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Abstract: This paper discusses a problem of recognition of
the Boolean function’s linearity. The article describes the spectral
method of analysis of incompletely specified Boolean functions using
the Walsh Transform. The linearity and nonlinearity play an impor-
tant role in design of digital circuits. The analysis of the spectral co-
efficients’ distribution allows to determine the various combinatorial
properties of the Boolean functions: redundancy, monotonicity, self-
duality, correcting capability, etc. which seems to be more difficult to
obtain by means of other methods. In particular, the distribution of
spectral coefficients allows us to determine whether Boolean function
is linear. The method described in the paper can be easily used in
investigations of large Boolean functions (of many variables), what
seems to be very attractive for modern digital technologies. Exper-
imental results demonstrate the efficiency of the approach.
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1. Introduction

Transformations between the Boolean and various spectral domains have been
extensively studied by a number authors (Ahmed, Rao, 1975; Harmuth, 1977,
Hurst et al., 1985; Karpovsky, 1976; Porwik, Falkowski, 1999). These studies
have been carried out because some problems of digital logic may be solved
more efficiently in the spectral domain than in the Boolean domain. Theoreti-
cally, techniques based on the Walsh transform provide some nice applications
such as Boolean functions’ classification, disjoint decomposition, multiplexer
and threshold logic synthesis, state assignment, testing and evaluation of logic
complexity (Hurst et al., 1985; Falkowski et al., 1992; Porwik, Falkowski, 1999).
In some cases spectral methods can be effectively applied to solve mathematical
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and practical problems (Blahut, 1983; Harmuth, 1977). One of these problems is
finding of linearity of Boolean functions by means of the Walsh-Hadamard spec-
tral technique. The classical approaches to computation of the Walsh-Hadamard
spectrum is based on the truth tables. The most effective truth table based
algorithm is the Fast Walsh-Hadamard Transform (Ahmed, Rao, 1975). Un-
fortunately, the main disadvantage of truth table based techniques is that they
cannot be used for logic functions with large numbers of variables. One way
to overcome the above difficulty is to use Decision Diagrams (DDs) to com-
pute the Walsh-Hadamard spectral coefficients (Fujita, Yang, 1995; Stanković,
Falkowski, 2002). Nowadays the most widely known are the Binary Decision
Diagrams (BDDs) for representation of switching functions.

BDDs are used in design automation for efficient representation of Boolean
functions. Such diagrams can successfully describe properties of Boolean func-
tions (Fujita, Yang, 1995; Stanković, Falkowski, 2002; Thornton, Drechsler,
2001; Yang, Ciesielski, 2002). Different BDDs (Wegener, 2000) have proved to
be very convenient data structures for majority of discrete function represen-
tations permitting manipulations and calculation with large discrete functions
efficiently in terms of space an time. Therefore they are frequently used to rep-
resent data structures in modern CAD systems. This article solves the problem
of spectral analysis for such CAD systems and for systems based on BDDs.

The theoretical and practical backgrounds proposed in this paper can be used
in the DD domain. DD structures, although often used, are difficult for hard-
ware realization, unlike spectral algorithms, which are very efficient as circuit
applications. Such hardware applications are used for example in cryptography
and data encryption (Maitra, Sarkar, 2002; Seberry, Zhang, 1994). The method
presented in this paper can be used in hardware applications as well.

The described method allows us to check whether a Boolean function (espe-
cially partially defined) is linear. This information can be obtained directly on
the basis of the Walsh coefficients. The search for linearity is especially prof-
itable for some Boolean function implementations. Such functions are impor-
tant in practical designs of, for example, adders, multipliers and parity checkers.
Linearity or nonlinearity measure is a very important feature of a Boolean func-
tion. Nowadays, some investigations of the linearity (nonlinearity) of functions
are carried out in many areas, for instance in cryptography, data encryption,
cipher, error control codes, project of the so-called s-boxes, etc. (Maitra, Sarkar,
2002; Mister, Adams, 1996; Seberry, Zhang, 1994).

2. Preliminaries

A Boolean function f of n variables x1, x2, ..., xn is a mapping {0, 1}n → {0, 1}.
The variables x1, x2, ..., xn and their complements x1, x2, ..., xn are called liter-
als.

