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Abstract: In multicriteria problem solving, much can be learned
by observing the decision-making process. Some, if not many, of the
theoretical constructs used in some academically-generated models
are simply not necessary. Taking this into account, we generalize the
Zionts-Wallenius Multiple Criteria Decision Making Algorithm. We
generalize the approach so that it can solve general convex problems.
We do this by drawing from other methods, and by incorporating
what we have learned in our work. To deal with the class of convex
problems we face, we broaden the concept of tradeoff, and use global
tradeoffs. Theory is developed, and then a method incorporating the
theory is presented. A small example is included. We discuss how
our development enriches decision-making tools currently available.
We discuss applications in finance and technology.
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1. Introduction

Consider a problem for which the solution process is assisted by a facilitator or
analyst. An important question among researchers who study decision making
is how much input can reasonably be demanded from a problem’s decision maker
(DM) to help her1 identify her most preferred decision.

At one extreme, “purists” argue that the only methodologically-justified ap-
proach is to elicit from the DM her complete preference structure a priori. We
identify her criteria in the process. Then, a value (we limit ourselves to deter-
ministic problems) function consistent with the DM’s preferences is constructed.

1We use feminine pronouns throughout the paper for the decision maker.
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Assuming that there are no errors in the process, all that is needed is to de-
termine the most desirable feasible decision. Formally elegant, this approach
is impractical. Many real DMs (in contrast to DMs in simulated experiments)
cannot or may not want to reveal their value functions. Such a procedure leaves
no role for the DM to play during the selection process; it makes decision making
a black-box procedure. Also, the above approach is demanding with respect to
the extent of information required of a DM. The existence of a function, which
represents DM’s preferences, is itself a strong assumption; verification of the
function would add considerable extra effort. This approach remains an area of
theoretical interest with limited practical appeal.

An alternative to constructing a general value function is to construct a
proxy value function. One proxy value function is linear, a weighted sum of
the multiple criteria. Though the responsibility to come up with weights re-
mains with the DM, that process is simpler than it may sound. It does require
significant input of the DM.

To further relieve the DM of the burden of providing complex information
about her preferences, pair-wise comparisons of alternate decisions may be used.
In its simplest form pair-wise comparisons consist of sequentially comparing de-
cisions, each time discarding the less preferred, until all decisions have been
considered. The last remaining decision is the most preferred. A more sophis-
ticated variation is to use results of pair-wise comparisons to discard subsets
of non-explicitly considered decisions. Pair-wise comparisons fit the interactive
scheme (admit learning loop), in contract to the first two approaches, which
operate in “batch” mode. This approach is less demanding on the DM - at
successive iterations she is supposed only to choose the more preferred decision
of two.

Our general observation is that complex decision-making models and com-
plex decision-making support algorithms are less frequently used in solving prac-
tical decision problems than simple ones. This is certainly true in Multiple
Criteria Decision Making (MCDM). If the complexity of such models and/or
algorithms were weighted by the frequency of applications, then simple decision
tools would be given highest scores.

One motivation for this work is to provide a contribution to MCDM of a
potentially high score on the complexity - frequency of applications scale. To
achieve this aim we base our work on the viability of interactive MCDM methods
documented in the popular press. For example, the approach of T. Saaty in
his Analytic Hierarchy Process implemented in his Expert Choice software has
achieved great results. See, for example, his write-up in Fortune Magazine
(1999).

Our approach is to use the Zionts-Wallenius algorithm (1976, 1983) that im-
plements pair-wise comparison of decisions and uses a linear proxy value func-
tion for implicit discarding subsets of non-specifically considered decisions. The
Zionts-Wallenius algorithm distinguishes itself from other interactive methods
by explicitly specifying two ways of comparing decisions: “1. values of criteria
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of alternate decisions are compared”, and “2. tradeoffs of criteria of alternate
decisions are compared”.

The Zionts-Wallenius algorithm is designed to solve problems whose un-
derlying formal models consist of linear constraints, linear objective functions,
and pseudo-concave value functions. Our purpose is to generalize the Zionts-
Wallenius algorithm to a broader class of problems, namely to convex (as op-
posed to linear) problems. We claim that the two ways of comparing decisions
used by the Zionts-Wallenius algorithm is a significant improvement compared
with methods that only compare values of criteria. Tradeoff relations are com-
plementary to relations of values of criteria. The explicit use of tradeoffs in
decision making provides a new dimension to help differentiate between deci-
sions whenever criteria values are not useful.

In applications of the Zionts-Wallenius algorithm, tradeoffs have turned out
to be of marginal practical importance. This can be explained by the fact that
the algorithm searches only those feasible decisions represented by vertices of
a polyhedral set. In that case there is not much difference between the two
ways of comparing decisions, except for the form in which related information is
presented (tradeoffs are usually presented in the form of ratios). The situation
changes when decisions are no longer restricted to vertices; a different definition
of tradeoff and tools to calculate them are required. Appropriate extensions and
results are presented in this paper.

The need for trade-off information being exploited in MCDM has been im-
plicit in many papers. A good example of this is the paper by Makowski et
al. (1996). In solving a water management multiple criteria model, the au-
thors discovered that by slightly relaxing a constraint on water quality and
then searching the efficient frontier for alternative solutions, they were able to
find acceptable solutions with significantly reduced costs. (This may argue for
using soft constraints, rather than hard constraints.) Similar results can be
obtained using the approach we present.

Our contribution extends the well-known and widely applied Zionts-Wallenius
algorithm in two significant ways:

- allowing for more complex underlying models,
- providing for multiple ways of expressing preferences among decisions.

Our approach is an extension of a classical algorithm, which has been applied
successfully to a wide range of decision problems reported in publications. With
the notion of tradeoff we simply activate a dimension, inherently present in
multiple criteria decision making but until now restricted by the lack of simple
tools to handle it. The tool we provide is simple and imposes virtually no
additional computational burden.

An overview of the paper follows. In the next section we formulate the
problem and introduce basic concepts. In Section 3 we recall how the Zionts-
Wallenius algorithm generates improved successive trial solutions and uses a
DM’s partial preferences revealed in the course of an interactive decision process.
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In Section 4 we recall two definitions of tradeoffs and discuss their role in inter-
active MCDM. In Section 5 we show how to derive tradeoff information when
generating successive trial solutions. In Section 6 we describe the proposed
algorithm and in Section 7 we apply the algorithm to the classic portfolio se-
lection problem. Section 8 is devoted to a discussion of the applicability of our
development. Some concluding remarks are presented in Section 9.

