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Abstract: We consider a vector generic combinatorial optimiza-
tion problem in which initial coefficients of objective functions are
subject to perturbations. For Pareto and lexicographic principles of
efficiency we introduce appropriate measures of quality of a given
feasible solution from the point of view of its stability. These mea-
sures correspond to so-called stability and accuracy functions defined
earlier for scalar optimization problems. Then we study properties
of such functions and calculate the maximal norms of perturbations
for which an efficient solution preserves the efficiency.
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1. Introduction

Many real-life optimization models which arise in different areas, e.g. in schedul-
ing, vehicle routing, location modeling and design, must be stated as multicrite-
ria problems. Their solving consists in finding feasible decisions which provide a
compromise between multiple objectives (see e.g. Sawaragi et al., 1985, Steuer,
1986, Ehrgott, 1997). An immanent property of real-life problems is also un-
certainty of data which can be handled by different approaches, like stability
and sensitivity analysis (see e.g. Sotscov et al., 1995, 1998, Chakravarty and
Wagelmans, 1999), stochastic programming (see e.g. Kall and Wallace, 1994),
robust optimization (see e.g. Kouvelis and Yu, 1997, Ben-Tal and Nemirowski,
1998, Bertsimas and Sim, 2002) etc.
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This paper concerns stability analysis for multicriteria optimization prob-
lems. Recently we observe a growing stream of papers devoted to this direction.
Most of them concentrate on finding maximal perturbations of the problem
data, for which the optimality (efficiency) of a given solution can be preserved
(see e.g. Emelichev, 2002). An important drawback of this approach consists in
the fact that such maximal perturbations appear to be very small or, frequently,
equal to zero. Therefore it is necessary to analyze what is happening with a
particular solution in the case when data perturbations destroy its efficiency. In
that case we want to know what is the value of relative quality measure for this
solution, which can be defined in a special appropriate way depending on the
considered particular optimality principle. Such quality measures lead to the
concepts of stability and accuracy functions.

The first attempt to analyze the quality of a solution in single objective
case for facility location problem was done in Labbe’ et al. (1991). In Libura
(1999, 2000) explicit formulae of stability and accuracy functions were obtained
for scalar linear combinatorial optimization problems. These functions under
multiobjective framework were first studied in Libura and Nikulin (2003). In
this paper we present an extension of results Libura and Nikulin (2003) for the
case when the considered optimization criteria have more general forms called
Σ-MINMAX and Σ-MINMIN.

The paper is organized as follows. In Section 2 we consider vector combina-
torial optimization problem with Σ-MINMAX and Σ-MINMIN partial criteria
which consists in finding the set of Pareto optimal solutions. In analogy to
Libura and Nikulin (2003), for a given Pareto optimal solution we introduce
the relative error as a function of the norm of data perturbations. This leads
us to natural extension of the stability function and the accuracy functions for
the type of criteria we consider to the multiobjective case. We give formulae to
calculate values of both functions. Afterward, we define the so called stability
(respectively – accuracy) radius as extreme norm of perturbations of problem
parameters for which stability (accuracy) function is equal to zero. In Section 3
analogous results are stated for the case of lexicographic optimality. In this
section both functions are redefined in order to reflect specific of lexicographic
efficiency.

2. Stability and accuracy functions of Pareto optimal

solution

Let E = {e1, e2, ..., en}, n > 1, be a given set, and let T ⊆ 2E , |T | > 1, be a
family of non-empty subsets of E. Denote R+ = {u ∈ R : u > 0}. For e ∈ E
and m ≥ 1, we define

c(e) = (c1(e), c2(e), ..., cm(e)) ∈ Rm
+

and a matrix C = {ci(ej)} ∈ Rm×n
+ . Put for k ∈ N, Nk = {1, 2, ..., k} and let

for t ∈ T , N(t) = {j : ej ∈ t}.
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We will consider so-called Σ-MINMAX or Σ-MINMIN multiobjective opti-
mization problem (see e.g. Girlich et al., 1999). Namely, we want to minimize
over t ∈ T the following vector objective function:

f(C, t) = (f1(C, t), f2(C, t), ..., fm(C, t)),

where for i ∈ Nm,

fi(C, t) = max

{

∑

e∈q

ci(e) : q ⊆ t, |q| = min{|t|, ki}

}

, (1)

or

fi(C, t) = min

{

∑

e∈q

ci(e) : q ⊆ t, |q| = min{|t|, ki}

}

. (2)

Here ki, i ∈ Nm, are given a priori numbers such that for i ∈ Nm and K =
max{|t| : t ∈ T }, 1 ≤ ki ≤ K.