Let Vn be a vector space of n tuples of elements from the Galois field, GF (2).
For this space there is a natural one-to-one correspondence between vectors in
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Vn and integer numbers in [0, ..., 2n−1]. It allows for the ordering of the vectors
according to their corresponding integer values. If f is a Boolean function
from Vn, then f can be expressed as a unique polynomial of n co-ordinates
x1, x2, ..., xn. For this reason f will be identified as a unique multi-variable
polynomial f(x), where x = (x1, x2, ..., xn).

Definition 2.1 An n variable Boolean function f(x1, x2, ..., xn) can be written

as
2n

−1∑

j=0

yjx
b1
1 xb2

2 ...xbn

n , where b1, b2, ..., bn ∈ {0, 1} and b1b2...bn is an n bit binary

number represented by j, xbi=0
i = xi, xbi=1

i = xi for i = 1, 2, ..., n. Then
Y = [y0, y1, ..., y2n−1], yj ∈ {0, 1} is the truth vector of f .

The true (false) set of function f , denoted by Tf (Ff ) is the collection of
the true (false) points of f , i.e. Tf = {x ∈ {0, 1}n : f(x) = 1} and Ff = {x ∈
{0, 1}n : f(x) = 0}. A term (elementary conjunction) is a conjunction of literals
of the form:

∏

i∈P

xi

∏

i∈N

xi , where P (positive) and N (negative) are disjoint subset of

{1, ..., n}.

Example 2.1 The truth vector of the three-variable Boolean function
f(x1, x2, x3) = x1x2x3+x1x2x3+x1x2x3+x1x2x3+x1x2x3 is [1, 1, 0, 1, 0, 1, 0, 1].

Definition 2.2 The Boolean function is balanced if card(Tf ) = card(Ff ).

In other words a Boolean function is balanced if it contains an equal number
of zeros and ones. In the theory of Boolean functions there exist many types
of balanced functions. For instant linear, majority, minority, self-dual functions
are balanced.

Definition 2.3 A partially defined Boolean function f is a function h : T∪F →
{0, 1} defined as

h(r) =

{
1 if r ∈ T
0 if r ∈ F

where T ⊆ {0, 1}ndenotes a set of true vectors and F ⊆ {0, 1}ndenotes a set of
false vectors. An extension of f occurs when T ⊆ Tf and F ⊆ Ff .

From Definition 2.3 it follows that the number of undefined points of f can
be calculated from the formula d = 2n − [card(Tf ) + card(Ff )]. If d = 0 then
Boolean function is fully defined.

Any partially defined Boolean function f which is undefined at k points can
be obviously extended to a fully defined form. There are 2k such forms.
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3. The spectral analysis

Spectral data are used for many applications in digital logic design. Some
of them allow function classification (Hurst et al., 1985; Porwik, 2002), fault
synthesis, signal processing (Karpovsky, 1976; Porwik, Falkowski, 1999; Sasao,
1993) etc. A Boolean function f(x1, x2, ..., xn) can be transformed from the
domain {0, 1} into the spectral domain by linear transformation H · Y = S,
where H is a 2n × 2n orthogonal transform matrix, Y = [y0, y2, ..., y2n−1]

T is
the two-valued truth vector of f(x1, x2, ..., xn), and S = [s0, s1, ..., s2n−1]

T is the
vector of spectral coefficients. In order to obtain coefficients of S type, values
{0, 1} of vector Y are, respectively, replaced by the {1,−1} values. One of
the several ways to interpret the meaning of each spectral coefficient is to view
it as a measure of correlation between two functions (vectors) (Hurst et al.,
1985; Porwik, 2000a, 2002). Hence, the first function f is a Boolean function
represented by two-valued truth vector Y and the second function is one from
the collection of constituent functions of the transformation matrix H. The
type of information that is obtained from spectral coefficients depends on the
transformation matrix. In this paper the well-known Hadamard matrices have
been used as transform matrices. It has been observed in Harmuth (1977) that
for some N , where n = log2 N , the Hadamard matrices include the discrete
Walsh functions.

Definition 3.1 The Sylvester-Hadamard (the Walsh-Hadamard) matrix of or-
der 2n is generated by the following recursive formula:

H0 = [1], Hn =

[
1 1
1 −1

]

⊗ Hn−1, n = 1, 2, .... (1)

where ⊗ denotes the Kronecker product.