2. Problem definition and basic concepts

A formulation of the multicriteria decision problem is as follows:

max f(x)

subject to x ∈ X0 ⊆ X, (1)

where f : X → Rk, k ≥ 2, f = (f1, f2, . . . , fk) is a vector of objective functions,
fi : X → R, i = 1, . . . , k, X0 is the set of feasible decisions (solutions), and
“max” stands for the operator of determining all efficient decisions of X0.

In what follows we shall be interested in the properties of elements f(x) of
the set f(X0). Using the notation f(x) = y and f(X0) = Z, elements y are
called outcomes and Z is called the outcome set.

Let ȳ ∈ Z. The following are commonly accepted definitions of various types
of efficiency. The outcome ȳ ∈ Z is:

weakly efficient if there is no y, y ∈ Z, such that yi > ȳi, i = 1, . . . , k,

efficient if yi > ȳi, i = 1, . . . , k, y ∈ Z, implies y = ȳ,

properly efficient if it is efficient and there exists a finite number M > 0 such
that for each i we have

yi − ȳi

ȳj − yj

≤ M

for some j such that yj < ȳj whenever y ∈ Z and yi > ȳi.

3. Handling DM preferences in the Zionts-Wallenius

algorithm

As mentioned before, the Zionts-Wallenius algorithm is applicable to MCDM
problems in which objective functions as well as constraints are linear and the
DM has an implicit pseudo-concave value function.

The algorithm directs the DM interactively towards decisions maximizing
that implicit function. The Zionts-Wallenius algorithm asks the DM to compare
adjacent efficient extreme outcomes to a trial efficient outcome, so long as an
adjacent efficient extreme outcome is sufficiently distinct from a current trial
outcome to make a comparison. The DM makes the comparison by comparing
values of criteria. If an adjacent efficient extreme outcome is not sufficiently
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distinct, the DM is asked to assess tradeoff information relevant to the current
trial outcome.

To convert a DM preference into a mechanism for generating improving
outcomes, the method generates constraints on weights in a proxy linear value
function. Let the proxy linear value function be

∑

l

λl yl. (2)

If the DM prefers the current trial outcome ytr to an adjacent outcome ya (one
that is adjacent to the trial outcome, efficient, and extreme) then the coefficients
λl should be such that

∑

l

λl ytr
l >

∑

l

λl ya
l . (3)

If ya is preferred to ytr the coefficients λl should be such that

∑

l

λl ytr
l <

∑

l

λl ya
l . (4)

If ya and ytr are not distinct enough to permit a comparison, the DM evaluates
the vector ya − ytr . If the DM likes changing the criteria in the proportion
indicated by this vector, then ya − ytr should satisfy

∑

l

λl (ya
l − ytr

l ) > 0. (5)

If she does not, then ya − ytr should satisfy

∑

l

λl (ya
l − ytr

l ) < 0. (6)

Because (5) and (6) reduce to (3) and (4), respectively, relations (3), (4)
constitute a representation of DM assessments of two different types of infor-
mation.

Vector ya − ytr is efficient (i.e. all elements of α(ya − ytr ), 0 ≤ α ≤ 1 are
efficient) and it defines point-to-point tradeoffs (see Section 4).

Constraints of the form (3) and (4) are successively added for each pair of
considered outcomes ytr , ya to constrain the set of vectors λ and to narrow the
search in the space of weights. Successive trial outcomes ytr are generated using
vectors λ from the constrained set and the linear function (2).

4. Tradeoffs

A (desirable) tradeoff is defined in the following manner by Webster’s New
World Dictionary of the English Language (Simon and Schuster, New York,



482 I. KALISZEWSKI, S. ZIONTS

1980): “It is an exchange, especially a giving up of one benefit or advantage in
order to gain another regarded as more desirable”. It is defined technically as
some specific (usually local) property of the explicit or implicit value function
(Kuhn and Tucker, 1951; Chankong and Haimes, 1979; Sakawa and Yano, 1990).
It is also a measure of the benefits and costs of moving from one scenario to
any other scenario measured by values of relative changes in objective functions
(Zionts and Wallenius, 1976, 1983; Wierzbicki, 1990; Halme, 1992; Henig and
Buchanan, 1997; Kaliszewski, 1993, 1994; Kaliszewski and Michalowski, 1994,
1995, 1997). We use the latter meaning of tradeoff.

We consider two types of tradeoffs: a point-to-point tradeoff is defined for a
selected pair of scenarios; a global tradeoff is defined for a particular outcome
ȳ of Z. A tradeoff specifies an amount by which one (or more) criterion value
increases (a gain) while another (one or more) decreases (a loss) when moving
from one outcome to another.

A point-to-point tradeoff is a tradeoff between two scenarios; it is effectively
a direction or gradient. It gives the relative change of each objective. It may
be useful to choose one of the objectives as a numeraire (or reference) and use
it as a denominator for all the others.

A global tradeoff for a given ȳ is defined as a limit of tradeoffs. It may not be
and usually is not achievable. Mathematically, it is calculated as a supremum
of all point-to-point tradeoffs defined for such pairs of outcomes ȳ, y, y ∈ Z,
that for y all components except component j have values greater or equal to
components of ȳ and for y the component j has a value less than that of ȳ. In
other words, a global tradeoff specifies the least upper bound on an increase
in one criterion relative to a unit decrease in another criterion occurring while
moving from a particular outcome in a direction where all the remaining criteria
do not decrease (see the definition of sets Z<

i (ȳ), i = 1, . . . , k, below). In what
follows we refer to a global tradeoff simply as a tradeoff. A formal definition of
tradeoff is given later in this section.

Simply calculating the supremum over all point-to-point tradeoffs (which is
the definition of a gain-to-loss ratio, Kaliszewski, 1994) is obviously not equiva-
lent to determining a tradeoff. In many instances a finite gain-to-loss ratio does
not exist whereas a tradeoff does (Kaliszewski, 1994). Therefore, a tradeoff may
be used as a universal construct to convey relative information.

