
Control and Cybernetics

vol. 33 (2004) No. 2

Cost-efficient synthesis of multiprocessor heterogeneous
systems

by

Stanis law Deniziak

Department of Computer Engineering,
Cracow University of Technology

Warszawska 24, 31-155 Cracow, Poland
e-mail: pedenizi@cyf-kr.edu.pl

Abstract: In this paper an algorithm for co-synthesis of dis-
tributed embedded systems is presented. The algorithm is based
on iterative improvement heuristics, taking into consideration so-
phisticated modifications and possibilities of further improvements.
Starting from the solution with the highest performance, architec-
ture of the system is modified until it achieves the lowest cost. It
has been observed that the algorithm presented has the capacity of
getting out of the local minima. Experimental results showed high
efficiency of the algorithm. Almost all results obtained with the help
of the algorithm were significantly better than the results obtained
with the help of Yen-Wolf algorithm presented in the literature.

Keywords: HW/SW co-synthesis, distributed systems, SOC.

1. Introduction

In recent years Hardware/Software (HW/SW) co-synthesis has become an al-
most standard procedure for designing various types of embedded systems. The
problem of HW/SW co-synthesis, taking into consideration the cost and per-
formance objectives is illustrated in Fig. 1. The area S comprises all possible
solutions. Maximal cost (line Cx) and minimal performance (line Cy) con-
straints reduce the search space to the area S′. Solutions nearest to the point
C are the best, as far as both factors (cost and performance) are considered.
Point B′(A′) is the co-synthesis goal when only system cost (performance) is
minimised (maximised).

Distributed embedded systems are usually specified in terms of communi-
cating tasks. HW/SW co-synthesis (Gupta and De Micheli, 1993) is the process
of partitioning system specification into hardware and software processing ele-
ments connected by busses. The goal of co-synthesis is to find the best target



342 S. DENIZIAK

architecture satisfying given constraints e.g. maximal cost or minimal speed.
For many practical embedded systems, multiprocessor heterogeneous architec-
tures are the most efficient ones. Today, it is possible to implement such a
system on one chip (System On a Chip - SOC). Design reuse is widely used to
reduce time to market for SOCs. The number of available hardware and soft-
ware reusable IP (Intellectual Property) modules increases significantly every
year. The IP-based design becomes the dominating technique for SOCs, and
should be taken into account in the hardware/software co-synthesis methods,
too.

Figure 1. Search space in co-synthesis

The synthesis of multiprocessor heterogeneous systems consists of the fol-
lowing tasks:

- allocation; determines the quality and quantity of resources (processing
elements - PEs and communication links - CLs), to be used,

- assignment; determines tasks to be executed on each PE, and a CL for
each transmission,

- task scheduling; determines time of execution for each task and each trans-
mission.

Allocation, assignment and scheduling are each NP-complete and so co-synthesis
is computationally a very hard problem.

In this paper an algorithm for co-synthesis of distributed embedded systems
is presented. In this algorithm all of the co-synthesis tasks are executed si-
multaneously. Dependencies between allocation, assignment and scheduling are
taken into account. The algorithm is based on iterative improvement heuristics,
taking into consideration sophisticated modifications and possibilities of further



Cost-efficient synthesis of multiprocessor heterogeneous systems 343

improvements. Starting from the solution with the highest performance, archi-
tecture of the system is iteratively modified until it achieves the lowest cost. It
has been observed that the algorithm presented has the capacity of getting out
of the local minima as far as the system cost is concerned.

The paper is organized as follows. Next section reviews related previous
work. In Section 3 basic concepts and definitions are presented. The co-synthesis
algorithm is presented in Section 4. In Section 5 experimental results are given.
Section 6 presents the conclusions.

