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Abstract: This paper deals with a new method of fuzzy cluster-
ing. The basic concepts of the method are introduced as resulting
from the consideration of the fundamental fuzzy clustering problem.
The paper provides the description of the general plan of the algo-
rithm and an illustrative example. An analysis of the experimental
results of the method’s application to the Anderson’s Iris data is car-
ried out. Some preliminary conclusions and the ways of prospective
investigations are given.
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1. Introduction

Some remarks on fuzzy approach to clustering are considered in the first subsec-
tion. The second subsection includes a short consideration of the modification
to the fuzzy cluster analysis problem.

1.1. Preliminary remarks

To begin with, cluster analysis is a structural approach to solving the problem
of object classification without training samples. Clustering methods aim at
partitioning of a set of objects into subsets, called clusters, so that the objects
belonging to the same cluster are as similar as possible and, vice versa, the
objects belonging to different clusters are as dissimilar as possible. Clustering
methods are called also automatic classification methods and numerical taxon-
omy methods. Heuristic, hierarchical, optimization and approximation methods
are the main approaches to the cluster analysis problem solving.

Since the fundamental Zadeh’s (1965) paper was published, fuzzy set theory
has been applied to many areas such as learning, decision-making, control and
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classification. The idea of fuzzy approach application to clustering problems was
proposed by Bellman, Kalaba and Zadeh (1966). Heuristic methods of fuzzy
clustering, hierarchical methods of fuzzy clustering and optimization methods
of fuzzy clustering were proposed by different researchers. Fuzzy clustering
methods are considered at length, for instance, by Höppner, Klawonn and Kruse
(1997).

The most common and widespread approach in fuzzy clustering is the op-
timization approach. It can be mentioned that very interesting methods were
proposed by Bezdek (1981) and Pedrycz (1985). Moreover, interesting results
were presented by Dunn (1974), Jajuga (1991) and others. However, heuristic
algorithms are simple and very effective in many cases, because heuristic algo-
rithms of fuzzy clustering display high level of essential clarity and a low level
of complexity. Algorithms of Gitman and Levine (1970), Tamura, Higuchi and
Tanaka (1971), Couturier and Fioleau (1997) are very good illustrations of this
characterisation.

An outline for a new heuristic fuzzy clustering method was presented in
Viattchenin (2002), where a man-machine approach to fuzzy classification was
described. The main goal of the present paper is a detailed consideration of the
automatic version of the method. For this purpose, a short consideration of the
problem statement is presented and the fuzzy modification of the cluster analysis
problem is formulated. Some theoretical premises of the allotment among fuzzy
clusters (AFC) method are considered. The general plan of the AFC-algorithm
is described. Illustrative examples are shown and conclusions are formulated.

1.2. A modification of the fuzzy cluster analysis problem

The traditional optimization methods of fuzzy clustering are based on the con-
cept of fuzzy partition. For example, the approaches of Bezdek (1981) and
Pedrycz (1985) assume that the input data form the objects by attributes ma-
trix. Such information may not be available. Many classical techniques require
that the available data consist only of coefficients of pairwise similarity or dis-
similarity between objects. Very few algorithms have been developed to produce
partition matrices from this type of input data. Algorithms of Ruspini (1970),
Roubens (1978) and Windham (1985) are worth noting from this point of view.
Thus, the set X = {x1, . . . , xn} of n objects represented by either the matrix
of similarity coefficients, the matrix of dissimilarity coefficients or the matrix of
objects by attributes, should be divided into c fuzzy clusters. Namely, the grade
µli, 1 ≤ l ≤ c, 1 ≤ i ≤ n in which an object xi belongs to the fuzzy cluster
Al should be determined. For each object xi the grades of membership should
satisfy the conditions of a fuzzy partition:

c
∑

l=1

µli = 1, 1 ≤ i ≤ n; 0 ≤ µli ≤ 1, 1 ≤ l ≤ c (1)
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In other words, the family of fuzzy sets P (X) = {Al | l = 1, c, c ≤ n} is the
fuzzy partition of the initial set of objects X = {x1, . . . , xn} if condition (1) is
met. If, on the other hand, condition

c
∑

l=1

µli ≥ 1, 1 ≤ i ≤ n; 0 ≤ µli ≤ 1, 1 ≤ l ≤ c (2)

is met for each object xi, 1 ≤ i ≤ n, then the corresponding family of fuzzy sets
C(X) = {Al | l = 1, c, c ≤ n} is the fuzzy coverage of the initial set of objects
X = {x1, . . . , xn}.