When ki = K, i ∈ Nm, then both functions (1) and (2) transform into a
linear objective function:

fi(C, t) =
∑

e∈t

ci(e),

which leads to the MINSUM criterion. When ki = 1, then function (1) converts
into the function

fi(C, t) = max{ci(e) : e ∈ t}

and we have a bottleneck criterion (MINMAX). Similarly, for ki = 1 function
(2) turns into

fi(C, t) = min{ci(e) : e ∈ t},

which leads to the MINMIN criterion.
Let for a matrix C ∈ Rm×n

+ and a feasible solution t ∈ T ,

π(C, t) = {t′ ∈ T : f(C, t′) ≤ f(C, t), f(C, t′) 6= f(C, t)}.

The Pareto set Pm(C) is defined in a traditional way, namely:

Pm(C) = {t ∈ T : π(C, t) = ∅}.

In other words, a feasible solution t is Pareto optimal if and only if there is
no solution t′ ∈ T such that fi(C, t′) ≤ fi(C, t) for all i ∈ Nm and at least
one strict inequality holds. If the sets E and T are fixed, then an instance of
m−criteria combinatorial optimization problem is uniquely determined by the
matrix C ∈ Rm×n

+ . Therefore, we will denote it by Zm
P (C).
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It is assumed that the set T is fixed, but the matrix of weights C may vary
or is estimated with errors. Moreover, it is assumed that for some originally
specified matrix C0 = {c0

i (ej)} ∈ Rm×n
+ we know one Pareto optimal solution

t0 ∈ T.
When coefficients of objective functions change, then an initially efficient

solution may become no longer efficient. We will evaluate the quality of this
solution from the point of view of its robustness with respect to data perturba-
tions. Namely, we will calculate for a given norm of perturbations the maximal
possible ‘inefficiency’ of this solution. The measure of this ‘inefficiency’ depends
on the optimality principle for the multiobjective problem.

In case of Pareto optimality the ‘inefficiency’ of the solution t0 ∈ Pm(C0)
for a given matrix C may be measured by the value of the relative error of this
solution:

εP (C, t0) = max
t∈T

min
i∈Nm

fi(C, t0) − fi(C, t)

fi(C, t)
≥ 0. (3)

Observe, that if t0 ∈ Pm(C), then εP (C, t0) = 0. If t0 loses Pareto optimality in
an instance problem Zm

P (C), then the relative error εP (C, t0) > 0 characterizes
the ‘inefficiency’ of t0.

The considered measure (3) is a natural analogue of the suboptimality mea-
sure of feasible solution in the scalar case. Indeed, for m=1, the Pareto set
transforms into the set of optimal solutions. Therefore relative error εP (C, t0)
converts into (see Libura, 1999):

εP (C, t0) =
f1(C, t0) − min

t∈T
f1(C, t)

min
t∈T

f1(C, t)
.

In fact, we are interested in the maximal value of the error εP (C, t0) when
the matrix C belongs to some specified set. Two particular cases are considered
in the following.

In the first case we are interested in absolute perturbations of the weights of
elements and the quality of a given solution is described by the so-called stability

function. For a given p ≥ 0 the value of the stability function is equal to the
maximal relative error of a given solution under the assumption that no weights
of elements are increased or decreased by more than p.

In the second case we deal with relative perturbations of weights. This leads
to the concept of accuracy function. The value of the accuracy function for a
given δ ∈ [0, 1) is equal to the maximum relative error of the solution t0 under
the assumption that the weights of the elements are perturbed by no more than
δ · 100% of their original values.