2. Previous work

Related work often considers one-CPU-one-ASIC (Application Specific Inte-
grated Circuit) target architectures (Gupta and De Micheli, 1993; Henkel and
Ernst,1997; Kalavade and Lee, 1995). In such approach co-synthesis is formu-
lated as a hardware/software partitioning. However, most real-life embedded
systems are distributed and heterogeneous i.e. composed of multiple general-
purpose processors, microcontrollers, digital signal processors, protocol con-
trollers, etc. Therefore, practical co-synthesis method can not be limited to
the mono-processor based systems.

Due to the complexity of co-synthesis, the algorithms giving best solutions
(e.g. mixed integer linear programming, Prakash and Parker, 1992, or exhaus-
tive exploration, D’Ambrosio and Hu, 1994) are limited to small systems, only.
Other approaches are based on constructive or iterative refinement heuristics.
Some probabilistic optimisation methods e.g. simulating annealing (Eles, Peng,
Kuchcinski, and Doboli, 1997) or genetic algorithms (Dick and Jha, 1997) have
been applied to the co-synthesis problem, as well.

Constructive algorithms (Dave, Lakshminarayana and Jha, 1997; Bianco,
Auguin and Pegatoquet, 1998; Dave and Jha, 1998) build a system allocating in-
crementally new components. Since such approach is capable of inspecting only
local effects of changes, different performance estimation methods were used to
predict the global impact of these changes. The methods, usually based on the
best- and worst-case analysis, prefer PEs with the highest speed or with the low-
est cost and disregard the remaining PEs. Although constructive algorithms are
fast and are capable of producing high quality results (Dave, Lakshminarayana
and Jha, 1997), they are prone to becoming trapped in local minima.

Iterative improvement algorithms (Yen and Wolf, 1995A,B; Hou and Wolf,
1996) start with a sub-optimal solution and try to improve the system quality
by making local changes to the system. Existing iterative algorithms also tend
to be trapped in local minima. The main reason is that iterative improvement
methods consider only local changes driven by immediate gain. In sensitivity-
driven co-synthesis algorithm (Yen and Wolf, 1995A) the movements of one
process from one PE to another PE are only considered. Allocation of a more
expensive PE that will reduce total system cost due to accommodation of more
tasks is not possible. In such cases the algorithm will be trapped in local minima.



344 S. DENIZIAK

Probabilistic optimisation algorithms are capable of escaping from local min-
ima. However, performance of these methods strongly depends on selected pa-
rameter values. For example, in the MOGAC genetic algorithm (Dick and Jha,
1997) each task graph has a different random seed for which the algorithm
finds the best solution most rapidly. On the other hand, the hardware/software
partitioning algorithms based on simulated annealing turned out to be less ef-
ficient than the iterative improvement algorithms like tabu search (Eles, Peng,
Kuchcinski and Doboli, 1997).

Recently, most of research has addressed specific problems of co-synthesis,
like multi-mode embedded systems (Oh and Ha, 2002), energy optimisation
and utilisation of dynamic voltage scalable processors (Schmitz, Al-Hashimi
and Eles, 2002), partitioning and scheduling of hierarchical specification models
(Chatha and Vemuri, 2001; Haubelt, Teich, Richter and Ernst, 2002) or condi-
tional task graphs (Eles, Kuchcinski, Peng, Doboli and Pop, 1998; Xie and Wolf,
2001), and co-synthesis for system-on-a-chip architectures (Dick and Jha, 1999).
Finding an efficient co-synthesis algorithm for distributed embedded systems is
still an open problem. First, most of existing approaches are not suitable for
large systems because of time requirements. Second, quality of results obtained
using different methods indicates that there is a lot of work to do in order to
improve the efficiency of co-synthesis algorithms.

3. Basic concepts and definitions

A task graph G = (V, E) will be used as an abstract model of system specifica-
tion. The task graph is a directed acyclic graph. Each node vi corresponds to
one task and each edge eij is associated with communication between tasks cor-
responding to nodes vi and vj . Weights dij associated with edges describe the
amount of data (in bytes) that must be transmitted between the two connected
tasks. An example of a task graph is presented on Fig. 2.

