than the non survivable parents. However, this algorithm is slow since a large
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population should be maintained to avoid clustering of descendants around few
survivable parents representing only a small subset of Aθ. The algorithm pro-
posed in the present paper is much faster, and works well with the populations
of modest size. However, its efficiency crucially depends on the approximability
of sets Aθ by rectangular hyper boxes.

3. Evolutionary search for minimum

To search for the minimum a global optimization algorithm should be applied
because of the supposed irregularities of the objective function. The algorithms
of black box global optimization normally assume a feasible region defined by
the interval constrains, Torn and Žilinskas (1989). In the considered case the
only information on A is contained in the sample of points Zr generated by
the algorithm described in the previous section. A rectangle box approximating
A can be constructed. However, a large part of such a box would consist of
infeasible points, implying inefficiency of many global optimization algorithms.
The flexibility of the evolutionary approach allows for adapting the algorithms
modeling the natural evolution to the situation of interest. Consider the sample
Zr as the initial generation Y1 of the population. Besides the strict condition
for all generations Yi, i = 1, ..., s of the evolutionary search to belong to A, the
evolution is driven by the fitness criterion expressed via the objective function
f(X). While modeling the reproduction we are not considering the mechanism
of crossover, but rely on the fact that the descendants are similar to their par-
ents according to the general phenotype characteristics. Further, we take into
account that some properties important to the survival are obtained by learning
from the fittest individuals. The new generation is produced from the individ-
uals of the current generation and their descendants by means of a selection
procedure. The evolutionary search algorithm is defined by the following steps,
where β1 + β2 + β3 = 1, βi ≥ 0:

1. β1N descendants are generated with the uniform distribution over A
⋂

Di,
where Di is the smallest rectangular box oriented according to the princi-
pal axis of the set Yi and containing all these points; these points model the
strongly mutated descendants who do not learn from the fittest members
of the generation.

2. β2N points are generated in the neighborhoods of γ-fraction of best (with
respect to the value of f(·)) points; they model the descendants of the
fittest parents, and the descendants who become similar to the fittest
members of the generation via learning; a neighborhood of the point X is
defined as a reduced copy of Di with the center at X ,

3. β3N points are generated in the neighborhood of the best point; it is a
special case of the rule 2 corresponding to the fittest parent,

4. β1N worst points are replaced by the points generated according to rule
1 to model the dying out of the worst fitted (e.g. oldest) fraction of
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the current generation and survival of arbitrary descendants randomly
avoiding the filter of natural selection.

5. The points generated according to the rules 2 and 3 and better than the
median of criterion values for Yi replace the worst points of the part of Yi

left after applying selection rule 4; i.e. the descendants survive if they are
better than the worse half of the current population.

The rules 1–5 ensure the combination of diversity of the population with an
elitist selection. In terms of optimization it is a combination of local and global
search strategies.

4. Test examples

To illustrate the performance of the proposed algorithm we consider a problem
with an analytically defined test function and an analytically defined feasible
region. However, the formulas defining the problem are not used by the algo-
rithm. Let the objective function and the enclosures of the feasible region be
defined by the formulae

f(X) = −100(x1 + 1)2 + 121(x2 − 1)2 + 0.175617, (2)

Aθ = {X : X ∈ B ⊂ R2, 5|x1 + x2| + |x1 − x2 + 2| ≤ 2 − 1.8θ},

where A = A1 and B = {X : −2 ≤ xi ≤ 2, i = 1, 2}. The minimum
value is equal to 0 and it is attained at two points X01=(-0.9473,0.9710) and
X02=(-1.0527,1.0290); the maximum value is larger than 0.459. The algorithm
is implemented assuming B a unit hyper-cube, therefore B is re-scaled corre-
spondingly. The minimum points in new scales are (0.263167, 0.742750), and
(0.236827, 0.757259). The largest enclosure A0 constitutes approximately 5% of
B, while an estimate of the ratio vol(A)/vol(B) is equal to 0.0005; it is obtained
from 106 random trials with uniform distribution over B.