The concept of fuzzy coverage is used mainly in heuristic fuzzy clustering
procedures. As for the concept of fuzzy partition Zadeh (1977) notes that the
conditions (1) are very difficult. Moreover, conditions (1) and (2) consider any
fuzzy set Al ∈ X , 1 ≤ l ≤ c as a potential fuzzy cluster and this circumstance
can stand in the way of the correct solving of the problem of classification.

Ruspini (1982) notes that fuzzy clustering is a technique of representation
of the initial set of objects by fuzzy clusters. The structure of the set of objects
can be described by some fuzzy tolerance, that is - a fuzzy binary symmetric
reflexive intransitive relation. So, a fuzzy cluster can be understood as some
fuzzy subset originated by fuzzy tolerance relation stipulating that the similarity
degree of the fuzzy subset elements is not less than some threshold value. In
other words, the value of a membership function of each element of the fuzzy
cluster is the degree of similarity of the object to the center of fuzzy cluster.
The concept of the fuzzy α-cluster satisfies these conditions. The concept is the
basis of the method and is introduced in the paper.

Thus, the fuzzy problem formulation in cluster analysis can be defined in
general as the problem of finding of the unique representation of the initial
set of objects by fuzzy clusters. The concept of representation was used in
Viattchenin (2002). However, the notion of representation has specific meaning
in pattern recognition. That is why in this paper the term of allotment among
fuzzy clusters will be used. The method introduced uses a special definition of
the allotment concept and this fuzzy modification of the cluster analysis problem
is more general than modifications based on fuzzy partition or fuzzy coverage
concepts, because fuzzy partition and fuzzy coverage can be considered as special
kinds of allotment. In the essence, an adequate allotment is the allotment, which
corresponds to either most natural allocation of objects to fuzzy clusters or to
the researcher’s opinion about the aims of classification. Detection of a given
number of compact and well-separated fuzzy clusters can be considered as the
aim of classification.

2. Outline of the approach

The basic concepts of the method are introduced in the first subsection of
the section. The basic concepts of the method are illustrated on the data of
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Tamura’s (1971) short example in the second subsection. The general plan of
the AFC-algorithm is considered in the third subsection.

2.1. Basic concepts

Let us consider the conceptual and methodological bases of the method. The
concept of fuzzy tolerance is the basis for the concept of fuzzy cluster. That
is why definitions of fuzzy tolerance must be considered in the first place. The
notions of powerful fuzzy tolerance, feeble fuzzy tolerance and strict feeble fuzzy
tolerance were introduced by Viattchenin (1997, 1998). In this context the
classical fuzzy tolerance is called usual fuzzy tolerance.

Let X = {x1, . . . , xn} be the initial set of elements and T : X × X →
[0, 1] some binary fuzzy relation on X with µT (xi, xj), ∀xi, xj ∈ X being its
membership function.

Definition 2.1 The usual fuzzy tolerance is the fuzzy binary intransitive rela-
tion which possesses the symmetricity property

µT (xi, xj) = µT (xj , xi), ∀xi, xj ∈ X (3)

and the reflexivity property

µT (xi, xi) = 1, ∀xi ∈ X. (4)

This kind of fuzzy tolerance is denoted by T2.

Definition 2.2 The feeble fuzzy tolerance is the fuzzy binary intransitive re-
lation which possesses the symmetricity property (3) and the feeble reflexivity
property

µT (xi, xj) ≤ µT (xi, xi), ∀xi, xj ∈ X. (5)

This kind of fuzzy tolerance is denoted by T1.

Definition 2.3 The strict feeble fuzzy tolerance is the feeble fuzzy tolerance
with strict inequality in (5):

µT (xi, xj) < µT (xi, xi), ∀xi, xj ∈ X. (6)

This kind of fuzzy tolerance is denoted by T0.

Definition 2.4 The powerful fuzzy tolerance is the fuzzy binary intransitive
relation which possesses the symmetricity property (3) and the powerful reflex-
ivity property. The powerful reflexivity property is defined as the condition of
reflexivity (4) together with the condition

µT (xi, xj) < 1, ∀xi, xj ∈ X, xi 6= xj . (7)
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This kind of fuzzy tolerance is denoted by T3.
Fuzzy tolerances T1 and T0 are subnormal fuzzy relations if the condition:

µT (xi, xi) < 1, ∀xi ∈ X (8)

is met.
The kind of the fuzzy tolerance imposed determines the nature of the implied

of fuzzy clusters, as demonstrated by Viattchenin (1999). However, the essence
of the method does not depend on the kind of fuzzy tolerance. That is why the
method herein is described for any fuzzy tolerance T .