Two types of processing elements (PE ) are considered: universal programm-
able processors (PPs) and dedicated hardware cores (HCs). A PP executes all
the assigned tasks sequentially. Each HC executes exactly one task. Hardware
units which can execute more than one task are defined as PP (not HC ). In
this way hardware sharing is possible in the presented algorithm. With each
PE i the following parameters are associated:

- cost of given tasks Ci (vj),
- time of execution of given tasks Ti (vj).

Values of Ci (vj) and Ti(vj) are known for IP modules. For other tasks they can
be computed using performance and hardware effort estimation methods (Yen
and Wolf, 1998; Henkel and Ernst, 1998).

With each PE a resource type (RT ) is associated. PEs with the same RT
may be located in the same integrated circuit (IC ). With each IC i the following
parameters are associated:

- unit cost CU i,



Cost-efficient synthesis of multiprocessor heterogeneous systems 345

Figure 2. An example of a task graph

- maximal cost CM i, which defines maximal cost of all tasks mapped to
IC i.

CU i is independent of the number of tasks allocated to PE s located on the
IC i (e.g. it is a cost of PPs or a cost of PP cores). Maximal cost defines the
maximal size of the IC i.

Communication between processing elements is established using communi-
cation links (CLs). Sharing of communications links is allowed. Communication
links are treated similarly as PP . During synthesis link allocation and schedul-
ing of transmissions are performed. Each type of communication link CLi has
the following parameters:

- cost of the link CC i for each available PE type
- bandwidth bi (Bytes/s).

The time Tk (vi, vj) required for data transfers between tasks vi and vj using
communication link CLk is evaluated using the following rule:

Tk(vi, vj) =











⌈

dij

bk

⌉

− if tasks are assigned to different PEs,

0 − otherwise.

It is assumed that transmissions do not interfere with computations. Such
model of communication is most commonly used, and may be implemented



346 S. DENIZIAK

using dual-port buffers between PEs and buses or with communication using
shared memory.

Assuming that a cost is defined by the total ASIC area, the total cost of a
system may be specified using the following equation:

C =

r
∑

i=1

(CU i +
∑

M(i)

Ci (vM(i))) +

c
∑

i=1

CC i (1)

where r is the number of IC s, M(i) is the list of tasks mapped to PE s located
on IC i, and c is the number of communications links.

Illustrative values of resource parameters for task graph from Fig. 2 are
presented in Tables 1 and 2. It is assumed that technology library contains 4
types of resources (2 programmable processors and 2 ASIC technologies) and 2
types of communication links (CL2 is not available for PEs of type RT l).

Table 1. Resource parameters

PP1(RT1) PP2(RT2) HCj(RT3) HCj(RT4)
CU1 =100 CU2 =200 CU3 =500 CU4 =300PE
CM1 =30 CM2 =50 CM3 =500 CM1 =100

vi T 1(v1) C1(v1) T 2(v1) C2(v1) T 3(v1) C3(v1) T 4(v1) C4(v1)

v0 30 3 10 2 3 50 4 10

v1 50 5 20 4 6 80 5 20

v2 20 3 10 3 3 60 5 20

v3 10 3 8 1 1 20 2 5

v4 30 3 15 2 4 70 10 30

v5 50 5 30 3 5 80 5 15

v6 40 3 15 2 10 70 12 15

v7 30 3 15 2 5 50 8 18

v8 20 3 5 1 2 30 4 10

v9 10 3 5 1 3 40 4 12

Table 2. Communication link parameters

Cost
CLj

RT1 RT2 RT3 RT4

bi

CL1 2 0 10 0 8

CL2 - 0 15 8 16

4. Co-synthesis algorithm

The goal of co-synthesis is to find the cheapest system architecture satisfying
given time constraints. The algorithm is based on iterative improvements of sub-
optimal solutions. It starts with an initial solution, at each step some changes
to the actual solution are considered and then the solution giving the best gain
is selected. The main components of the algorithm are:



Cost-efficient synthesis of multiprocessor heterogeneous systems 347

- the initial solution,
- the metric of the gain,
- system refinement methods

The above components were defined in such a way that the algorithm is capable
of escaping from local minima.