The square matrix (1) can be alternatively generated on the basis of formula:

H0 = [1] ,Hn =

[
Hn−1 Hn−1

Hn−1 −Hn−1

]

. (2)

Additionally: Hn = HT
n and Hn ·HT

n = 2n · In , where In is the identity matrix
of order 2n. Because H−1

n = 1
2n HT

n the matrix Hn is orthogonal. The spec-
tral coefficients calculated on the basis of matrix (1) are the so-called Walsh’s
coefficients. This transformation is known as the Walsh-Hadamard Transform
(WHT).

Each row of the matrix Hn, created in this way, includes a discrete Walsh
sequence wal (w, t) (in other words, a discrete Walsh function). In this nota-
tion, w = 1, ..., 2n identifies the number of the Walsh function, and t = 1, ..., 2n

stands for the discrete point of the function determination interval. The rela-
tionship between Walsh’s coefficients and variables of Boolean function f can
be described as follows.
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Definition 3.2 Any Boolean function f(x1, x2, ..., xn) of n variables can be
written by means of the Walsh-Hadamard coefficients as an arithmetical poly-
nomial:

f(x1, x2, ..., xn) =
1

2n+1
[2n − s0 − s1 · (−1)xn − s2 · (−1)xn−1 −

s3 · (−1)xn⊕xn−1 ... − s2n−1 · (−1)xn⊕xn−1...⊕x1]

where: ⊕ stands for the modulo-2 addition, and s0, s1, ..., s2n−1 ∈ S are spectral
coefficients.

Each spectral coefficient si ∈ S is described by its order. The order is equal
to the number of variables describing the linear function, which corresponds to
row in the matrix Hn for a given spectral coefficient. The si elements of the
vector S are ordered according to a straight binary code of literals describing
the minterms of the original truth vector Y:

s0 Cn
0 = 1 the zero order coefficient,

si Cn
1 = n the first order coefficients, i = 1, ..., n,

sij Cn
2 the second order coefficients, ij = 12, 13, 1n, ..., (n− 1)n,

sijk Cn
3 the third order coefficients, ijk = 123, 124, ..., (n− 2)(n− 1)n,

... ...

s12...,n Cn
n = 1 the coefficient of order n.

Generally, the number of spectral coefficients of pth order is equal to Cp
n =

(
n
p

)
for p = 0, 1, ..., n.
In this notation s1234 is a spectral coefficient, which has been calculated for

a given Boolean function for input variables x1 = x2 = x3 = x4 = 1. The
s0 coefficient is directly related to the number of minterms for which Boolean
function f has the value 1. If the number of minterms which have value of 1
is denoted by a then s0 = 2n − 2a. The properties of Hn matrices and specific
distribution of spectral coefficients si can be easily applied in practice in many
investigation areas. For example in information theory, especially in the Reed-
Muller coder to form the generating matrices (Fujita, Yang, 1995).

4. Spectral description of linear Boolean function

Definition 4.1 The Boolean function fk(x1, x2, ..., xn) of n variables is called
affine if it takes the form of the polynomial: fk(x) = a1x1 ⊕ a2x2...⊕ anxn ⊕ c,

where aj , c ∈ GF (2) and k = c +
n∑

i=1

ai2
i.

In particular, if c = 0 then f is called a linear function.
In the affine Boolean functions each coefficient ai corresponds to a unique

ordering xi. Hence, the ordering set of all ai corresponds to a unique ordering
of a Boolean function.
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Corollary 4.1 (Porwik, 200b) By definition of the Walsh functions for any
affine Boolean function fk we have:

for c = 0

Yk = fk(x) =
1

2
(1− wal (w, t)),

for c = 1

Yk = fk(x) =
1

2
(1− ((−1) · wal (w, t))).

Corollary 4.1 implies that any affine Boolean function can be generated
immediately from Hadamard matrices (Porwik, 2000a, b):

for c = 0 from Hn,
for c = 1 from Hn = −1 ·Hn.

(3)

The Vn space generates 22n

different Boolean functions. This space includes
2n+1 of affine functions (Porwik, 2000b). By means of the simple Walsh-
Hadamard Transform only 2n linear functions can be found. Theorem 4.1 allows
for finding of all the affine Boolean functions in Vn space.