In contrast to point-to-point tradeoffs which are defined by the components
of two given outcomes, determining a global tradeoff for an outcome ȳ requires
calculations that relate to outcome set Z. So far, most of the research on trade-
offs is focused on deriving or assessing tradeoffs for a given efficient outcome.
Wierzbicki (1990), Halme (1992), Henig and Buchanan (1997), and Kaliszewski
(1993, 1994) addressed this problem. The problem of generating efficient out-
comes with a priori set bounds on tradeoffs was investigated by Kaliszewski
(2000), and Kaliszewski and Michalowski (1995, 1997). In the proposed al-
gorithm we make use of a relation between weighting coefficients in a linear
scalarization (2) and bounds imposed on tradeoffs (Theorem 5.2, Section 5).
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Let ȳ ∈ Z, Z ⊆ Rk. For i = 1, . . . , k we denote:

Z<
i (ȳ) = {y ∈ Z| yi < ȳi, yl ≥ ȳl, l = 1, . . . , k, l 6= i}.

Definition 4.1 Let ȳ ∈ Z. Tradeoff T G
ij (ȳ) (the superscript G stands for

global) involving the objective functions i and j, i, j = 1, . . . , k, i 6= j is defined
as

sup
y∈Z<

j
(ȳ)

yi − ȳi

ȳj − yj

.

In other words, the tradeoff is the smallest number which bounds from above all
point-to-point tradeoffs involving a given outcome ȳ, an outcome y, y ∈ Z<

j (ȳ),
and a pair of indices.

We adopt the convention that if Z<
j (ȳ) = ∅ then T G

ij (ȳ) = −∞, i = 1, . . . , k,
i 6= j. A method of calculating tradeoffs, that avoids finding the supremum of
a hyperbolic function, was given in Kaliszewski (1993, 1994).

In contrast to other definitions of tradeoffs, we do not require in Definition
4.1 that an outcome ȳ for which a tradeoff is defined, be efficient. It is easy to
show that, if Z is convex and ȳ is not weakly efficient, then finite tradeoffs do
not exist. For non-convex outcome sets, tradeoffs can exist for outcomes which
are not weakly efficient, as demonstrated by the case of finite sets.

As we see from the above definition, a global tradeoff generally differs from
a point-to-point tradeoff. However, it is a limit, as was indicated earlier. Fig. 1
explains the role of sets Z<

• (ȳ) in Definition 4.1. Observe that the same con-
struction is valid for a set which is not polyhedral.

5. Deriving tradeoff information

If an outcome set is convex, then as shown by the following three results, we
can use a linear function to generate efficient outcomes and simultaneously elicit
relative tradeoff information.

Theorem 5.1 (Geoffrion, 1968). Assume Z is convex. An outcome ȳ ∈ Z is
properly efficient if and only if there exists a vector λ such that ȳ solves the
problem

max
y∈Z

∑

l

λl yl (7)

for some λ > 0.

The above theorem is also applicable to a more general case, in which Z is not
convex but is Rk

+-convex, i.e. Z − Rk
+ is convex, where Rk

+ is the non-negative
orthant of Rk.

As follows from the next two theorems, assessments of tradeoffs for outcomes
generated by problem (7) are available at no cost.
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Figure 1. The role of the set Z<
1 (ȳ) in Definition 4.1. For Z given as above:

a) calculation of T G
31(ȳ) is equivalent in this case to calculation of the supremum

of y3−ȳ3

ȳ1−y1

over the set {y ∈ Z | y2 − ȳ2 = 0}, the supremum exists;

b) calculation of the supremum of y3−ȳ3

ȳ1−y1

, where y3 − ȳ3 ≥ 0, ȳ1 − y1 > 0, over

Z is equivalent in this case to calculation of the supremum of y3−ȳ3

ȳ1−y1

over the set

{y ∈ Z | y2 = 0, y1 ≤ ȳ1, y3 ≥ ȳ3}, the supremum does not exist.

Theorem 5.2 (Kaliszewski, 2000). Assume Z − Rk
+ is convex. Let ȳ solve

problem (7) for some λ > 0. Then

T G
ij (ȳ) ≤

λj

λi

(8)

for all i, j = 1, . . . , k, i 6= j.

Proof. If ȳ solves (7) for some λ > 0 then
∑

l

λl yl ≤
∑

l

λl ȳl for all y ∈ Z.

Suppose y ∈ Z<
j (ȳ) for some j = 1, . . . , k. We have

∑

l 6=j

λl(yl − ȳl) ≤ λj(ȳj − yj),

λi(yi − ȳi) ≥ 0 for all i = 1, . . . , k, i 6= j,

λj(ȳj − yj) > 0.
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Hence, λi(yi−ȳi) ≤ λj(ȳj−yj) for all i = 1, . . . , k, i 6= j, and (yi−ȳi)/(ȳj−yj) ≤

λj/λi for all y ∈ Z<
j (ȳ) and i = 1, . . . , k, i 6= j. Consequently, T G

ij (ȳ) ≤ λj

λi
for

all i = 1, . . . , k, i 6= j. The same argument holds for any j = 1, . . . , k.

Theorem 5.3 Assume Z − Rk
+ is convex. If, for some λ > 0,

∑

l

λlyl is

a unique (up to a scalar multiplier) hyperplane such that

max
y∈Z

∑

l

λlyl =
∑

l

λlȳl

for some ȳ ∈ Z, then

T G
ij (ȳ) =

λj

λi

for all i, j = 1, . . . , k, i 6= j.

Proof. Since
∑

l

λlyl is a unique (up to a scalar multiplier) hyperplane such

that

max
y∈Z

∑

l

λlyl =
∑

l

λlȳl

for any λ′ > 0 such that λ′ = βλ for no scalar multiplier β, we have

∑

l

λ′
lyl >

∑

l

λ′
lȳl

for some y ∈ Z, y 6= ȳ. If y ∈ Z<
j (ȳ) then

λ′
i(yi − ȳi) > λ′

j(ȳj − yj) +
∑

l 6=i,j

λ′
l(ȳl − yl),

(yi − ȳi)/(ȳj − yj) > λ′
j/λ′

i + (
∑

l 6=i,j

(λ′
l/λ′

i)(ȳl − yl))/(ȳj − yj)

and, by Theorem 5.2,

λj/λi ≥ T G
ij (ȳ) ≥ (yi− ȳi)/(ȳj −yj) > λ′

j/λ′
i +(

∑

l 6=i,j

(λ′
l/λ′

i)(ȳl−yl))/(ȳj −yj).