4.1. Initial solution

The fastest architecture of the system is always selected as an initial solution.
In this solution, the PE with fastest execution time is allocated to each task.
If any time constraint is not satisfied then the algorithm stops (there is no
solution), otherwise the algorithm continues with refinements reducing the cost
of the system. For the example from Fig. 2 the initial solution consists of 10
PEs (8 * RT3 and 2 * RT4). The cost is 5025 and execution time equals 16.

4.2. Gain

The value of gain defines the quality of an improvement. Since the goal of re-
finement is to reduce cost of the system, so this cost should be the main factor
influencing the gain. However, greedy algorithms, taking into consideration only
cost, are quickly trapped into local minima. Hence, usually more sophisticated
gain metrics are used. For example, in Yen and Wolf (1995A) the cost of least
utilized PEs is increased in order to force the idle PE elimination. In construc-
tive algorithms more sophisticated metrics are used, too (Bianco, Auguin and
Pegatoquet, 1998).

The main idea of the algorithm presented here is to define the gain in such
a way that it accounts for the global impact of the considered improvement.
Usually, execution time is longer for PEs with lower cost, and moving a task to
a less expensive PE may decrease system performance. Obviously, not all tasks
have the same influence on system performance. For the example from Fig. 2
the longer the execution time of task v0 the longer the execution times for all
paths in the graph, and finally for the whole system. In the same example the
execution time of task v8 influences only the path containing tasks v0, v2 and v4.
From this we may deduce that moving task v8 to a slower PE has less impact
on the possibilities of refinements in the next steps of the algorithm than the
same change for task v0.

In the approach presented the possibilities of modifying system architec-
ture in the subsequent steps of the algorithm are defined using the following
parameter:

Ω =

n
∑

i=1

(Li − Si)

where:
Si- is the earliest time to start the execution of the i-th task,



348 S. DENIZIAK

Li- is the latest time to start the execution of the i-th task, ensuring satisfac-
tion of all time constraints.

Si and Li are evaluated using ASAP (As Soon As Possible) and ALAP (As Late
As Possible) algorithms for the current architecture. If for any of the tasks we
have Li < Si then the current solution does not satisfy time requirements. This
condition is verified for each solution. Bigger Li − Si usually means more pos-
sibilities of allocating the i-th task. During system refinement task assignments
and scheduling are changed, and so Li and Si should be computed after each
step. For example, assume that we want to find the best architecture executing
the graph from Fig. 2 in time Tmax = 50. Then values of parameters Li and Si

for the initial solution are presented in Table 3.

Table 3. Parameters Li and Si

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Si 0 3 3 8 6 8 6 9 10 13

Li 34 37 37 44 44 42 40 45 48 47

The global impact of any modification is defined as the increase of Ω caused by
the modification:

∆Ω = Ωnew − Ωold

Finally, the gain ∆E taking into consideration cost reduction and the global
impact of the system refinement is defined as follows:

∆E =











−∆Ks

−∆Ω
, for ∆Ω < 0

−∆Ks, for ∆Ω = 0
−∆Ks · ∆Ω for ∆Ω > 0

where ∆Ks denotes the cost increase.
Gain is defined only for modifications decreasing the cost of a system (oth-

erwise the modification is not taken into consideration). From the three cases
of the above formula the first one (∆Ω < 0) corresponds to modifications that
could decrease the system cost as well as the system performance. Thus, the ar-
chitecture with the best cost to performance ratio is selected. In the second case
(∆Ω = 0) modification might not change the performance, so the system with
the lowest cost is selected. The last case (∆Ω > 0) corresponds to modifications
that could increase system performance.