Theorem 4.1 (Falkowski, Porwik, 1999) Any affine Boolean function fk is
characterized by the unique Walsh-Hadamard spectrum distribution:

sx =







+2n for x = k/2 ⇔ c = 0
−2n for x = (k − 1)/2 ⇔ c = 1
0 otherwise

(4)

where: k and c have the same meaning as in Definition 4.1 and x = 0, 1, ..., 2n−
1.

Proof . Directly from the definition of the Walsh functions it is known that these
functions form the complete orthogonal system. From mutual orthogonality of
the rows of the Hadamard matrix we have:

2n
−1∑

t=0

wal (i, t) · wal(j, t)=

{
2n for i = j
0 for i 6= j.

(5)

For any Walsh function we have (Hurst et al., 1985):

2n
−1∑

t=0

wal (i, t) =

{
2n for i = 0
0 for i 6= 0

(6)

Using equations (5), (6) and Corollary 4.1 we obtain formula (4).

Hence in the proposed method, the affine Boolean function can be defined by
means of the Walsh functions (Corollary 4.1) or by means of spectral coefficients
sx ∈ S (Theorem 4.1). Thus, in order to decide whether a Boolean function is
linear it is only necessary to calculate its spectrum. If the spectrum contains
only one nonzero value, then function is affine and it has the polynomial form
(see: Definition 4.1).
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Property 4.1 The Boolean function of n variables is affine, if and only if
coefficient s0 = 0 and value of pthorder of spectral coefficient is ±2n.

Example 4.1 Table 1 includes the description of the given Boolean functions
fk=15 and fk=14. It is necessary to check whether these functions are linear.
From the analysis of spectral coefficients it follows that the spectrum includes
only one nonzero coefficient s7.

Table 1. Examples of Boolean functions and their spectra

x1x2x3 x =
n∑

i=1

xi2
n−i fk=15(x) s15

x fk=14(x) s14
x

order
of coeff.

000 0 1 0 0 0 s0

001 1 0 0 1 0 s3

010 2 0 0 1 0 s2

011 3 1 0 0 0 s23

100 4 0 0 1 0 s1

101 5 1 0 0 0 s13

110 6 1 0 0 0 s12

111 7 0 −8 1 8 s123

Hence, according to Theorem 4.1, both functions f15 and f14 are affine.
Additionally, function f14 is linear.

From Table 1 it follows that f15(x) = f14(x), and these functions can be
described by the Boolean formulas: f15(x1, x2, x3) = 1 ⊕ x1 ⊕ x2 ⊕ x3 and
f14(x1, x2, x3) = x1⊕x2⊕x3. The obtained results are consistent with Theorem
4.1 and Property 4.1.

In many cases Boolean functions are given as incompletely defined, and then
vector Y contains values {0, 1,−}, where symbol ”−” denotes the ”don’t care
minterms”. In order to obtain coefficients of S type, values {0, 1,−} of Y are
coded by {1,−1, 0}, respectively.

Theorem 4.2 An n variable Boolean function f , undefined at one point only,
can be affine if f is characterized by the Walsh-Hadamard spectrum distribution:

sx =







+1 for x = 0 → undefined point should have value 1
−1 for x = 0 → undefined point should have value 0
+(2n − 1) for x = k/2 → c = 0
−(2n − 1) for x = (k − 1)/2 → c = 1
±1 otherwise (7)

where: k has the same meaning as in Definition 4.1 and x = 0, 1, ..., 2n − 1.

Proof. The proof results immediately from Corollary 4.1 and Theorem 4.1.

It is obvious that for this case we have 2n − [card(Tf ) + card(Ff )] = 1.
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If any Boolean function f is undefined at d points, then s0 = 2n − 2a − d,
where a = card(Tf ) or in other words a is a number of places where

f(x1, x2, ..., xn) = 1

and

2n − [card(Tf ) + card(Ff )] = d.

Additionally, incompletely defined Boolean function can be completed as affine
if:

s0 =







+d then all d points should have value 1 → {−,−, ...,−
︸ ︷︷ ︸

}

d times

→ {1}

−d then all d points should have value 0 → {−,−, ...,−
︸ ︷︷ ︸

}

d times

→ {0}

6= d then d points have different values → {−,−, ...,−
︸ ︷︷ ︸

}

d times

→ {0, 1}

and max{|s1|, |s2|, ..., |s2n−1|} = |2n − d|.