Let X ⊆ E be the set of non-stable elements, i.e. elements for which weights
may change, and let

C0(X) = {C ∈ Rm×n
+ : ci(ej) = c0

i (ej), ej ∈ E\X, i ∈ Nm j ∈ Nn}.



Stability and accuracy functions in multicriteria combinatorial optimization 515

For a given p ∈ [0, q(C0, X)), where q(C0, X) = min{c0
i (ej) : ej ∈ X, i ∈

Nm, j ∈ Nn}, we consider a set

Ωp(C
0, X) = {C ∈ C0(X) : |ci(ej) − c0

i (ej)| ≤ p, i ∈ Nm, j ∈ Nn}.

For a Pareto optimal solution t0 ∈ Pm(C0), an arbitrary set of non-stable
elements X, and p ∈ [0, q(C0, X)), the value of the stability function is defined
as follows:

SP (t0, X, p) = max
C∈Ωp(C0,X)

εP (C, t0).

In a similar way, for a given δ ∈ [0, 1), we consider a set

Θδ(C
0, X) = {C ∈ C0(X) : |ci(ej) − c0

i (ej)| ≤ δc0
i (ej), i ∈ Nm, j ∈ Nn}.

For a Pareto optimal solution t0 ∈ Pm(C0), an arbitrary set of non-stable
elements X and δ ∈ [0, 1), the value of the accuracy function is defined as
follows:

AP (t0, X, δ) = max
C∈Θδ(C0,X)

εP (C, t0).

Observe that SP (t0, X, p) ≥ 0 for any p ∈ [0, q(C0, X)) as well as AP (t0, X, δ)
≥ 0 for each δ ∈ [0, 1). Moreover, if we consider two initially efficient solutions
t′, t′′ ∈ Pm(C0) such that SP (t′, X, p) ≤ SP (t′′, X, p) for p ⊆ [0, q(C0, X)) or
AP (t′, X, δ) ≤ AP (t′′, X, δ) for δ ⊆ [0, 1), then the solution t′ may be regarded
as ‘at least as good’ as the solution t′′ from the stability (robustness) point of
view, because it guarantees the same or smaller ‘inefficiency’ for the considered
data perturbations.

For any t, t′ ∈ T let t ⊗ t′ = (t\t′) ∪ (t′\t). Thus |t ⊗ t′| = |(t\t′) ∪ (t′\t)| =
|t| + |t′| − 2|t ∩ t′|. Let for any t 6= t′,

∆(t, t′, X) =

{

|(t ⊗ t′) ∩ X | if i ∈ ISUM ,
min{|t ∩ X |, ki} + min{|t′ ∩ X |, ki} otherwise,

and ∆(t, t′, X)=0 if t = t′. Here ISUM = {i ∈ Nm : ki = K}.

Theorem 2.1 For an optimal solution t0 ∈ Pm(C0), an arbitrary set X of non-

stable elements, and p ∈ [0, q(C0, X)), the stability function can be expressed by

the formula:

SP (t0, X, p) = max
t∈T

min
i∈Nm

fi(C
0, t0) − fi(C

0, t) + p ∆(t, t′, X)

fi(C0, t) − p min{|t ∩ X |, ki}
. (4)

For an optimal solution t0 ∈ Pm(C0), an arbitrary set X of non-stable elements,

and δ ∈ [0, 1), the accuracy function can be described by the formula:

AP (t0, X, δ) = max
t∈T

min
i∈Nm

fi(C
0, t0) − fi(C

0, t) + δfi(C
0, (t ⊗ t0) ∩ X)

fi(C0, t) − δfi(C0, t ∩ X)
. (5)
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Proof. We will prove only (4). The proof of (5) is analogous.