4.3. System refinement methods

In each step of an iterative improvement algorithm different modifications of
the current solution are considered and the modification giving the best gain
is selected. However, since the number of possible changes in the system is



Cost-efficient synthesis of multiprocessor heterogeneous systems 349

very large then only few of these changes should be taken into consideration.
Otherwise, the algorithm would be not suitable for large systems due to time
requirements. For this reason the existing approaches apply only simple modifi-
cations like moving one task to another PE, removing or allocating one PE etc.
(Yen and Wolf, 1995A). But such local changes have no possibility of getting
the algorithms out of the local minima during cost vs. speed optimisation.

In the algorithm presented more complex modifications are considered. The
main goal of such approach is to increase the possibility of getting out of local
minima. The following system changes are considered during refinement:

1. Allocation of one PE and assigning to it as many tasks as possible, so
as to achieve the highest gain. After the allocation and assignment is
terminated, all PEs which have no task allocated to them are removed. If
the graph contains n tasks and the technology library contains r resource
types then in the worst case there are r · n possible modifications.

2. Removing one PE, with all tasks, which were allocated to it, being moved
to other PEs. All transfers are done according to the highest gain principle.
In the worst case there are n2 such modifications.

The same modifications are considered for communication links and trans-
missions. It is possible to perform both kinds of changes in the same step, in
this way task transfer from some PEs to other ones can be done. Hence, in the
worst case r · n3 system modifications are considered. In practice, this num-
ber is significantly lower because solutions with higher cost and solutions not
satisfying time constraints are not considered.

It should be noticed that such complex system modifications allow for global
changes of system architecture. Moreover, simple modifications are still possible.
For example, allocation of one PE, assigning of one task to it and then removal of
this PE and transfer of the task to some other PE, corresponds to task movement
from one PE to another. Observations showed that such an approach has greater
capacity of escaping from local minima than other algorithms based on iterative
improvements.

4.4. Algorithm description

The scheme of the co-synthesis algorithm is the following:

Create an initial architecture A

Compute cost Ks;
repeat

Gain = 0;
for each available resource type RT i do

A′ = A ∪ PE (RT i);
repeat

Find task vk giving highest δE after moving it to PE (RT i);
if δE > 0 then Assign task vk to PE (RT i)



350 S. DENIZIAK

until there exists no task giving δE > 0 ;
A′ = A′

− PE s with no task assigned;
if ∆E > Gain then

Gain = ∆E; Abest = A′;
endif;
for each processing element PE j ∈ A′ do

A′′ = A′
− PE j;

for each task vk ∈ PE j do

Find PE l ∈ A′′ giving highest δE after moving task vk to it;
Assign task vi to PE l

endfor;
if ∆E > Gain then

Gain = ∆E; Abest = A′′;
endif ;

endfor ;
endfor ;
if Gain > 0 then A = Abest ;

until Gain = 0;

where δE means the gain achieved by moving one task to another PE (taking
into consideration task costs, only), while ∆E means total gain (including all
costs).

The outer for loop examines all possible allocations of a new PE. Task
transfers to a new PE are performed in the inner repeat loop. After allocating
a new PE, a possibility of removing one PE is examined in the second for loop.
If removing one PE increases gain, then such modification is accepted. In each
step the modification giving the best gain is accepted and becomes the current
solution for the next step of the algorithm. Only solutions with positive gain
and satisfying all time constraints are considered. This reduces the search space
and assures that the algorithm is convergent.

When a task is moved to PP, task scheduling should be performed. In such
case all possible schedules of a new task are examined (the schedule of the
previously assigned tasks is not changed) and the schedule giving the best gain
is selected. Because scheduling has no influence on cost, then the best gain
means lower global impact (∆Ω) and higher performance.

5. Experimental results

The results of co-synthesis of the task graph from Fig. 2 are presented in Fig. 3.
These results have been obtained for time constraint Tmax = 50, while commu-
nication times were neglected. The system consists of 2 PEs: one programmable
processor and one dedicated hardware core. It should be noticed that very high
utilisation of R2 was obtained. The cost of the system equals 582, and it is the
most efficient architecture for this system (assuming time requirement and task



Cost-efficient synthesis of multiprocessor heterogeneous systems 351

characteristics given in Table 1).