The supremum of the rightmost term over y ∈ Z<
j (ȳ) and all λ′ > 0, λ′ 6= λ,

equals λj/λi, therefore

T G
ij (ȳ) =

λj

λi
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DM preferences with respect to criteria (encapsulated by the relations (3)
and (4)) define preferred outcomes as solutions of problem (7).

Similarly, DM preferences with respect to maximal admissible tradeoffs,
(captured by relations (8)) define preferred outcomes as solutions of problem
(7).

Assuming Rk
+-convexity of Z, we distinguish three classes of problem (1):

1. Z is polyhedral; this is the case addressed by the Zionts-Wallenius algo-
rithm,

2. is “Pareto-smooth”, i.e. at each efficient outcome ȳ there is exactly one
tangent hyperplane of the form

∑

l

λlyl =
∑

l

λlȳl (9)

which defines (by Theorem 5.3) all the tradeoffs

T G
ij (ȳ) =

λj

λi

, i, j = 1, . . . , k, i 6= j, (10)

3. the general case in which tangent hyperplanes (9) provide bounds on trade-
offs rather than their exact values, as stated by Theorem 5.2.

It is noteworthy that formally the function (2) is in general not a special case of
the proxy function exploited in Kaliszewski (2000). This implies that formula
(8) of Theorem 5.2 is in general not a special case of the tradeoff bounding
formula derived in Kaliszewski (2000).

6. The generalized algorithm

With Theorem 5.2 we are in a position to propose a generalization of the Zionts-
Wallenius algorithm. The generalized algorithm applies to cases in which the
outcome set is Rk

+-convex and the concept of “adjacent vertices” does not ap-
ply. It is composed of two basic elements, namely a method for elicitation and
handling DM preferences with respect to absolute information, based on The-
orem 5.1, and a method for handling DM preferences with respect to relative
information, based on Theorem 5.2.

Any relation (3) or (4) set by the DM to express her preferences relating to
criteria indirectly establishes, in the light of Theorem 5.2, bounds on tradeoffs
of preferred outcomes. Vice-versa, any bound set by the DM on tradeoffs in the
form

λs

λt

≤ bst for some s, t = 1, . . . , k, s 6= t, (11)

and a resulting selection of values λi, i = 1, . . . , k, satisfying that bound, indi-
rectly form a preference structure with respect to criteria. In this way the two
decision-making paradigms (i.e. absolute information paradigm versus relative
information paradigm) interrelate.
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It is up to the DM to follow these paradigms. She can even stick to both
paradigms. If she treats them independently, there is the possibility of incon-
sistency. It is obvious that the DM has to make one of the paradigms a leading
paradigm; otherwise she must compromise. At least, at each step of a decision
making process, the DM can be informed as to how her priority paradigm relates
to its complement.

In our generalized approach, for each outcome, tradeoffs can be calculated
(Henig, Buchanan, 1997; Kaliszewski, 1994) or, if calculations turn out to be
too expensive, approximated. In the algorithm the decision maker responds
to questions regarding whether she likes or dislikes tradeoffs. By doing so,
by virtue of Theorem 5.2, she provides bounds on the weights in the proxy
value function. The rationale for doing so is as follows. Large tradeoffs for
an outcome (similar to large values of point-to-point tradeoffs in the Zionts-
Wallenius algorithm) mean that some other outcome can be more attractive
than the given outcome. (A “large” gain in one criterion can be achieved by a
“small” loss in another at no loss in the remaining criteria). Hence, outcomes
with limited tradeoffs (and consequently, with limited point-to-point tradeoffs)
are potential candidates for “the most preferred” outcome. The argument given
here is purely qualitative. The above argument in a broader decision making
context was originally presented in Kaliszewski and Michalowski (1999).

The proposed algorithm GIDMA-Convex (Generalized Interactive Decision
Making Algorithm-Convex) is as follows.

GIDMA-Convex

1. Find an efficient trial outcome ytr .
2. Derive a set of reference outcomes {yref }.
3. Ask the DM to evaluate each pair yref , ytr in terms of yi, i = 1, . . . , k,

and to express her preferences; ask the DM to evaluate ytr in terms of
(maximal) tradeoffs and to express her preferences.

4. Derive an outcome y satisfying preferences defined in Step 3. Define it as
ytr . Go to Step 2.

Now we shall discuss the steps of GIDMA-Convex algorithm in more detail.
1. The algorithm makes use of (7) to generate efficient outcomes. The vector

λ should be specified to provide a good starting outcome. If we do not
have a suitable starting set of weights, a vector with all components equal
(provided that objectives have first been scaled) may be used.

2. We derive reference outcomes using vectors λ from the preference set
(which is built by successive constraints of the type (3), (4), or (11); at
the beginning this set is composed of all vectors λ > 0), and problem (7).
These can be generated using a well-dispersed set of weights according to
the approach of Steuer (1986).

3. In this step the DM is free to express her preferences with respect to values
of the components of y, tradeoffs, or both. In the first and third case she is
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supplied with a small number of reference outcomes to compare with the
current ytr . As an alternative, outcomes ytr and yref from the previous
iterations which satisfy the current preferences with respect to values of
components and tradeoffs can be also used as reference outcomes (we do
not exploit this alternative in the numerical example of Section 7).

DM preferences with respect to values of the components of y are ex-
pressed by constraints of type (3), or (4), one for each trial outcome.

If the DM chooses to refer to tradeoffs, she can evaluate exact tradeoffs
for ytr (which have to be calculated) or evaluate bounds on tradeoffs
resulting from vectors λ used to derive ytr . On the basis of the analysis,
she sets bounds on tradeoffs that trial solutions should satisfy at the next
step.

DM preferences with respect to tradeoffs are expressed in the form of
condition (11) which constrain the selection of vectors λ from the prefer-
ence set.

The DM can be supplied with additional information on what is the
least bound on tradeoffs for outcomes generated with vectors λ from the
current preference set. If this bound is too large, the preference set can
be further constrained.