If this condition holds, then f has affine extensions. Furthermore, note that
1
2
(2n−si) is equal to the Hamming distance between f and the ith affine function

if si ≥ 0 or is equal to the distance between f and the negation of the ith affine
function if si < 0. Hence, an affine extension of f is the ith row of the Hn

matrix if si = 2n − d or its negation if si = d − 2n.

Affine Boolean functions are balanced, which directly results from the prop-
erties of the Hadamard matrices Hn and Hn.

Example 4.2 Table 2 includes descriptions of Boolean functions. The function
from column 2 is fully defined. This function is linear. The rest of the functions
are incompletely defined and each of them have different undefined numbers of
points (”don’t care” minterms).

Table 2. The illustrative Boolean functions and their spectra

x1x2x3 f d=0

k=10

(x) sx f d=1

k=10

(x) sx f d=2

k=10

(x) sx

000 0 0 0 −1 0 −2
001 1 0 1 −1 1 0
010 0 0 − 1 − 0
011 1 0 1 1 1 2
100 1 0 1 −1 1 0
101 0 8 0 7 − 6
110 1 0 1 1 1 2
111 0 0 0 1 0 0
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f d=2

k=10

(x) sx f d=2

k=10

(x) sx f d=3

k=10

(x) sx

0 2 0 0 0 −1
− −2 − −2 − −1
0 0 − 2 − 1
− 0 1 0 1 1
1 2 1 0 1 1
0 6 0 6 − 5
1 0 1 2 1 3
0 0 0 0 0 −1

From Theorem 4.2 it follows that the function f d=1

k=10

can be made complete
as linear if the undefined point has the value of 1. From the obtained spectral
coefficients for the functions of type f d=2

k=10

it results that functions can be linear
if at all the undefined points the values 1 or 0 occur respectively. From Theorem
4.2 it follows that the Boolean function f d=3

k=10

can be also brought to linearity,
as shown in Table 2.

In this way any undefined Boolean function can be checked whether it can
be made complete as an affine function.

Unfortunately, the described above matrix-based method is impractical for
large n, but, as it has been shown, Boolean functions have particular properties
allowing for the modification of the methods of calculations.

5. The method of spectra calculation

The Walsh-Hadamard spectral coefficients can be calculated by means of dif-
ferent methods, like FFT-algorithms or BDDs applications (Ahmed, Rao, 1975;
Fujita, Yang, 1995; Stanković, Falkowski, 2002; Thornton, Drechsler, 2001). Re-
cently, a method to compute Walsh-Hadamard spectrum directly from the sum-
of-products (SOP) representation has been proposed. However, many practical
logic functions cannot be represented in the SOP form, because the numbers of
such products can be too large (Fujita, Yang, 1995).

Furthermore, computations, even with the fast transforms, can be addition-
ally difficult, because the truth-table of Boolean functions grows expotentially
with n. For that reason the methods based on DDs are preferred. Addition-
ally, in the DD approach, no explicit matrix product is formed, but the Walsh-
Hadamard matrix definition is explicitly embedded. In this paper fast spectrum
computation using spectral DDs (SDDs) has been used. Readers are referred to
Fujita, Yang (1995) and Thornton, Drechsler (2001) for details of SDDs proper-
ties. The CUDD tool (Somenzi, 2004) was used for the creation of the spectral
decision diagrams.

It can be observed that besides the BDDs technique, fast transforms based
on butterfly charts are still applied. Butterfly algorithms are well known, and
therefore will not be presented here. From Fujita, Yang (1995) and Stanković,
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Falkowski (2002) it follows that FFT algorithms have the same computational
complexity as the BDD techniques but only for the worst cases. In signifi-
cant number of cases BDD techniques have huge advantage. Additionally, the
main disadvantage of the FFT algorithms is that they cannot be used for logic
functions with large numbers of variables, because the main limiting factor of
spectral methods in processing of switching functions is their calculation com-
plexity. For example, the time and space complexities of FFT-like algorithms
are O(n2n) and O(2n), respectively, for Boolean functions of n variables.

One way to overcome the above difficulties is to use Spectral Decision Di-
agrams to compute Walsh-Hadamard spectral coefficients (Fujita, Yang, 1995;
Stanković, Falkowski, 2002).