Let us consider the general definition of the fuzzy cluster concept, the concept
of the fuzzy cluster’s typical point and the concept of the fuzzy allotment of
objects. The concept of level fuzzy set will be used in the definition of fuzzy
cluster concept. The question of level fuzzy sets was considered by Radecki
(1977).

The number c of fuzzy clusters can be equal the number of objects, n. This
is taken into account in further considerations.

Let X = {x1, . . . , xn} be the initial set of objects. Let T be a fuzzy tolerance
on X and α be α-level value of T , α ∈ (0, 1]. Columns or lines of fuzzy tolerance
matrix are fuzzy sets {A1, . . . , An}. Let {A1, . . . , An} be fuzzy sets on X , which
are generated by a fuzzy tolerance T .

Definition 2.5 The α-level fuzzy set Al
(α) = {(xi, µAl(xi)) | µAl(xi) ≥ α, xi ∈

X, l ∈ [1, n]} is fuzzy α-cluster or fuzzy cluster in simple words. So Al
(α) ⊆ Al,

l = 1, . . . , n, α ∈ (0, 1] and µli is the membership degree of the element xi ∈ X

for some fuzzy cluster Al
(α), l ∈ [1, n], α ∈ (0, 1]. Value of α is the tolerance

threshold of fuzzy clusters elements.

The membership degree of the element xi ∈ X for some fuzzy cluster Al
(α),

l ∈ [1, n], α ∈ (0, 1] can be defined as

µli =

{

µAl(xi), xi ∈ Al
α,

0, else.
(9)

where an α-level Al
α = {xi ∈ X | µAl(xi) ≥ α} of a fuzzy set Al is the support of

the fuzzy cluster Al
(α). So, a condition Al

α = Supp
(

Al
(α)

)

is met for each fuzzy

cluster Al
(α), l = 1, n, α ∈ (0, 1]. The membership degree can be interpreted as

a degree of typicality of an element to a fuzzy cluster. The membership function
of fuzzy clusters in the sense of definition 2.5 is denoted by µli and the notation
is not changed from the notation of the membership function of fuzzy clusters
in the sense (1) and (2). However, fuzzy clusters in the sense of definition 2.5
are different from fuzzy clusters in the sense (1) and (2) from the essential and
methodological positions.

In other words, if columns or lines of fuzzy tolerance T matrix are fuzzy
sets {A1, . . . , An} on X then fuzzy clusters {A1

(α), . . . , A
n
(α)} are fuzzy subsets
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of fuzzy sets {A1, . . . , An} for some value α, α ∈ (0, 1]. The value zero for a
fuzzy set membership function is eqnivalent to non-belonging of an element to
a fuzzy set. That is why values of tolerance threshold α are considered in the
interval (0, 1].

Definition 2.6 If T is a fuzzy tolerance on X, where X is the set of elements,
and {A1

(α), . . . , A
n
(α)} is the family of fuzzy clusters for some α ∈ (0, 1], then the

point τ l
e ∈ Al

α, for which

τ l
e = arg max

xi

µli, ∀xi ∈ Al
α (10)

is called a typical point of the fuzzy cluster Al
(α), l ∈ [1, n], α ∈ (0, 1].

Obviously, a typical point of a fuzzy cluster does not depend on the value of
tolerance threshold. A unique typical point τ l of some fuzzy cluster Al

(α) can be
interpreted as a center of the fuzzy cluster. So, the membership degree can be
interpreted as a degree of tolerance of each element to the center of the fuzzy
cluster in this case. Moreover, a fuzzy cluster can have several typical points.
That is why symbol e is the index of the typical point.

Definition 2.7 Let Rα
z (X) = {Al

(α) | l = 1, c, 2 ≤ c ≤ n, α ∈ (0, 1]} be a

family of fuzzy clusters for some value of tolerance threshold α, α ∈ (0, 1],
which are generated by some fuzzy tolerance T on the initial set of elements
X = {x1, . . . , xn}. If a condition

c
∑

l=1

µli > 0, ∀xi ∈ X (11)

is met for all Al
(α), l = 1, c, c ≤ n, then the family is the allotment of elements

of the set X = {x1, . . . , xn} among fuzzy clusters {Al
(α), l = 1, c, 2 ≤ c ≤ n} for

some value of tolerance threshold α, α ∈ (0, 1].