We assume that fifty uniformly distributed points can represent a not very
complicated two-dimensional region with acceptable confidence level. This as-
sumption implies the termination condition for generating the uniformly dis-
tributed points over the box Bi: it is terminated when K, the number of hits
of Aθi+1

, reaches 50. We assume that the box Bi sufficiently well approximates
Aθi

; in fact the ratio of their volumes is about 2. Assuming θ = 0.25, 0.5, 0.75,
1 we expect that the ratio of volumes of Aθi+1

and Bi will be no less than 5%.
If these assumptions are correct, then the number of trials at each stage should
be on the average less than 1000, and the search of the feasible region should
cost no more than 4000 calls of the subroutine implementing (2).

During the evolutionary search for the minimum we want to maintain infor-
mation on the whole region, and search over prospective subregions. Therefore,
the size of population at the second stage of the algorithm should be chosen
larger than for the first stage where we search for the feasible region; we have
fixed the size of population equal to 1.5 · K = 75. The following values of the
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parameters of evolutionary search have been chosen β1=0.2, β2=0.5, β3=0.3,
γ=0.2. We do not assume the properties of the problem, allowing to define
a rigorous stopping criterion. In the real world problems a solution found is
normally investigated by various methods, e.g. by means of graphical repre-
sentation, and using more subtle local models. Therefore, it does not seems
reasonable to search for a solution with a very high precision. The stopping
criterion may be defined by choosing the maximal number of trials. We assume
it is equal to 1000. The number of generations in the evolutionary search is ex-
pected to be four since several unsuccessful trials may be needed to generate a
feasible point, especially when searching in the vicinities of points on the border
of the feasible region.

The algorithm with the chosen parameters has been run 100 times. The
average number of trials was N=3563, and N1=905 of them were successful in
the sense that the targeted region was hit. The average value of the obtained
minimum evaluations was f0 = 5.3627 · 10−4, the best value was fm = 1.5206 ·
10−5. The best point was (0.2631, 0.7428). The points representing A1 and
A = A4 are shown in Fig. 1a. Fig. 1b illustrates the uniform distribution over
A of the trial points of the first generation as well as the concentration of the
trial points of the fourth generations in the vicinities of the two minimizers.

0 0.25 0.5
0.5

0.75

0.95

0.22 0.25 0.28
0.72

0.75

0.78

Figure 1. a)The points representing A1 and A for the problem (2) denoted by
(.) and (+) correspondingly; b)The trial points of the first (.) and the fourth
(+) generations of evolutionary search for the problem (2).

The accuracy of the algorithm can be enhanced by means of the increasing
K – number of points representing the feasible region; let us mention that
the increasing of K increases also the size of population in evolutionary search
equal to 1.5 ·K. For example, by increasing K two times (to K = 100) we have
obtained in 100 runs of the algorithm the average value of minimum evaluations
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equal to f0 = 4.16·10−4, and the best found value equal to fm = 7.65·10−5. The
average number of trials as well as the number of successful trials is increased
approximately two times: to N=6771 and to N1=1765 correspondingly.

The sequence of values of the parameters θ should be chosen in such a way
that the ratio of volumes of Aθi+1

and Bi is not too small, e.g. larger than 0.05.
However, the further increase of this ratio normally does not significantly en-
hance accuracy. Table 1 presents the minimization results for different sequences
θi = i/m, i = 1, ..., m.