SP (t0, X, p) = max
C∈Ωp(C0,X)

εP (C, t0) = max
C∈Ωp(C0,X)

max
t∈T

min
i∈Nm

fi(C, t0) − fi(C, t)

fi(C, t)
=

= max
t∈T

max
C∈Ωp(C0,X)

min
i∈Nm

fi(C, t0) − fi(C, t)

fi(C, t)
≤

≤ max
t∈T

min
i∈Nm

max
C∈Ωp(C0,X)

fi(C, t0) − fi(C, t)

fi(C, t)
.

For any fixed t ∈ T and i ∈ Nm the maximum of the ratio fi(C,t0)−fi(C,t)
fi(C,t) over

C ∈ Ωp(C
0, X) is attained when

ci(ej) =

{

c0
i (ej) + p if j ∈ N(t0 ∩ X),

c0
i (ej) − p if j ∈ N(t ∩ X).

Thus, we get

SP (t0, X, p) ≤ max
t∈T

min
i∈Nm

fi(C
0, t0) − fi(C

0, t) + p∆(t, t0, X)

fi(C0, t) − p min{|t ∩ X |, ki}
.

Now it remains to prove that

SP (t0, X, p) ≥ max
t∈T

min
i∈Nm

fi(C
0, t0) − fi(C

0, t) + p∆(t, t0, X)

fi(C0, t) − p min{|t ∩ X |, ki}
.

Consider a matrix C∗ = {c∗i (ej)} ∈ Rm×n with elements defined for any index
i ∈ Nm as follows:

c∗i (ej) =

{

c0
i (ej) + p if j ∈ N(t0 ∩ X),

c0
i (ej) − p otherwise.

Then

max
t∈T

min
i∈Nm

fi(C
∗, t0) − fi(C

∗, t)

fi(C∗, t)
= max

t∈T
min
i∈Nm

fi(C
0, t0) − fi(C

0, t) + p∆(t, t0, X)

fi(C0, t) − p min{|t ∩ X |, ki}
.

So, we have that

SP (t0, X, p) ≥ max
t∈T

min
i∈Nm

fi(C
0, t0) − fi(C

0, t) + p∆(t, t0, X)

fi(C0, t) − p min{|t ∩ X |, ki}
.

Observe that t0 is a Pareto optimal solution of Zm
P (C0) if and only if

SP (t0, X, p) = AP (t0, X, δ) = 0. So, it is of special interest to know the largest
values of p and δ, for which SP (t0, X, p) = 0 and AP (t0, X, δ) = 0, respectively.
Therefore, for any arbitrary set of non-stable elements X we will introduce the
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stability radius RS
P (t0, X) and the accuracy radius RA

P (t0, X) in the following
way:

RS
P (t0, X) = sup{p ∈ [0, q(C0, X)) : SP (t0, X, p) = 0},

RA
P (t0, X) = sup{δ ∈ [0, 1) : AP (t0, X, δ) = 0}.

Theorem 2.2 For an optimal solution t0 ∈ Pm(C0) and an arbitrary set X of

non-stable elements,

RS
P (t0, X) = min

{

q(C0, X), min
t∈T\{t0}

max
i∈Nm

fi(C
0, t) − fi(C

0, t0)

∆(t, t0, X)

}

, (6)

and

RA
P (t0, X) = min

{

1, min
t∈Tα

max
i∈Nm

fi(C
0, t) − fi(C

0, t0)

fi(C0, (t ⊗ t0) ∩ X)

}

, (7)

where Tα = {t ∈ T : fi(C
0, (t ⊗ t0) ∩ X) 6= 0 for all i ∈ Nm}.

Proof. We will prove only (6). The proof of (7) is analogous. If p = 0, then
SP (t0, X, 0) = 0. Let SP (t0, X, p) > 0. This inequality holds if and only if

max
t∈T

min
i∈Nm

fi(C
0, t0) − fi(C

0, t) + p∆(t, t0, X)

fi(C0, t) − p min{|t ∩ X |, ki}
> 0.

But the latter means that

p > p̄ = min
t∈T\{t0}

max
i∈Nm

fi(C
0, t) − fi(C

0, t0)

∆(t, t0, X)
.

Thus, if p̄ ≤ q(C0, X), then we get that SP (t0, X, p) = 0 on interval [0, p̄).
Otherwise, stability function is equal to zero on [0, q(C0, X)).