It should be noted that several allotments Rα
z (X) can exist for some tolerance

threshold α, α ∈ (0, 1]. That is why symbol z is the index of an allotment.
The condition (11) requires that every object of the set X = {x1, . . . , xn}

must be classified. In other words, every object xi, i = 1, n must be assigned
to at least one fuzzy cluster Al

(α), l = 1, c, c ≤ n with the membership degree
higher than zero. The condition 2 ≤ c ≤ n requires that the number of fuzzy
clusters in Rα

z (X) must be more than two. Otherwise, the unique fuzzy cluster
will contain all objects with different positive membership degrees.

The concept of allotment is the central point of the method. But the next
concept introduced should be paid attention to, as well.

Definition 2.8 Allotment Rα
I (X) = {Al

(α) | l = 1, n, α ∈ (0, 1]} of the set
of objects among n fuzzy clusters for some tolerance threshold α is the initial
allotment of the set X = {x1, . . . , xn}.
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In other words, if initial data are represented by a matrix of some fuzzy
tolerance T then lines or columns of the matrix are fuzzy sets Al ⊆ X , l = 1, n

and level fuzzy sets Al
(α), l = 1, n, α ∈ (0, 1] are fuzzy clusters. These fuzzy

clusters constitute an initial allotment for some tolerance threshold and they
can be considered as clustering components.

2.2. Illustrative examples

Let X = {x1, x2, x3, x4, x5} be the object set and the initial data matrix be as
presented in Table 1. The matrix represents a fuzzy powerful tolerance T3.

Table 1. Matrix of initial data

T3 x1 x2 x3 x4 x5

x1 1 0.8 0 0.1 0.2
x2 0.8 1 0.4 0 0.9
x3 0 0.4 1 0 0
x4 0.1 0 0 1 0.5
x5 0.2 0.9 0 0.5 1

Let us consider examples of the basic concepts of the method. Columns or
lines of the matrix of fuzzy tolerance T3 are fuzzy sets

A1 = {(x1, 1), (x2, 0.8), (x3, 0), (x4, 0.1), (x5, 0.2)},

A2 = {(x1, 0.8), (x2, 1), (x3, 0.4), (x4, 0), (x5, 0.9)},

A3 = {(x1, 0), (x2, 0.4), (x3, 1), (x4, 0), (x4, 0)},

A4 = {(x1, 0.1), (x2, 0), (x3, 0), (x4, 1), (x5, 0.5)},

A5 = {(x1, 0.2), (x2, 0.9), (x3, 0), (x4, 0.5), (x5, 1)}.

So, α-level fuzzy sets

A1
(0.1) = {(x1, 1), (x2, 0.8), (x4, 0.1), (x5, 0.2)},

A2
(0.1) = {(x1, 0.8), (x2, 1), (x3, 0.4), (x5, 0.9)},

A3
(0.1) = {(x2, 0.4), (x3, 1)},

A4
(0.1) = {(x1, 0.1), (x4, 1), (x5, 0.5)},

A5
(0.1) = {(x1, 0.2), (x2, 0.9), (x4, 0.5), (x5, 1)}

are fuzzy clusters for the value of tolerance threshold α = 0.1. These fuzzy clus-
ters constitute the initial allotment R0.1

I (X)={A1
(0.1), A

2
(0.1), A

3
(0.1), A

4
(0.1), A

5
(0.1)}

for the tolerance threshold α = 0.1. So, an allotment R0.1
z (X) for the value of

tolerance threshold α = 0.1 is any family of fuzzy clusters which are elements of
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the initial allotment R0.1
I (X) for the tolerance threshold α = 0.1 and the family

of fuzzy clusters should satisfy the conditions of Definition 2.7. For example,
the family of fuzzy clusters R0.1

1 (X) = {A3
(0.1), A

4
(0.1)} can be considered as the

allotment of the object set X among two fuzzy clusters. The object x3 is the
center of the fuzzy cluster A3

(0.1) = {(x2, 0.4), (x3, 1)} because the object is the

unique typical point τ3 of the fuzzy cluster A3
(0.1). The object x4 is the center

of the fuzzy cluster A4
(0.1) = {(x1, 0.1), (x4, 1), (x5, 0.5)} because x4 = τ4.