For some classes of Boolean functions in order to speed up the spectra cal-
culations the Haar functions are used. For example, Karpovsky (1976) shows
that the spectral complexity of conjunction and disjunction increases with the
number of variables exponentially for the Walsh functions and only linearly for
the Haar functions. Hence, new methods of spectra calculations for various
classes of functions are still being sought.

Example 5.1 Suppose that a Boolean function is described as f = x1x2 ⊕ x3.
The truth vector of such function has the form Yf = [0, 1, 0, 1, 0, 1, 1, 0]. The
SDD and reduced SDD are shown in Fig. 1.
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Figure 1. a) Spectral Decision Diagram b) reduced SDD

According to Theorem 4.1, the analyzed function is non linear.

Let Y = [y0, y1, ..., y2n−1] be the two-valued truth vector of the function
f(x1, x2, ..., xn). From the properties of the Hadamard matrices it follows that
all of the Walsh-Hadamard spectral coefficients of a Boolean function can be



A spectral method of identification of linear Boolean function 673

calculated recursively from the equation:

Hn × [y0, y1, ..., y2n−1] = Hn[y0, y1, ..., y2n−1]
T =

[
A + B
A − B

]

(8)

where: A = Hn−1 [y0, y1, ..., y2n−1−1]
T and B = Hn−1 [y2n−1, y2n , ..., y2n−1]

T .
Formula (8) can be used to calculate the Walsh-Hadamard spectrum, because

instead of inconvenient large matrices Hn some small matrices can be used. The
described formula can be obviously easily implemented in parallel computations.
The parallel algorithms significantly accelerate computations. In these cases the
matrices Hi can be first calculated by table lookup. Additionally, by means of
formula (8) it is easy to check whether specified Boolean function is linear. In
these instances each part of the spectrum calculated by means of equation (8)
must satisfy the conditions of Theorem 4.1. Additionally, for that function we
have sA

i = |sB
i |, where sA, sB denote spectral coefficients of parts A and B,

respectively. The dependence mentioned follows from the observation that any
n-variable affine Boolean function has truth vector Y = [a, b] which can be
divided into two subvectors of the length 2n−1 such that a = b or a = b or a = b
or a = b.

Calculations described by equation (8) can be realized by means of flow chart
(Fig. 2).
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Figure 2. Butterfly diagram for spectrum computation

From (8) it follows that the complexity of this method is the same as in the
FFT algorithm. If it is necessary to check whether Boolean function is linear
(affine), then the complexity of such calculations is only O(2n), because only
the first step of the algorithm is needed. This is because after the first step
the parts of spectra are known and each of them must describe a spectrum of a
linear function.
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6. Experimental results

The computational advantages of the Walsh transform cause that it is of a
considerable interest to VLSI designers as well, therefore the time complexity of
calculating spectra is the most important factor. Computation of the spectrum
of an n variable Boolean function is a complex operation requiring, in the general
case, n2n operations of addition and subtraction and 2n memory locations.
Unfortunately, for large Boolean functions, storing and manipulating of spectral
coefficients is difficult and in some cases impossible. Many types of DDs use
very compact data structures for the representation and manipulation of large
Boolean functions.

The described above method of affine functions identification can be imple-
mented by means of SDDs. For small Boolean functions, classical Fast Walsh
Transform can be used as well. It is suitable for hardware realizations, where
matrix multiplication is simple.

The Fast Walsh-Hadamard Transform (FWHT) (Ahmed, Rao, 1975; Kar-
povsky, 1976; Porwik, 2002) and SDDs have been used and compared. Addi-
tionally, FWHT has been realized in two versions: as the classical approach
(Ahmed, Rao, 1975) and as ”butterfly diagram” (Stanković, Falkowski, 2002).
All methods have been compared by means of time measurements which were
necessary to find the Boolean function spectra and evaluate whether function
can be affine. The method based on SDDs gives good results because, accord-
ing to Theorem 4.1, information about linearity of a Boolean function can be
obtained immediately from the spectra. For a large function its SDD represen-
tation gives reduced spectra only, but as has been shown, it is sufficient for the
linearity estimation.

All experiments were performed by means of a PC computer (with Linux
operating system). The computer was equipped with AMD Duron (Morgan)
1.2GHz processor and 512 Mbyte main memory.

In experiment, spectra calculation computations times have been deter-
mined. Results of investigations are shown in Fig. 3.