The DM can also be supplied with such information as the maximal
values of selected criteria for outcomes generated with vectors λ from
the current preference set. If the DM is not satisfied with the maximal
values, then she may relax some constraints of the preference set to get a
larger maximum. As a result, DM preferences previously revealed may be
modified.

4. To derive trial outcomes, vectors λ are selected from the preference set.
Though we do not propose a method, we might use a middlemost set
according to a scheme of Köksalan et al. (1984), by finding the set of
weights farthest from the nearest constraint. Given a set of λ’s, we then
generate an outcome by solving problem (7).

The DM is therefore able to express her preferences following two distinct
decision making paradigms. She is absolutely free to structure a hierarchy of
the paradigms, with the option of changing her hierarchy in the course of a
decision process. She may also decide to put more or less relative stress on one
paradigm, and even to ignore (possibly temporarily) one of the paradigms at
any stage of the process.

The algorithm proposed by Roy and Wallenius (Roy, Wallenius, 1991, 1992)
is also an extension of the Zionts-Wallenius algorithm. Elaborating on the con-
cept of basic and nonbasic variables, Roy and Wallenius were able to expand
the simplex method framework to nonlinear (mainly convex) multiple criteria
programming. Consequently, the number of tradeoffs to be considered in their
approach is at most n−m (only efficient tradeoffs are to be considered), where
n is the number of variables and m the number of equality constraints. To make
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the approach operational, in addition to convexity/concavity requirements, com-
plex differentiability assumptions must apply.

In contrast, in the present paper we operate only in the criteria space. Ac-
cordingly, the concepts of basic and non-basic variables are not appropriate.
The methodology we propose relies only on a relationship between criteria over
the outcome set. As a consequence, the number of tradeoffs to be considered is
at most k×(k−1), where k is the number of criteria. Moreover, since we do not
exploit variable-criteria relations, and no assumption except Rk

+-convexity of the
outcome set is made, our approach is conceptually, technically, and practically
less complex than that proposed by Roy and Wallenius.

Let us now consider the question of convergence. The convergence of the
Zionts-Wallenius method relies on successively adding constraints (3) or (4)
which shrink the set of weights (the preference set). The same principle applies
to the Roy and Wallenius algorithm, as well as to the algorithm of Dell and
Karwan (Dell, Karwan, 1990), another major extension of the Zionts-Wallenius
algorithm. The practical stopping rule is DM’s inability to distinguish between
two successive outcomes.

Since the Zionts-Wallenius algorithm and Roy-Wallenius algorithm exploited
the polyhedral structure of the set of feasible solutions and restricted themselves
to vertex solutions only, for bounded feasible solution sets they both converge in
a finite number of steps. In both algorithms the polyhedrality of feasible solution
sets, under the condition of pseudo-concavity on DM’s implicit value function
enabled for an optimality condition. In contrast, the Dell-Karwan algorithm
produces, in principle, an infinite sequence of solutions and offers no optimality
conditions.

As in all the algorithms mentioned above, convergence of our algorithm is
ensured by shrinking the set of weights (the preference set) with constraints (3)
and (4). Constraints on weights coming from DM’s preferences with respect to
tradeoffs, provided they do not lead to inconsistency (i.e. they do not cause
the constraints on the set of weights to be inconsistent) can only strengthen
convergence of the algorithm. As with the Dell-Karwan algorithm, we provide
no optimality conditions.

No formal results on convergence ratio for interactive MCDM algorithms
can be derived in general, because the DM and her preferences constitute an
unpredictable factor. In numerical experiments reported in Zionts and Wallenius
(1983), and Dell and Karwan (1991), observed convergence was high (see also
Section 7 for a numerical example solved).

7. A numerical example

To illustrate the operation of the GIDMA-Convex algorithm, we solve a small
numerical example. Before doing this we feel it is necessary to comment on the
merits of our example.
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The mechanics of the algorithm need not be revealed to the DM. An analogy
is that of driving a car; the driver need not know the theory of internal combus-
tion engines. The DM wants a solution. She evaluates outcomes and eventually
stops the decision process; the rest is the responsibility of a facilitator. In other
words, the DM “part” of GDIM-Convex follows the generic interactive MCDM
approach, which relies on evaluating a sequence of successive feasible decisions.
An “informed” DM may wish to take some or all responsibilities of the facilita-
tor. Communication between the DM and the facilitator should be made in a
customary problem-oriented manner. The form of communication used in the
example seems to be acceptable in its specific economic context but it is by no
means indicative for a range of other possible applications.

We now illustrate the GIDMA-Convex algorithm using a simple example of
an important finance problem: the Markowitz mean-variance portfolio model.
In the model a portfolio is selected from a group of stocks to maximize a lin-
ear function of expected portfolio return and minimize portfolio variance. The
Markowitz model assumes that all capital is fully invested. By normalizing the
amount of capital to be unity, the individual stock investment is represented
as the fraction of the portfolio invested in each stock. Short sales of stock are
permitted, and are indicated as negative investments.

It is interesting to observe that the outcome set of (12) is not convex but
Rk

+-convex (see e.g. Elton, Gruber, 1995).
The model is as follows.

(maximize portfolio expected return) max

n∑

i=1

eixi

(minimize portfolio variance) min

n∑

i=1

n∑

j=1

ρijxixj (12)

(the “fully-invested” constraint)

n∑

i=1

xi = 1,

where ρij denotes the covariance matrix coefficient for the stock i and the stock
j, and ei denotes the expected return for the stock i.

In the finance literature this model is often solved using a single objective
function that minimizes variance, subject to a constraint specifying a minimal
acceptable expected return, namely:

min

n∑

i=1

n∑

j=1

ρijxixj

n∑

i=1

eixi ≥ ȳe,

n∑

i=1

xi = 1
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where ȳe is the minimum acceptable level of expected return of the portfolio.
Observe that if in the first constraint the inequality sign is changed to an

equality sign the problem can be solved analytically (see, e.g. Dahl et al., 1993)
but any constraint xi ≥ 0 prohibiting short sale of a particular stock makes this
approach invalid.

It is certainly more appropriate to solve the portfolio selection problem (12)
using two criteria. We accordingly seek a satisfactory compromise on the levels
of expected return and variance. We repeat here the argument about the ratio-
nale for using tradeoffs as preference indicators, presented in Section (6), this
time in the portfolio selection context.