3. Stability and accuracy functions of lexicographically

optimal solution

The lexicographic optimality principle is widely spread in optimization (see e.g.
Ehrgott, 1997, Ehrgott and Gandiebleux, 2000). This principle is used, for ex-
ample, for solving stochastic programming problems and to define a priority in
complex systems which consist of different sublevels. Observe that any scalar
constrained optimization problem may be transformed to unconstrained bicrite-
ria lexicographic problem by using as first criterion some exact penalty function
for problem constrains, and an original objective function as second criterion.

In this section we will consider a variant of lexicographic optimization with
respect to all permutations of partial criteria.

Let Sm be the set of all permutations of Nm. For s = (s1, s2, ..., sm) ∈ Sm,
the binary relation ≺s of a lexicographic order is defined as follows: t ≺s t′ if
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and only if f(C, t) = f(C, t′) or there exists an index j ∈ Nm such that for all
k ∈ Nj−1 we have fsj

(C, t) < fsj
(C, t′) and fsk

(C, t) = fsk
(C, t′). Here N0 = ∅

for j = 1.
Under the vector (m-criteria) combinatorial optimization problem Zm

L (C)
we understand the problem of finding the lexicographic set Lm(C) defined in
the following way:

Lm(C) =
⋃

s∈Sm

Lm(C, s),

where

Lm(C, s) = {t ∈ T : t ≺s t′ ∀ t′ ∈ T }.

The elements of the set Lm(C) are called lexicographic optima of the problem
Zm

L (C). It is easy to see that any lexicographic optimum belongs to the Pareto
set.

For a given matrix C, we will measure the quality of t0 ∈ Lm(C0) by the
value of the relative error εL(C, t0), which is introduced as follows:

εL(C, t0) = min
i∈Nm

max
t∈T

fi(C, t0) − fi(C, t)

fi(C, t)
.

If t0 ∈ Lm(C) for any instance of problem Zm
L (C), then εL(C, t0) = 0. If t0 looses

lexicographic optimality in an Zm
L (C), then the relative error εL(C, t0) > 0

characterizes the quality of t0.
For a lexicographical optimal solution t0 ∈ Lm(C0), an arbitrary set of non-

stable elements X and p ∈ [0, q(C0, X)), the value of the stability function is
defined as follows:

SL(t0, X, p) = max
C∈Ωp(C0,X)

εL(C, t0).

Similarly, for a lexicographical optimal solution t0 ∈ Pm(C0), an arbitrary
set of non-stable elements X and δ ∈ [0, 1), the value of the accuracy function
is defined as follows:

AL(t0, X, δ) = max
C∈Θδ(C0,X)

εL(C, t0).

The two subsequent theorems provide the formulae for calculating the values
of stability and accuracy functions and corresponding radii in lexicographic case.
We will omit their proofs because they are similar to the Pareto case.

Theorem 3.1 For a lexicographical optimal solution t0 ∈ Lm(C0), an arbitrary

set X of non-stable elements, and p ∈ [0, q(C0, X)),

SL(t0, X, p) = min
i∈Nm

max
t∈T

fi(C
0, t0) − fi(C

0, t) + p∆(t, t′, X)

fi(C0, t) − p min{|t ∩ X |, ki}
.
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For a lexicographical optimal solution t0 ∈ Lm(C0), an arbitrary set X of non-

stable elements, and δ ∈ [0, 1),

AL(t0, X, δ) = min
i∈Nm

max
t∈T

fi(C
0, t0) − fi(C

0, t) + δfi(C
0, (t ⊗ t0) ∩ X)

fi(C0, t) − δfi(C0, t ∩ X)
.

By analogy, for an arbitrary set of non-stable elements X , we define the
stability radius and the accuracy radius as follows:

RS
L(t0, X) = sup

{

p ∈ [0, q(C0, X)) : SL(t0, X, p) = 0
}

,

RA
L(t0, X) = sup

{

δ ∈ [0, 1) : AL(t0, X, δ) = 0
}

.