Table 1. Influence of θi, i = 1, ..., m, on the minimization results (K = 50)

m N N1 f0 fm

3 3568 824 6.28·10−4 4.79·10−5

4 3563 905 5.36·10−4 1.52·10−5

5 3225 967 5.21·10−4 4.51·10−6

6 3205 1045 5.32·10−4 4.70·10−6

The parameters of evolutionary search β1, β2, β3 should be chosen tak-
ing into account the irregularities of the objective function. The values of the
parameters 0.2, 0.5, 0.3 above were chosen assuming irregularities of the objec-
tive function similar to those in Fraga and Žilinskas (2003), Žilinskas, Fraga,
Mackute and Varoneckas (2004), i.e. we have assumed discontinuities of the
objective function and small noise (about 1%) in its values. If it is known that
the objective function is smooth and unimodal, then the values of β1, β2 can
be reduced to make the search more local. For example, the test function (2) is
smooth, contains no noise in function values, and has two equal local minima.
Assuming these properties known, we may recommend to increase locality of
the evolutionary search. The results of Table 2 show that the increase of the
locality parameter β3 improves the accuracy of the algorithm. If the essential
irregularities of the objective function are expected then, to the contrary, the
values of β1, β2 should be increased.

Table 2. Influence of β1 and β2 on the minimization results (K = 50, β3 =
1 − β1 − β2)

β1 β2 N N1 f0 fm

0.2 0.5 3563 905 5.36·10−4 1.52·10−5

0.1 0.4 3319 888 4.56·10−4 1.46·10−5

0 0 3303 870 3.32·10−4 1.02·10−5

To test the algorithm for the case of higher dimensionality the problem (2)
is generalized as follows

f(X) = −100(x1 + 1)2 + 121

5
∑

i=2

(xi − 1)2 + 0.1756 (3)
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Aθ = {X : X ∈ B ⊂ R5, 5|x1 + x2| + |x1 − x2 + 2| ≤ 2 − 1.8θ,

−2 ≤ xi ≤ 2, i = 3, 4, 5},

where A = A1 and B = {X : −2 ≤ xi ≤ 2, i = 1, ..., 5}. We re-scale the
problem to the unit hyper cube. The minimum value of f(x), x ∈ A, is equal
to zero. There are two minimum points; two first coordinates of minimum
points are equal to those of problem (2), and the other ones are equal to 0.75.
Maximum of f(·) is bigger than 3215. The feasible region of the problem (3)
models a thin slice of the hyper cube B. Such a type of feasible region may be
expected in an industrial problem considered below. The feasible region of (3)
is oriented along some axis but this property can not bias the testing results
since that property is not used by the algorithm at all.

According to similar arguments as before we have chosen θ = 0.25, 0.5, 0.75,
1, and β1=0.2, β2=0.5, β3=0.3, γ = 0.2. However, to represent a feasible set
in the five dimensional space more points are needed; the number of 500 hits of
a targeted region and the maximal number of 10000 trials were chosen as the
termination criterion for the search for Ai, i = 1, ..., 4. Therefore the maximal
number of trials at the first stage of the algorithm can not exceed 40000. The
size of the population in evolutionary search was chosen as equal N=750, and
the maximal number of trials for evolutionary search was chosen as equal to
10000. The algorithm with the chosen parameters has been run 30 times. The
best value found in 30 runs was 0.07224, at the point (0.2669, 0.7368, 0.7482,
0.7485, 0.7520). The average of found estimates for the minimum was 0.07725.
The average number of trials was 40219 with 11833 of them successful.

The test results show that the proposed algorithm can find an acceptable
approximation of the minimum and of the minimizer in the problems with small
implicitly defined feasible regions, and the search terminates after an acceptable
number of evaluations of an objective function.