If, at a given outcome, some point-to-point tradeoffs are attractive, then the
corresponding solution may not be ’the most preferred’. Solutions for which
no point-to-point tradeoff is attractive can be ’most preferred’. Consequently,
outcomes with unattractive (limited) tradeoffs are also potential candidates for
’the most preferred’ outcome.

To illustrate, we shall solve a numerical example with data taken from the
well-known “three-stock” Markowitz example (see Markowitz, 1959). However,
in contrast to the finance literature, rather than solving the problem by min-
imizing risk subject to minimal acceptable return levels, we shall solve it in
interactive manner.

We add a third objective to maximize the earnings-to-price (minimize the
price-to-earnings) ratio of the portfolio. We do this to depart from the simplicity
of two-objective problems in which sets Z<

i (ȳ) reduce to Z<
i (ȳ) = {y ∈ Z | y1 <

ȳ1, y2 ≥ ȳ2}} and Z<
2 (ȳ) = {y ∈ Z | y2 < ȳ2, y1 ≥ ȳ1}. Our third objective is

therefore to maximize:

n∑

i=1

pixi,

where pi is the reciprocal of the price-to-earnings ratio P/E of a stock, a
commonly-used finance measure of stock value. This measure enables what
is commonly called “portfolio tilting” (for an extensive survey of publications
on that topic see Ziemba, 1994).

The problem we solve below for n = 3 is small but illustrative. The algorithm
works the same for any n. The data for the example are shown below (all data,
except those for P/E, which we randomly generated, are the original Markowitz
data). There are three stocks: ATT, GM, USX, characterized by a covariance
matrix and expected returns over the investment period:

ATT GM USX
ATT .01080754 .01240721 .01307513
GM .01240721 .05839170 .05542639 Covariance matrix
USX .01307513 .05542639 .09422681

.0890833 .213667 .234583 Expected returns
0.24 0.12 0.06 E/P
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Since all objectives are to be maximized, we use the negative of variance as
an objective.

To simulate the DM’s behavior in terms of yi, i = 1, . . . , k, we assume that
her (unknown) value function is 2

f(ye, yσ) = −30y2
v + y2

e + y2
p = −30y2

−v + y2
e + y2

p,

where yv =
∑n

i=1

∑n

j=1 ρijxixj , yv = −y−v, ye =
∑n

i=1 eixi and yp =
∑n

i=1 pixi.

Given the constraint that all capital must be invested,
∑n

i=1 xi = 1, this
function attains its maximum fmax = 1.392 at ỹmax = (ỹmax

−v , ỹmax
e , ỹmax

p ) =
(−0.054, 1.240, 0.115) (xmax = (0.060, 0.737, 0.0203), where x1 corresponds to
ATT, x2 corresponds to GM, x3 corresponds to USX).

We now use the GIDMA-Convex algorithm to assist the DM in finding a
portfolio that has a satisfactory compromise on expected return, variance, and
E/P. We assume that the DM is consistent with her value function.

The steps of the algorithm with the simulated behavior of DM are as follows.
Without loss of generality we assume that λe + λ−v + λp = 1. The initial
preference set is

Λ1 = {(λ−v, λe, λp)|λ−v + λe + λp = 1, λ−v > 0, λe > 0, λp > 0}.

Additional information that may be made available to the DM at the beginning
of the process includes the following:

• the maximal y−v over efficient outcomes of Z : ymax
−v = −0.011;

• (ymax
−v , ye(y

max
−v ), yp(y

max
−v )) = (−0.011, 1.084, 0.246);

• the maximal ye over efficient outcomes of Z : ymax
e - unbounded;

• the maximal yp over efficient outcomes of Z : ymax
p - unbounded;

(The value of the DM value function at (ymax
−v , ye(y

max
−v ), yp(y

max
−v )) :

f(ymax
−v , ye(y

max
−v ), yp(y

max
−v )) = −0.003.

GIDMA-Convex

1. For λtr(1 ) = (λ−v , λe, λp) = (0.500, 0.400, 0.100) ∈ Λ1 we get a trial outcome
ytr(1 ) = (−0.044, 1.194, 0.134) (xtr(1 ) = (0.174, 0.713, 0.112)). In the example
the choices from Λi are arbitrarily chosen - we have not normalized the objectives
but they are roughly of the same magnitude. (The value of the DM value
function at ytr(1 ) : f(ytr(1 )) = 1.387 ).

Iteration 1

2. The following vectors are selected from the set Λ1 :
λref (1 ,1 ) = (0.700, 0.200, 0.100), λref (1 ,2 ) = (0.600, 0.300, 0.100), λref (1 ,3 ) =

2Observe that the algorithm follows the man-machine interactive scheme. The scheme,
one of the cornerstones of cybernetics, was proposed to account for unpredictability of man

(the DM). Consequently, no assumption on DM’s behavior is made here, and the only way to
get quantitative results is simulation.
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(0.400, 0.500, 0.100) (the first superscript index denotes the iteration number).
Solving (7) with these vectors yields

yref (1 ,1 ) = (−0.013, 1.109, 0.222) (xref (1 ,1 ) = (0.831, 0.202,−0.032)),

yref (1 ,2 ) = (−0.021, 1.145, 0.185) (xref (1 ,2 ) = (0.557, 0.415, 0.028)),

yref (1 ,3 ) = (−0.103, 1.268, 0.058) (xref (1 ,3 ) = (−0.400, 1.161, 0.239)).

(The value of the DM value function at yref (1 ,1 ), yref (1 ,2 ), yref (1 ,3 ) : f(yref (1 ,1 )) =
1.275, f(yref (1 ,2 )) = 1.332, f(yref (1 ,3 )) = 1.297).

3. Evaluation of ytr(1 ) and yref (1 ,1 ), yref (1 ,2 ), yref (1 ,3 ) in terms of y−v, ye and
yp.

The DM prefers ytr(1 ) to yref (1 ,1 ) as well as to yref (1 ,3 ) because she is not
willing to accept such a low return as represented by yref (1 ,1 ) and such a high
risk as represented by yref (1 ,3 ). By this we have

λyref (1 ,1 ) < λytr(1 ) and λyref (1 ,3 ) < λytr(1 ).