Theorem 3.2 For a lexicographical optimal solution t0 ∈ Lm(C0) and an ar-

bitrary set of non-stable elements X

RS
L(t0, X) = min

{

q(C0, X), max
i∈Nm

min
t∈T\{t0}

fi(C
0, t) − fi(C

0, t0)

∆(t, t0, X)

}

,

RA
L(t0, X) = min

{

1, max
i∈Nm

min
t∈Tα

fi(C
0, t) − fi(C

0, t0)

fi(C0, (t ⊗ t0) ∩ X)

}

.

4. Examples

Consider the vector traveling salesman problem defined on graph G = K4. Let
the ground set E be equal to the set of all edges of G, i.e., E = {e1, e2, ..., e6}.
The set of feasible solutions T represents a family of all subsets of edges which
form the Hamiltonian cycles in the graph G. There are only three such subsets
(see Fig. 1), thus we have T = {t1, t2, t3}, where t1 = {e1, e2, e5, e6}, t2 =
{e1, e3, e4, e6}, t3 = {e2, e3, e4, e5}.

1 1 1

2 2 23 3 3

4 4 4

e e ee e e
e e e

e e e

e e ee e e

1 1 12 2 2
3 3 3

4 4 4

6 6 65 5 5

Figure 1. All Hamiltonian cycles in graph K4

We will consider 2-criteria optimization problem with the initial matrix of
weights

C0 =

[

2 1 2 3 1 2
1 3 1 1 2 2

]

.
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Assume parameters ki = 3, i = 1, 2. It means that we calculate the value of
objective function with respect to all the possible Hamiltonian paths in a given
Hamiltonian cycle. Let our partial criteria, which we want to minimize, have
the form:

f1(C, t) = max

{

∑

e∈q

c1(e) : q ⊆ t, |q| = 3

}

.

f2(C, t) = min

{

∑

e∈q

c2(e) : q ⊆ t, |q| = 3

}

.

Then f(C0, t1) = (5, 5), f(C0, t2) = (7, 3), f(C0, t3) = (6, 4), P 2(C0) =
{t1, t2, t3}. Let all elements of E be non-stable, i.e. X = E. By Theorem 2.1,
we calculate that

SP (t1, E, p) = max{0,
6p − 1

6 − 3p
,

6p − 2

7 − 3p
} =

{

0 if p ∈ [0, 1
6 ],

6p−1
6−3p

if p ∈ (1
6 , 1),

SP (t2, E, p) = max{0,
6p − 2

5 − 3p
, min{

6p + 1

6 − 3p
,

6p − 1

4 − 3p
}} =











0 if p ∈ [0, 1
6 ],

6p+1
6−3p

if p ∈ (1
6 , 5

9 ],
6p−1
4−3p

if p ∈ (5
9 , 1),

SP (t3, E, p) = max{0,
6p − 1

5 − 3p
,

6p − 1

7 − 3p
} =

{

0 if p ∈ [0, 1
6 ],

6p−1
5−3p

if p ∈ (1
6 , 1).

Observe that for any solution t1, t2, t3, the stability radius is equal to 1
6 . But

for instance, t1 is ‘better’ than t2 and t3, since SP (t1, E, p) ≤ SP (t2, E, p) and
SP (t1, E, p) ≤ SP (t3, E, p) for all p ∈ [0, 1), with strict inequalities on some
subinterval of [0, 1) (see Fig. 2).

If we consider lexicographic optimality principle, then we get L2(C0) =
{t1, t2}. By Theorem 3.1, we obtain that

SL(t1, E, p) =

{

0 if p ∈ [0, 1
6 ],

6p−1
6−3p

if p ∈ (1
6 , 1),

SL(t2, E, p) =











0 if p ∈ [0, 1
6 ],

6p−1
4−3p

if p ∈ [16 , 13
15 ],

6p+2
5−3p

if p ∈ (13
15 , 1).