2.3. General plan of the AFC-algorithm

Thus, the problem of fuzzy cluster analysis can be defined in general as the
problem of discovering the unique allotment R∗(X), resulting from the classi-
fication process, which corresponds to either most natural allocation of objects
among fuzzy clusters or to the researcher’s opinion about classification. In the
first case, the number of fuzzy clusters c is not fixed. In the second case, the re-
searcher’s opinion determines the kind of the allotment sought and the number
of fuzzy clusters c is fixed. The second case is the subject of consideration.

If some allotment Rα
z (X) = {Al

(α) | l = 1, c, c ≤ n, α ∈ (0, 1]} corresponds
to the formulation of a concrete problem, then this allotment is an adequate
allotment. In particular, if conditions

c
⋃

l=1

Al
α = X, Al

(α), l = 1, . . . , c, α ∈ (0, 1], (12)

and

card(Al
α ∩ Am

α ) = 0, ∀Al
(α), A

m
(α), l 6= m, α ∈ (0, 1] (13)

are met for all fuzzy clusters Al
(α), l = 1, c of some allotment Rα

z (X) = {Al
(α) |

l = 1, c, c ≤ n, α ∈ (0, 1]} then the allotment is the adequate allotment. The
adequate allotment Rα

z (X) for some value of tolerance threshold α, α ∈ (0, 1] is
a family of fuzzy clusters which are elements of the initial allotment Rα

I (X) for
the value of α and the family of fuzzy clusters should satisfy the conditions (12)
and (13). In other words, the family of supports {Al

α | l = 1, c, c ≤ n, α ∈ (0, 1]}
of fuzzy clusters Al

(α), l = 1, c of the adequate allotment Rα
z (X) = {Al

(α) |

l = 1, c, c ≤ n, α ∈ (0, 1]} is the hard partition of the initial set of objects
X = {x1, . . . , xn}. So, the construction of adequate allotments Rα

z (X) = {Al
(α) |

l = 1, c, c ≤ n} for every α, α ∈ (0, 1] is a trivial problem of combinatorics.
The number c of fuzzy clusters in the allotment sought R∗(X) must be fixed.

Thus, the problem consists in the selection of the unique adequate allotment
R∗(X) from the set B(c) of adequate allotments, B(c) = {Rα

z (X)}. So, the
condition c = card(Rα

z (X)), ∀Rα
z (X) ∈ B(c) must be met. In other words,

the set B(c) of adequate allotments is the class of possible solutions of the
classification problem.
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The selection of the unique adequate allotment R∗(X) from the set B(c) =
{Rα

z (X)} of adequate allotments must be made on the basis of evaluation of
allotments. The criterion

F (Rα
z (X), α) =

c
∑

l=1

1

nl

nl
∑

i=1

µli − α · c, (14)

where c is the number of fuzzy clusters and nl = card(Al
α), Al

(α) ∈ Rα
z (X) is

the number of elements in the support of the fuzzy cluster Al
(α), can be used for

evaluation of allotments.
The maximum of criterion (14) corresponds to the best allotment of objects

among c fuzzy clusters. So, the classification problem can be characterized
formally as determination of the solution R∗(X) satisfying

R∗(X) = arg max
Rα

z (X)∈B(c)
F (Rα

z (X), α) (15)

where B(c) = {Rα
z (X)} is the set of adequate allotments for the given number

c of fuzzy clusters.
The criterion (14) can be considered as the average total membership of

objects in fuzzy clusters of the allotment minus α·c. The quantity α·c regularizes
with respect to the number of clusters c in the allotment Rα

z (X).
There is a five-step procedure of classification:

1 Calculation of α-level values of the fuzzy tolerance T and construction of the
initial allotment Rα

I (X) = {Al
α | l = 1, n} for every α-level, α ∈ (0, 1];

2 Construction of adequate allotments Rα
z (X) = {Al

(α) | l = 1, c, c ≤ n} for

every α, α ∈ (0, 1];
3 Construction of the set of adequate allotments B(c) = {Rα

z (X)} for the given
number of fuzzy clusters c and different values of the tolerance threshold
α, α ∈ (0, 1];

4 Calculation of the F (Rα
z (X), α) for every allotment Rα

z (X) from the set B(c);
5 If for some unique allotment R∗(X) from the set B(c) the value of F (Rα

z (X), α)
is maximal for a received value of α, α ∈ (0, 1], then the allotment R∗(X)
must be selected from the set B(c) = {Rα

z (X)}.

The allotment R∗(X) is the main result of the classification process. The
value of tolerance threshold α, α ∈ (0, 1], which corresponds to the allotment
R∗(X), is the additional result of classification. The value of α is very important
for the interpretation of results from the epistemological position.