The DM is uncertain about her preference between ytr(1 ) and yref (1 ,2 ) because
they are so close in value.

Evaluation of ytr(1 ) in terms of tradeoffs

The DM states that she will not accept any outcome y as the final choice as
long as it shows T G

e,−v(y) > 2 (for such a y there is a potential to improve at
least by two units of expected return at the expense of one unit of variance at no
loss in P/E ratio) or T G

−v,e(y) > 2 (for such a y there is a potential to improve
at least by two units on variance at the expense of one unit of expected return

at no loss in P/E ratio). To comply with this requirement we set
λ−v

λe

≤ 2 and

λe

λ−v

≤ 2. The preference set is now

Λ2 = Λ1 ∪ {λ|λyref (1 ,1 ) < λytr(1 ), λyref (1 ,3 ) < λytr(1 ),
λ−v

λe

≤ 2,
λe

λ−v

≤ 2}

or

λ−v + λe + λp = 1,

0.0312λ−v − 0.085λe + 0.088λp < 0,

−0.0588λ−v + 0.074λe − 0.076λp < 0,

λ−v

λe

≤ 2,

λe

λ−v

≤ 2,

λ−v > 0, λe > 0, λp > 0,
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4. For λtr(2 ) = (λ−v , λe, λp) = (0.450, 0.377, 0.173) ∈ Λ2 we get a trial outcome
ytr(2 ) = (−0.030, 1.166, 0.167) (xtr(2 ) = (0.382, 0.646,−0.029)) (The value of
the DM value function at ytr(2 ) : f(ytr(2 )) = 1.360 ).

Iteration 2

2. The following vectors are selected from the set Λ2 :
λref (2 ,1 ) = (0.440, 0.377, 0.183), λref (2 ,2 ) = (0.550, 0.333, 0.117), λref (2 ,3 ) =
(0.600, 0.333, 0.067). Solving (7) with these vectors gives

yref (2 ,1 ) = (−0.029, 1.163, 0.170) (xref (2 ,1 ) = (0.400, 0.648,−0.048)),

yref (2 ,2 ) = (−0.025, 1.156, 0.175) (xref (2 ,2 ) = (0.472, 0.500, 0.029)),

yref (2 ,3 ) = (−0.029, 1.166, 0.162) (xref (2 ,3 ) = (0.400, 0.505, 0.095)).

(The value of the DM value function at yref (2 ,1 ), yref (2 ,2 ), yref (2 ,3 ) : f(yref (2 ,1 )) =
1.357, f(yref (2 ,2 )) = 1.348, f(yref (2 ,3 )) = 1.361).

Observe that we could use ytr(1 ) as a reference outcome for it satisfies the
current preferences with respect to values of the components and tradeoffs.
Arbitrarily, we avoid doing this.

3. Evaluation of ytr(2 ) and yref (2 ,1 ), yref (2 ,2 ), yref (2 ,3 ) in terms of y−v, ye and
yp

The DM prefers ytr(2 ) to yref (2 ,2 ) because she is not willing to accept the
low expected return represented by yref (2 ,2 ). By this we have

λ yref(2,2) < λytr(2)

The DM is uncertain about her preference among ytr(2 ), yref (2 ,1 ) and yref (2 ,3 )

in terms of values of criteria.

Evaluation of ytr(2 ) in terms of tradeoffs

For ytr(2 ) we have

T G
−v,p(y) =

0.173

0.450
= 0.38

T G
e,p(y) =

0.173

0.377
= 0.46 .

The DM decides that these numbers show a significant potential to improve
variance and expected return at the expense of P/E ratio. She also decides that
for any outcome to be considered for the final choice, it should show a lower
potential and sets T G

−v,p(y
tr(2)) ≤ 0.2 and T G

e,p(y
tr(2)) ≤ 0.2 which amounts to

constraints
λp

λ−v

≤ 0.2 and
λp

λe

≤ 0.2. The preference set is now

Λ3 = Λ2 ∪ {λ|λyref(2,2) < λytr(2),
λp

λ−v

≤ 0.2,
λp

λe

≤ 0.2}
or

λ−v + λe + λp = 1,
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0.0312λ−v − 0.085λe + 0.088λp < 0,

−0.0588λ−v + 0.074λe − 0.076λp < 0,

0.005λ−v + 0.012λe − 0.008λp < 0,

λp

λ−v

≤ 0.2,

λp

λe

≤ 0.2,

λ−v > 0, λe > 0, λp > 0.

4. For λtr(3 ) = (λ−v, λe, λp) = (0.480, 0.453, 0.067) we get a trial outcome
ytr(3 ) = (−0.070, 1.233, 0.093) (xtr(3 ) = (−0.118, 0.900, 0.217)). (The value of
the DM value function at ytr(3 ) : f(ytr(3 )) = 1.380 ).

Iteration 3

2. The following vectors are selected from the set Λ3 :
λref (3 ,1 ) = (0.420, 0.540, 0.040), λref (3 ,2 ) = (0.440, 0.480, 0.080), λref (3 ,3 ) =
(0.460, 0.460, 0.080). Solving (7) with these vectors gives

yref (3 ,1 ) = (−0.142, 1.305, 0.016) (xref (3 ,1 ) = (−0.671, 1.228, 0.383)),

yref (3 ,2 ) = (−0.087, 1.252, 0.074) (xref (3 ,2 ) = (−0.269, 1.032, 0.237)),

yref (3 ,3 ) = (−0.073, 1.237, 0.090) (xref (3 ,3 ) = (−0.149, 0.940, 0.209)).

(The value of the DM value function at
yref (3 ,1 ), yref (3 ,2 ), yref (3 ,3 ) : f(yref (3 ,1 )) = 1.099, f(yref (3 ,2 )) = 1.347,
f(yref (3 ,3 )) = 1.375).

3. Evaluation of ytr(3 ) in terms of y−v, ye and yp

The DM prefers ytr(3 ) to yref (3 ,1 ), yref (3 ,2 ) and yref (3 ,3 ) because she is not
willing to accept the high variance. We then have

λyref (3 ,1 ) < λytr(3 ),

λyref (3 ,2 ) < λytr(3 ),

λyref (3 ,3 ) < λytr(3 ).