Figure 3. Results of synthesis (a Gantt chart) for the task graph from Fig. 2

To estimate the efficiency of the presented algorithm a modified version of the
Yen-Wolf algorithm (Yen and Wolf, 1995a) was implemented. In this algorithm
the cost function (1) was used, and then the algorithm was modified to minimise
only system cost. For the graph from Fig. 2 the system consisting of 3 PEs was
obtained with the Yen-Wolf method. The cost of such system is equal to 757
and the time of execution is 47. The results obtained for other examples are
presented in Table 4.

Table 4. Experimental results for example task graphs

Graph N Time Tmax Yen - Wolf EWA

min. Cost Time CPU Cost Time CPU

P&P2 9 3 7 10 7 0.01 6 7 0.01

P&P2 9 3 15 8 15 0.01 5 4 0.01

Hou1&2 20 97 150 250 149 0.05 200 147 0.14

Hou3&4 20 82 150 360 150 0.05 250 142 0.14

Graph: name of the graph; N: number of tasks; Time min.: minimum time

needed for executing all tasks; Tmax: time constraint; Yen-Wolf: results

for the Yen-Wolf algorithm; EWA: results for the author’s algorithm; Cost:

cost of the obtained architecture; Time: execution time for the obtained

architecture; CPU: time of algorithm execution.

Both considered algorithms were implemented in C and run on PC Celeron
1.8GHz. P&P2 is the Prakash and Parker’s task graph (Prakash and Parker,



352 S. DENIZIAK

1992). Hou1&2 and Hou3&4 are Hou’s task graphs (Hou and Wolf, 1996). All
graphs have zero communication delay, zero communication link cost and costs
of all tasks are equal to 0 (the total cost of a system is the sum of unit costs of
all PEs).

The efficiency of the presented algorithm was also estimated using ten ran-
domly generated task graphs. The results are given in Table 5. Four PE types
were available. The table compares results obtained using Yen-Wolf cost func-
tion (Ci(vj) = 0 for all tasks) with the results obtained using the cost function
presented in this work (Ci(vj) are randomly generated for each task). In both
cases the efficiency of the presented algorithm is significantly higher than that of
the Yen-Wolf method. Moreover, in the second case EWA obtains better results
with a much shorter CPU time than the Yen-Wolf method.

Table 5. Experimental results for random task graphs

Graph N Time Tmax Ci(vj) = 0 Ci(vj) 6= 0

min. Yen-Wolf EWA Yen-Wolf EWA

Cost Time CPU Cost Time CPU Cost Time CPU Cost Time CPU

G1 10 183 200 2111 188 0.00 2111 188 0.01 3959 183 0.00 3959 183 0.00

G2 30 259 600 2264 589 0.11 1077 319 0.49 7490 598 0.25 5770 566 0.39

G3 50 248 1000 3451 1000 1.03 1034 422 2.58 11075 971 2.47 8027 988 2.33

G4 70 300 1400 3451 1400 4.08 1034 455 10.14 11963 1371 12.53 9310 1396 9.26

G5 90 437 1800 3451 1800 14.04 1077 555 30.03 14617 1784 40.14 10363 1781 28.23

G6 110 377 2200 3452 2199 29.34 1077 490 65.92 46357 2157 83.04 11791 2193 57.09

G7 130 349 2600 3910 2592 75.55 1034 562 125.71 11930 2506 270.86 10550 2599 144.51

G8 150 441 3000 3451 2996 130.98 1034 792 225.42 14003 2501 437.50 12337 2992 238.08

G9 170 410 3400 3654 3308 252.48 1077 564 382.88 58270 3398 593.52 12211 3399 468.58

G10 200 532 4000 3697 3903 412.85 1077 802 731.65 65638 3966 1205.16 13014 3971 916.73

6. Conclusions

In this work an algorithm for cost-efficient synthesis of distributed heterogeneous
systems was presented. The algorithm optimises the cost of the target system
taking into consideration time requirements. Experimental results showed high
efficiency of the algorithm. Almost all results obtained with the help of the
algorithm were significantly better than results obtained with the help of the
Yen-Wolf algorithm. The proposed approach is especially suitable for the IP-
based SOC designs, when cost is associated with each task. For such systems
performance is also significantly better than of the Yen-Wolf method.