3. Experimental results

The process of the AFC-algorithm execution is presented on the data of Tamura’s
(1971) short example in the first subsection of the section. Experimental results
of the AFC-algorithm’s application to the Anderson’s Iris data are presented in
the second subsection.
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3.1. The Tamura’s example

Let us consider the execution of the AFC-algorithm for the data of Tamura’s
(1971) short example and for the fixed number of fuzzy cluster c = 3. Table 2
presents a fragment of the execution of the AFC-algorithm process plan. The
cardinality of adequate allotment of the object set X among fuzzy clusters is
two for α = 0.1. The adequate allotment of the object set X among three fuzzy
clusters does not exist for α = 0.2 and α = 0.4. The cardinality of adequate
allotments is more than three for α > 0.8. That is why the execution of the
AFC-algorithm process plan is presented for α = 0.5 and α = 0.8.

Table 2. Fragment of the process of the AFC-algorithm execution

Initial allotment, The adequate The value of
α Rα

I (X) = {A1
(α), A2

(α), A3
(α), A4

(α), A5
(α)} allotment, Rα

z (X) F (Rα
z (X), α)

0.5 A1
(0.5) = {(x1, 1), (x2, 0.8)} R0.5

1 (X) = {A1
(0.5), A3

(0.5), A4
(0.5)} 1.150

A2
(0.5) = {(x1, 0.8), (x2, 1), (x5, 0.9)}

A3
(0.5) = {(x3, 1)}

A4
(0.5) = {(x4, 1), (x5, 0.5)}

A5
(0.5) = {(x2, 0.9), (x4, 0.5), (x5, 1)}

0.8 A1
(0.8) = {(x1, 1), (x2, 0.8)} R0.8

1 (X) = {A2
(0.8), A3

(0.8), A4
(0.8)} 0.500

A2
(0.8) = {(x1, 0.8), (x2, 1), (x5, 0.9)}

A3
(0.8) = {(x3, 1)}

A4
(0.8) = {(x4, 1)}

A5
(0.8) = {(x2, 0.9), (x5, 1)}

The first column and the second column of Table 2 correspond to the first
step of the AFC-algorithm. The third column of Table 2 corresponds to the
second step of the AFC-algorithm. So, the set B(c = 3) = {R0.5

1 (X), R0.8
1 (X)}.

This is the third step of the AFC-algorithm. The fourth column of Table 2
corresponds to the fourth step of the AFC-algorithm. The value of F (Rα

z (X), α)
is maximal for the R0.5

1 (X) = {A1
(0.5), A

3
(0.5), A

4
(0.5)} allotment. So, the allotment

R0.5
1 (X) = {A1

(0.5), A
3
(0.5), A

4
(0.5)} is the result R∗(X) of the classification. The

matrix of object assignments is presented in Table 3.

The fuzzy cluster A1
(0.5) = {(x1, 1), (x2, 0.8)} corresponds to the first class

and x1 = τ1 (x1 is the center of the first class). The fuzzy cluster A3
(0.5) =

{(x3, 1)} corresponds to the second class. The object x3 is the center of the
second class because x3 = τ3. The fuzzy cluster A4

(0.5) = {(x4, 1), (x5, 0.5)}

corresponds to the third class and x4 = τ4. That is why x4 is the center of the
third class. These results can be presented by the diagram of Fig. 1.

Analysis of the example by no means provides an adequate test of the AFC-
algorithm’s performance. A more critical assessment can be made on the basis
of its use in the next example.
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Table 3. Matrix of object assignments

Object Membership degree
Class 1 Class 2 Class 3

x1 1.0 0.0 0.0
x2 0.8 0.0 0.0
x3 0.0 1.0 0.0
x4 0.0 0.0 1.0
x5 0.0 0.0 0.5

Figure 1. Diagram of object assignment (numbers accompanying points denote
clusters)

3.2. The Anderson’s Iris data

The Anderson’s (1934) Iris data set consists of the sepal length, sepal width,
petal length and petal width for 150 irises. The problem is to classify the plants
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into three subspecies on the basis of this information. The real assignments to
the three classes are presented in Table 4.