Evaluation of ytr(3 ) in terms of tradeoffs

The full tradeoff matrix for ytr(3 ) is as follows:

−v e p

−v * T G
−v,e(y

tr(3)) = 0.944 T G
−v,p(y

tr(3)) = 0.140

e T G
e,−v(y

tr(3)) = 1.060 * T G
e,p(y

tr(3)) = 0.148

p T G
p,−v(y

tr(3)) = 7.164 T G
p,e(y

tr(3)) = 6.761 *
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DM decides that these numbers show no significant potential to improve on any
criterion relative to other criteria.

The algorithm terminates (by any stopping rule such as: DM satisfaction

with ytr(i), time limit, iteration limit, or “volume” of Λi related constraint).

This example is peculiar in that our starting outcome ytr(1 ) is extremely close
to the underlying optimal ymax (it is not true, however, for the starting solution
xtr(1 ) and the underlying optimal xmax). We had thought of changing it in such
a way that the starting solution be not so close, but decided to keep it the way
we had done it. Obviously, we were lucky. Further, the most preferred solution
xtr(3 ) may look strange, because the amounts invested in different stocks are
of markedly different magnitudes. Our solution prescribes a negative amount
of (short sells) stock number 1. Given the data, the solution gives the optimal
amounts to invest; that is all we can say. Minimum or maximum amounts for
each stock can be enforced by using additional constraints.

8. Discussion

The novelty and potential of the proposed algorithm lies in the ability to sup-
port two distinct decision paradigms in the course of an interactive decision
making process in case of Rk

+-convex outcome sets. This gives the algorithm a
new dimension absent in other classes of decision-making algorithms exploiting
principles different from the prototyping Zionts-Wallenius approach. Those two
paradigms are interrelated and we have shown how to trace their relationship
and exploit it in a decision process. Besides the prototypical Zionts-Wallenius
algorithm the same two-paradigm approach was proposed in Kaliszewski et al.
(1997), Kaliszewski, Michalowski (1999), and Kaliszewski (2000), whereas only
the last paper (Kaliszewski, 2000), can be considered as a generalization of the
Zionts-Wallenius algorithm.

In Kaliszewski (2000) an algorithm (GIDMA) was proposed in which tradeoff
information is derived from a Tchebycheff proxy value function. Similar to
formula (8) of Section 5 of this paper, the tradeoff information in Kaliszewski
(2000) is in the form of upper bounds on tradeoffs. Because there is no a priori
indicator of bound tightness (bound tightening requires additional computing
(Kaliszewski, 1994), one can consider the approach justified only if some special
case considerations do not apply.

In contrast to Kaliszewski (2000), the focal point of this paper is on the
result of Theorem 5.3 (but of course instances where tradeoff information in the
form of the inequality (8) can be provided are also covered by virtue of Theorem
5.2) which applies when the set Z − Rk

+is “smooth” (i.e. roughly speaking: it
admits no vertices). The information is exact, i.e. the bounds on tradeoffs are
tight.

A popular belief among MCDM researchers is that the vast majority of
practical applications of MCDM methodologies involve linear models (linear
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constraints, linear objective functions). It is probably time to modify this belief
and adjust it to reality. Currently more and more importance is attributed to so-
called quadratic programming models (linear constraints, quadratic and linear
objective functions) for such models can encompass risk (see classical work of
Markowitz, 1959; also Zenios, 1993; Dahl et al., 1993; Elton, Gruber, 1995).
Models involving risk have become the standard for financial industry world-
wide (Basel Capital Accord, 1988, and New Basel Capital Accord, 2004) form a
part of regulatory framework for financial institutions. As the basic principle of
investing is to maximize profit, risk is similarly to be minimized. As a result,
we have multiple criteria. Risk is captured via the notions of random variables,
variance and correlations of investments.

Financial models are routinely solved in leading banking and investment
institutions but as a rule by one-step optimization. Recently, they have be-
come accessible to individual investors via internet access to specialized service
providers. An interested reader can consult e.g. the website www.riskgrades.com,
it is noteworthy that optimization options available there are either maximiza-
tion of return under constrained risk or minimization of risk under constrained
return but nothing “in between”, not to mention interactive solving option.
These models generally have some form of mean-variance portfolio selection
model as outlined in Section 7. What we have proposed is an enrichment of
the model capabilities and model solving options. Accordingly, we need not
validate the resulting algorithm numerically. Our proposed algorithm offers a
way of enriching existing models, even for realistic-sized problems.

As with any preference capturing technique, the algorithm we propose is
particularly useful for incremental optimization problems. For example, in the
world of finance the problem of portfolio dynamic adjustment is crucial. Because
of the transaction costs, adjustments of portfolio are limited to a small subset of
total assets held in a portfolio. Limited changes to the composition of portfolio
cause limited changes in the shape of the Pareto set (this is common wisdom
based on practical observations; in theory degenerate counterexamples can be
constructed). Thus, DM’s preferences captured in the course of an interactive
decision making process can be applied in one-step incremental optimization for
a certain period of portfolio adjustments. (See Chen et al., 1971, for additional
information on portfolio revision).

Recently Fliege and Heseler (Fliege, Heseler, 2002) reported on solving bi-
criteria quadratic programming problems in connection with power generation.
A sequence of slightly modified problems is to be solved every fifteen minutes.
Each feasible solution represents a possible variant of power plant dispatch;
efficient solutions represent economically effective variants. Since problems are
to be solved so often and sets Z−Rk

+ are “smooth”, preference capture technique
offered by our algorithm can be especially attractive in this application.
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9. Concluding remarks

The relation between bounds on tradeoffs and weighting (scalarizing) parame-
ters are more general than those exploited in this paper. To generate outcomes
in problems where outcome sets are not convex, instead of linear scalariza-
tion one has to apply a Tchebycheff scalarization, see Dell, Karwan (1990),
Kaliszewski (1987, 1994, 1995), Steuer (1986), Wierzbicki (1986, 1990). Also
for Tchebycheff scalarizations relations exist between tradeoffs and scalariza-
tion parameters. Those relations can form the basis for further research on
more general algorithms for interactive decision making taking into account
more than one decision paradigm. Some results in this field were described in
papers by Kaliszewski (2000), Kaliszewski, Michalowski (1995, 1997, 1999), and
Kaliszewski et al. (1997).
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