Future work will concentrate on expanding the system model so as to include
conditional graphs and loops in it.

References

Bianco, L., Auguin, M. and Pegatoquet, A. (1998) A Path Analysis Ba-
sed Partitioning for Time Constrained Embedded Systems. Proceedings
of the 6th International Workshop on Hardware/Software Codesign. IEEE
Computer Society Press, Los Alamitos, 85–89.



Cost-efficient synthesis of multiprocessor heterogeneous systems 353

Chatha, K.S. and Vemuri, R. (2001) MAGELLAN: Multiway Hardware-
Software Partitioning and Scheduling for Latency Minimization of Hierar-
chical Control-Dataflow Task Graphs. Proceedings of the 9th International
Workshop on Hardware/Software Codesign. ACM Press, New York, 42–
47.

D’Ambrosio, J. and Hu, X. (1994) Configuration-Level Hardware/Software
Partitioning for Real-Time Systems. Proceedings of the 3rd International
Workshop on Hardware/Software Codesign. IEEE Computer Society Press,
Los Alamitos, 34–41.

Dave, B.P., Lakshminarayana, G. and Jha, N.K. (1997) COSYN: Hard-
ware-Software Co-Synthesis of Embedded Systems. Proceedings of the
34th Design Automation Conference. ACM Press, New York, 703–708.

Dave, B.P. and Jha, N.K. (1998) CASPER: Concurrent Hardware-Software
Co-Synthesis of Hard Real-Time Aperiodic and Periodic Specifications of
Embedded Systems. Proceedings of the Conference on Design Automation
and Test in Europe. IEEE Computer Society Press, Los Alamitos, 118–
124.

Deniziak, S. and Sapiecha, K. (2001) Kosynteza rozproszonych systemów
heterogenicznych. III Krajowa Konferencja: Metody i systemy komput-
erowe w badaniach naukowych i projektowaniu inżynierskim.
AGH, Kraków, 437–442, in Polish.

Dick, R.P. and Jha, N.K. (1997) MOGAC: A multiobjective Genetic Al-
gorithm for the Co-Synthesis of Hardware-Software Embedded Systems.
Proceedings of the International Conference on Computer Aided Design.
IEEE Computer Society Press, Los Alamitos, 522–529.

Dick, R.P. Jha, N.K. (1999) MOCSYN: Multiobjective Core-Based Single-
Chip System Synthesis. Proceedings of the Conference on Design Automa-
tion and Test in Europe. IEEE Computer Society Press, Los Alamitos,
263–270.

Eles, P., Peng, Z., Kuchcinski, K. and Doboli, A. (1997) System Level
Hardware/Software Partitioning Based on Simulated Annealing and Tabu
Search. Design Automation for Embedded Systems 2 (1), 5–32.

Eles, P., Peng, Z., Kuchcinski, K., Doboli, A. and Pop, P. (1998)
Scheduling of Conditional Process Graphs for the Synthesis of Embedded
Systems. Proceedings of the Conference on Design Automation and Test
in Europe. IEEE Computer Society Press, Los Alamitos, 132–138.

Gupta, R.J. and De Micheli, G. (1993) Hardware-Software Co-synthesis
for Digital Systems. IEEE Design & Test 10 (3), 29–41.

Haubelt, C., Terich, J., Richter, K. and Ernst, R. (2002) System De-
sign for Flexibility. Proceedings of the Conference on Design Automation
and Test in Europe. IEEE Computer Society Press, Los Alamitos, 854–
861.