From Fig. 3 it follows that the time of spectra computation by means of
the butterfly algorithm gives slightly better results when compared to the well
known FWHT method. The method presented was tested by means of a set of
standard benchmarks functions. Each benchmark was treated as a set of sepa-
rate single-output functions and tested individually. Additionally, each bench-
mark function was specially prepared to include 25% undefined (”don’t care”)
places.

The symbol #inóut indicates the number of inputs and outputs in the bench-
mark function. Column 3 in Tables 5 and 6 includes information on how many
nodes in the reduced SDD have been determined for the appropriate bench-
mark. The columns 4, 5 and 6 indicate the total time of spectra computation
and Boolean function identification. All values smaller than 0.01 are indicated
in tables as 0.00.
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Fast Walsh-Hadamard Transform

Butterfly algorithm 

Figure 3. Time of affine Boolean function search based on WHT

Table 5. Experimental results for single output functions (n < 20)

Circuit #inóut
nodes
SDD

t1[ms]
SDD

t2[ms]
FWHT

t3[ms]
Butterfly

xor5 5/1 7 0.00 0.0012 0.0008

sym10 10/1 60 0.00 0.0413 0.0232

intb (1st) 15/7 336 0.00 2.3375 1.4260

spla (4th) 16/46 155 0.08 0.8452 0.4939

t481 16/1 204 0.00 5.1387 3.7300

table5 (12th) 17/15 12526 0.02 18.6053 15.1150

in2 (2nd) 19/10 151 0.00 81.9875 62.2200

Table 6. Experimental results for large variable single output functions
(n > 20)

Benchmark #inóut
nodes
SDD

t1[s]
SDD

t2[s]
FWHT

t3[s]
Butterfly

t1 (23rd) 21/23 41 0.04 0.38740 0.31970

ts10 (1st) 22/16 100 0.01 0.80475 0.65730

in5 (5th) 24/14 743 0.00 3.28300 2.71567

chkn (1st) 29/7 152 0.01 106.79702 88.08214

b3 (2nd) 32/20 462 0.00 427.59010 339.18663

seq (29th) 41/35 121 0.04 5565.22418 4717.43246

x1 (5th) 51/35 148 0.05 memout memout

x4 (10th) 94/71 40 0.09 memout memout

apex5 (88th) 117/88 233 0.02 memout memout

apex6 (1st) 135/99 4 0.02 memout memout

frg2 (2nd) 143/139 22 0.08 memout memout
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From the results contained in Tables 5 and 6 it follows that investigation
of the Boolean function’s linearity can be carried out with the aid of different
methods, but the SDDs approach is the most profitable.

7. Conclusions

The proposed spectral method of investigation allows us to obtain fast informa-
tion about linearity of the analyzed function. The proposed method of spectral
coefficients analysis and spectra calculation can be used for any incompletely
specified Boolean functions.

In the paper, the relationship between the Walsh-Hadamard spectrum and
the incompletely defined Boolean functions has been discussed. The simple
methods for determining the linearity of incompletely defined Boolean functions
directly from their Walsh-Hadamard spectrum has been shown.

The theorems, propositions and equations presented show a new approach
which allows for determining efficiently the linear Boolean functions, especially
the incompletely defined ones. The method presented can be implemented us-
ing matrix operations and SDDs. As it has been shown, the reduced spectrum
obtained from SDD is sufficient for the Boolean function’s linearity determina-
tion, because only one spectral coefficient should be analyzed. Hence, when it
is necessary to check whether a Boolean function is linear, the test of linearity
can be carried out on the basis of the pruned part of spectra. For this reason,
linearity of very large Boolean functions can be checked.

The method described in this paper can be used in linearization of Boolean
functions, where one part of a function can be realized as linear and the sec-
ond part as nonlinear. Linearization of Boolean functions assumes representing
a given system of Boolean functions as the superposition of a system of linear
Boolean functions and a residual nonlinear part of minimal complexity. The lin-
ear block consists of XOR circuits only. For an n-variable function, complexity
(number of equivalent two-input gates) of the linear blocks increases asymptot-
ically not faster than n2/ log2 n (for n → ∞), whereas the complexity of the
nonlinear block is almost always an expotentially increasing function of n (Kar-
povsky et al., 2003). In the latter reference, unlike in the presented method,
only completely defined functions can be used. Our approach overcomes such
difficulties. Therefore, the complexity of the linear blocks may be ignored in the
linearization problems.
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