Table 4. Real objects assignmen in the Iris data set

Class Numbers of objects
Number Name

1, 6, 10, 18, 26, 31, 36, 37, 40, 42, 44, 47, 50,
51, 53, 54, 55, 58, 59, 60, 63, 64, 67, 68, 71,

1 SETOSA 72, 78, 79, 87, 88, 91, 95, 96, 100, 101, 106, 107,
112, 115, 124, 125, 134, 135, 136, 138, 139, 143,
144, 145, 149
3, 8, 9, 11, 12, 14, 19, 22, 28, 29, 30, 33, 38, 43,
48, 61, 65, 66, 69, 70, 76, 84, 85, 86, 92, 93, 94,

2 VERSICOLOR 97, 98, 99, 103, 105, 109, 113, 114, 116, 117,
118, 119, 120, 121, 128, 129, 130, 133, 140, 141,
142, 147, 150
2, 4, 5, 7, 13, 15, 16, 17, 20, 21, 23, 24, 25, 27,
32, 34, 35, 39, 41, 45, 46, 49, 52, 56, 57, 62, 73,

3 VIRGINICA 74, 75, 77, 80, 81, 82, 83, 89, 90, 102, 104, 108,
110, 111, 122, 123, 126, 127, 131, 132, 137, 146,
148

The matrix of attributes is the matrix Xm×n = [xt
i], i = 1, . . . , n, t =

1, . . . , m, where n = 150, m = 4. So, the value xt
i is the value of the t-th

attribute for i-th object. The data can be normalized as follows:

µxi
(xt) =

xt
i

max
xi

xt
i

, i = 1, . . . , n, (16)

for all attributes xt, t = 1, . . . , m. So, each object can be considered as a fuzzy
set xi, i = 1, . . . , n and µxi

(xt) ∈ [0, 1], i = 1, . . . , n, t = 1, . . . , m are their
membership functions. After application of the normalized Euclidean distance

dE(xi, xj) =

√

√

√

√

1

m

m
∑

t=1

(

µxi
(xt) − µxj

(xt)
)2

, i, j = 1, n, (17)

to the matrix of normalized data X
′

m×n = [µxi
(xt)], i = 1, . . . , n, t = 1, . . . , m

a matrix of a fuzzy intolerance I = [µI(xi, xj)], i, j = 1, . . . , n is obtained. The
matrix of fuzzy intolerance relation is the matrix of dissimilarity coefficients.
The matrix of fuzzy tolerance T = [µT (xi, xj)], i, j = 1, . . . , n is obtained after
application of complement operation

µT (xi, xj) = 1 − µI(xi, xj), ∀i, j = 1, . . . , n (18)
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to the matrix of fuzzy intolerance I = [µI(xi, xj)], i, j = 1, . . . , n.

The object assignments resulting from the AFC-algorithm’s application to
the Anderson’s Iris data are presented in Table 5.

Table 5. The results of AFC-algorithm application: the object assignment

Class Numbers of objects
Number Name

1, 6, 10, 18, 26, 31, 36, 37, 40, 42, 44, 47, 50,
51, 53, 54, 55, 58, 59, 60, 63, 64, 67, 68, 71,

1 SETOSA 72, 78, 79, 87, 88, 91, 95, 96, 100, 101, 106,
107, 112, 115,124, 125, 134, 135, 136, 138, 139,
143, 144, 145, 149
3, 5, 8, 11, 12, 14, 19, 22, 25, 28, 29, 30, 33,
38, 43, 48, 56, 61, 65, 66, 69, 70, 76, 84, 85,

2 VERSICOLOR 86, 90, 92, 93, 94, 97, 98, 99, 103, 105, 109,
113, 114, 116, 117, 118, 119, 120, 121, 128,
129, 130, 133, 140, 141, 142, 150
2, 4, 7, 9, 13, 15, 16, 17, 20, 21, 23, 24, 27, 32,
34, 35, 39,41, 45, 46,49, 52, 57, 62, 73, 74, 75,

3 VIRGINICA 77, 80, 81, 82, 83, 89,102,104,108, 110, 111,
122, 123, 126, 127, 131, 132, 137, 146, 147,
148

By executing the AFC-algorithm for three classes (1, 2, 3) we obtain the fol-
lowing: the first class is formed by 50 elements all being Iris Setosa; the second
class by 52 elements, 48 of them being Iris Versicolor and 4 Iris Virginica; the
third class by 48 elements, 46 of them being Iris Virginica and 2 Iris Versicolor.
In other words, the first class corresponds to the Setosa subspecies, the second
class corresponds to the Versicolor subspecies and the third class corresponds to
the Virginica subspecies. So, there are six mistakes of classification. Misclassi-
fied objects are distinguished in Table 5. Membership values of the Setosa class
are presented in Fig. 2. Membership values of the Versicolor class are presented
in Fig. 3 and membership values of the Virginica class are presented in Fig.
4. The allotment R∗(X), which corresponds to the result, was obtained for the
tolerance threshold α = 0.811.