5. Application to an industrial problem

The problem of black box optimization is typical for process engineering in the
case where the physical and economical properties are modeled by software pack-
ages allowing for a limited access to the implemented models. For example, the
only output of the package is either the objective function value or an indication
that the input variables are infeasible. An optimization problem of such a type
is related to industrial processing of raw hydrocarbon feed stock into oil and gas
production, McCarthy, Fraga and Ponton (1998), Žilinskas, Fraga, Mackute and
Varoneckas (2004). The design and optimization of such a process is difficult
due to a combination of features of the process and the models used, both for
modeling the physical behavior of the process and for deriving cost estimates of
a given configuration and set of operating conditions, Žilinskas, Fraga, Mackute
and Varoneckas (2004). Input data is the flowsheet of the process and its physi-
cal parameters, as well as the requested quality parameters of the products and
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their market prices. The design variables are some of the physical parameters of
the process. For the given vector of variable parameters the objective function
value is calculated using the modeling package, see Jacaranda, Fraga, Steffens,
Bogle and Hind (2000). The objective is the profit of the process (expressed in
108 of USD), which is calculated using the parameters obtained via modeling
the physical processes, and market data. The package returns the objective
function value (profit with minus sign) for the design parameters guaranteeing
requested quality of the products. The package returns 1020 in the case where
either the process is physically impossible or product quality is not satisfac-
tory. Reasonable intervals of the variables are known, and they constitute the
hyper-rectangle set B. However, a large part of B is not feasible since the para-
meter combinations are not compatible with physical feasibility of the desired
process. An even larger part of B is not feasible because of not acceptable
product quality.

The corresponding optimization problem has five variables; the former hyper-
rectangle B is re-scaled to a unit hypercube in R5. The hypervolume of the fea-
sible region A is approximately equal to 10−4, as estimated in Žilinskas, Fraga,
Mackute and Varoneckas (2004). The set A is expected to constitute a thin slice
of the hypercube. The enclosures Aθ can be obtained by giving the model’s in-
put parameter θ a value smaller than 1, where θ=1 means quality of products
satisfying the market conditions. The decrease of the volume of Aθ is nearly
linear for 0 ≤ θ ≤ 0.8 but it is much faster when θ approaches 1, see Žilinskas,
Fraga, Mackute and Varoneckas (2004). Therefore, we choose a sequence of θ
values more densely close to 1: θ= 0.3, 0.6, 0.8, 0.9, 0.97, 1. The number of
hits of the targeted region equal to 500, and maximal number of 10000 trials
were chosen as the termination criteria for the search for Ai, i = 1, ..., 6. The
structure of the evolving population is the same as in the testing examples:
β1=0.2, β2=0.5, β3=0.3, γ=0.2. The size of the population was 750, and the
total number of calls of the modeling subroutine in the evolutionary search was
restricted by 10000. The algorithm with the chosen parameters has been run 30
times. The best value found in 30 runs was -3.246, at the point (0.8027, 0.5088,
0.0000, 0.8519, 0.5428). The average of the found estimates of the minimum was
-3.225. The average number of trials was 44521 with 10963 of them successful.
The average cpu time of minimization was 1030 sec. using a 700 MHz Pentium
computer with 256MB of RAM.

The projections of points representing the first and the last generations of
the evolving population illustrate the rationality of the search strategy starting
with uniform covering of the region and concentrating the search in prospective
subregion while the search progresses; see Fig. 2. The candidate solutions found
in different runs are sufficiently close to the best known approximation to the
global minimum.
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Figure 2. An illustration of the evolutionary search in the problem of optimal
design; the projections of the trial points of the first (.) and of the fourth (+)
generations on the plane x1 − x2 and x3 − x4.

6. Conclusions

A new method is proposed to solve the optimization problems with small im-
plicitly defined regions. The testing results demonstrate the applicability of the
developed algorithm to solve the problems with very small feasible regions in
acceptable time. The algorithm is successfully applied to solve a difficult real
world problem.

The global minima for the test problems have been found with precision
acceptable for applications, however, in the cases where some special proper-
ties of f(·) and/or A are known, more efficient special search methods can be
developed for searching in the region A represented by its points.

The proposed method gives not only an estimate of the global minimum
but also enables to draw some conclusions about the feasible region. Consider,
for example, the feasible region A of the industrial problem. The optimization
results support the hypothesis that A is a thin slice of the hypercube B. First,
some projections of A almost coincide with the projections of B as it is illustrated
by Fig. 2 where the projections of the points uniformly distributed over A are
denoted by (.). Second, we have calculated the eigenvalues of this set of points;
they are equal to (0.097, 0.066, 0.030, 0.013, 0.0055), i.e. the largest eigenvalue
is almost 20 times larger than the smallest eigenvalue.
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