We can see now that RS
L(t1, E) = RS

L(t2, E) = 1/6, whereas for p ∈ (1/6, 1),
we get SL(t1, E, p) < SL(t2, E, p) (see Fig. 3). Altogether, this implies that t1
is ‘better’ than t2.
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Figure 2. Stability functions SP (t1, E, p), SP (t2, E, p), SP (t3, E, p)
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Figure 3. Stability functions SL(t1, E, p), SL(t2, E, p)
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Now assume that the set of feasible solutions T represents a family of all sub-
sets of edges which form the Hamiltonian paths in the graph G. Thus T = {tj :
j = 1, ..., 12}, where t1 = {e1, e2, e6}, t2 = {e1, e5, e6}, t3 = {e2, e6, e5}, t4 =
{e1, e2, e5}, t5 = {e1, e3, e6}, t6 = {e2, e4, e6}, t7 = {e3, e4, e6}, t8 = {e1, e3, e4},
t9 = {e2, e3, e4}, t10 = {e2, e4, e5}, t11 = {e3, e4, e5}, t12 = {e2, e3, e5}.

We consider 2-criteria linear (MINSUM) optimization problem with the same
initial matrix of weights

C0 =

[

2 1 2 3 1 2
1 3 1 1 2 2

]

.

The partial criteria which we want to minimize with respect to all possible
Hamiltonian paths in graph G have the form:

fi(C, t) =
∑

e∈t

ci(e), i = 1, 2.

Then f(C0, t1) = (5, 6), f(C0, t2) = (5, 5), f(C0, t3) = (4, 7), f(C0, t4) = (4, 6),
f(C0, t5) = (6, 4), f(C0, t6) = (7, 4), f(C0, t7) = (7, 4), f(C0, t8) = (7, 3),
f(C0, t9) = (6, 5), f(C0, t10) = (5, 6), f(C0, t11) = (6, 4), f(C0, t12) = (4, 6). In
this case we have

P 2(C0) = {t2, t4, t5, t8, t11, t12}.

Let all elements of E be non-stable, i.e. X = E. Using Theorem 2.1, we
constructed the plots for stability functions of Pareto optimal solutions (see
Fig. 4).
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Figure 4. Stability functions SP (ti, E, p) for i = 2, 4, 5, 8, 11, 12
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It is easy to see that solution t8 is ‘the most preferable’ because it has the
largest stability radius equal to 1

2 and the stability function which dominates
almost all other stability functions. Observe that t8 does not belong to the
‘best’ Hamiltonian cycle considered earlier. If we continue our analysis we can
definitely say that solutions t4, t5, t11, t12 are non-stable, i.e. they have stability
radius equal to 0. But stability radius of t2 is equal to 1

6 and it means that t2 is
‘more preferable’ (at least inside its stability area) than t4, t5, t11, t12.

5. Conclusions

The accuracy and stability functions describe the quality of efficient solution in
the situation when coefficients in criteria are subject to uncertainty. The defi-
nitions of these functions are directly related to a specific optimality principle.
The stability and accuracy radii give us the maximum values of independent
perturbations which preserve the efficiency of a given solution.

Examples in previous section suggest that changes or inaccuracies in esti-
mating objective function coefficients may influence significantly the set of effi-
cient solutions of multicriteria combinatorial optimization problem. Moreover,
some initially efficient solutions cannot be considered ‘robust’, because very
small changes of data destroy their efficiency. Therefore, a possibility of rank-
ing initially efficient solutions from the ‘robustness’ point of view is of special
importance for a decision maker.

The simplest measure of the ‘robustness’ of the efficient solution is its sta-
bility radius or the accuracy radius. But frequently these radii are not sufficient
to rank the efficient solutions and it is necessary to calculate complementary
more general characteristics of solutions like stability and accuracy functions.

The formulae proved in the paper do not lead directly to efficient methods of
calculating the values of defined functions and radii. Nevertheless, we see some
possibility of extending to multicriteria case results of Libura (1999, 2000) and
Libura et al. (1998), which are based on subsets of so-called k-best solutions
(Hamacher and Queyranne, 1985/6).

This work was partially supported through NATO Science Fellowship grant.
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