354 S. DENIZIAK

Henkel, J. and Ernst, R. (1997) A Hardware/Software Partitioner using
a dynamically determined Granularity. Proceedings of the 34th Design
Automation Conference. ACM Press, New York, 691–696.

Henkel, J. and Ernst, R. (1998) High-Level Estimation Techniques for Us-
age in Hardware/Software Co-Design. Proceedings of the Asia and South
Pacific Automation Conference. IEEE Computer Society Press, Los Alami-
tos, 353–360.

Hou, J. and Wolf, W. (1996) Process partitioning for distributed embed-
ded systems. Proceedings of the 4th International Workshop on Hard-
ware/Software Codesign. IEEE Computer Society Press, Los Alamitos,
70–76.

Kalavade, A. Lee, E.A. (1995) The Extended Partitioning Problem: Hard-
ware/Software Mapping and Implementation-Bin Selection. Proceedings
of the 6th International Workshop on Rapid Systems Prototyping, IEEE
Computer Society Press, Los Alamitos, 12–18.

Lee, T.Y., Hsiung, P.A. and Chen, S.J. (2001) Hardware-Software Multi-
Level Partitioning for Distributed Embedded Multiprocessor Systems. IE-
ICE Trans. Fundamentals E84-A (2), 614–626.

Oh, H. and Ha, S. (1999) A Hardware-Software Cosynthesis Technique Based
on Heterogeneous Multiprocessor Scheduling. Proceedings of the 7th In-
ternational Workshop on Hardware/Software Codesign. ACM Press, New
York, 183–187.

Oh, H. and Ha, S. (1999) Hardware-Software Cosynthesis of Multi-Mode
Multi-Task Embedded Systems with Real-Time Constraints. Proceed-
ings of the 10th International Workshop on Hardware/Software Codesign.
ACM Press, New York, 133–138.

Prakash, S. and Parker, A. (1992) SOS: Synthesis of Aplication-Specific
Heterogeneous Multiprocessor Systems. Journal of Parallel and Distrib.
Comp. 16, 338–351.

Saha, D., Mitra, R.S. and Basu, A. (1997) Hardware Software Partition-
ing using Genetic Algorithm. Proceedings of the International Conference
on VLSI Design. IEEE Computer Society Press, Los Alamitos, 155–160.

Schmitz, M.T., Al-Hashimi, B.M. and Eles, P. (2002) Energy-Efficient
Mapping and Scheduling for DVS Enabled Distributed Embedded Sys-
tems. Proceedings of the Conference on Design Automation and Test in
Europe. IEEE Computer Society Press, Los Alamitos, 514–521.

Suzuki, K. and Sangiovanni-Vincentelli, A. (1996) Efficient Software
Performance Estimation Methods for Hardware/Software Codesign. Pro-
ceedings of the 33rd Design Automation Conference. ACM Press, New
York, 605–610.

Xie, Y. and Wolf, W. (2001) Allocation and scheduling of conditional task
graph in harware/software co-synthesis. Proceedings of the Conference on
Design Automation and Test in Europe. IEEE Computer Society Press,
Los Alamitos, 620–625.



Cost-efficient synthesis of multiprocessor heterogeneous systems 355

Yen, T.Y. and Wolf, W.H. (1995A) Sensitivity-Driven Co-Synthesis of Dis-
tributed Embedded Systems. Proceedings of the International Symposium
on System Synthesis. ACM Press, New York, 4–9.

Yen, T.Y. and Wolf, W.H. (1995A) Communication synthesis for distri-
buted embedded systems. Proceedings of the International Conference on
Computer Aided Design. IEEE Computer Society Press, Los Alamitos,
288–294.

Yen, T.Y. and Wolf, W.H. (1998) Performance Estimation for Real-Time
Distributed Embedded Systems. IEEE Transactions on Parallel and Dis-
tributed Systems 9 (11), 1125–1136.