The value of the membership function of the fuzzy cluster which corresponds
to the first class is maximal for the seventy-second object and is equal one.
So, the seventy-second object is the typical point of the fuzzy cluster which
corresponds to the first class. The seventy-second object can be considered as
the center of the Setosa class.

The membership value of the ninety-eighth object is equal one for the fuzzy
cluster which corresponds to the second class. Thus, the ninety-eighth object is
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Figure 2. Membership values of the SETOSA class

Figure 3. Membership values of the VERSICOLOR class
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Figure 4. Membership values of the VIRGINICA class

the typical point of the fuzzy cluster which corresponds to the second class. So,
the ninety-eighth object can be considered as the center of the Versicolor class.

The membership value of the seventy-third object is equal one for the fuzzy
cluster which corresponds to the third class. That is why the seventy-third
object is the typical point of the fuzzy cluster which corresponds to the third
class and this object can be considered as the center of the Virginica class.

4. Concluding remarks

Preliminary conclusions are discussed in the first subsection of the section. The
second subsection deals with the perspectives on future investigations.

4.1. Discussion

In conclusion it should be said that fuzzy clustering methods are very effective in
any problem of data analysis. However, Zadeh (1980) notes that uniform theory
of pattern classification based on fuzzy sets does not exist and creation of the
uniform theory of pattern classification based on fuzzy sets will be a very long
process, because conceptual basis must be revised for this purpose. The fuzzy
cluster concept and the allotment concept have an epistemological motivation.
Thus, the allotment method of fuzzy clustering has a sound justification and
can be considered as an attempt of creation of the new conceptual basis and the
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uniform approach to fuzzy clustering.

Of course, the AFC-algorithm is based on the strong assumption that the
number of clusters is fixed. However, the results of the AFC-algorithm applica-
tion can be very well interpreted. The AFC-algorithm is very simple from the
heuristic point of view. Moreover, the objective function-based fuzzy clustering
algorithms are sensitive to initialization. Very often, the algorithms are ini-
tialized randomly many times, in the hope that some of the initializations lead
to good clustering results. The AFC-algorithm is a heuristic fuzzy clustering
procedure depending on the set B(c) = {Rα

z (X)} of adequate allotments only.
That is why the AFC-algorithm clustering results are stable.

The AFC-algorithm can be applied directly to the data given as the matrix
of tolerance coefficients. This means that it can be used with the objects by
attributes data, by choosing a suitable metric to measure similarity or it can be
used in situations where only objects by objects proximity data is available. The
results of application of the AFC-algorithm to Anderson’s Iris data shows that
the AFC-algorithm is a precise and effective numerical procedure for solving
classification problems.

4.2. Perspectives

The properties of the criterion (14) are the subject of special theoretical con-
sideration. Some other criteria can be proposed and investigated also.

Other parameters of a clustering procedure can be considered. Firstly, the
tolerance threshold can be determined a priori, so that the initial allotments
Rα

I (X) = {Al
(α) | l = 1, n} and allotments Rα

z (X) = {Al
(α) | l = 1, c, c ≤ n} are

constructed for every α, α ∈ [α∗, 1], where α∗ is the tolerance threshold, defined
by the researcher.

Secondly, an intersection of different fuzzy clusters is a natural feature of
fuzzy clusters in the sense of conditions (1) and (2). However, fuzzy clusters
in the sense of Definition (2.5) can have an intersection area. This fact was
demonstrated by Viattchenin (2001). If an intersection area of different fuzzy
clusters is an empty set, then fuzzy clusters are called fully separate fuzzy clus-
ters. Otherwise, fuzzy clusters are called particularly separate fuzzy clusters
and w = {0, . . . , n} is the maximum number of elements in the intersection area
of different fuzzy clusters. Obviously, for w = 0 fuzzy clusters are fully separate
fuzzy clusters. The maximal number of elements in the intersection area of fuzzy
clusters w can be considered as a parameter of the algorithm. So, the conditions
(12) and (13) can be generalized and the modification of the AFC-algorithm for
particularly separate fuzzy clusters case can be elaborated.

Thirdly, a researcher can determine the minimal number of elements in a
fuzzy cluster, too. In other words, if u is a minimal number of elements in a

fuzzy cluster, then card(Al
α) ≥ u, ∀l = 1, c, where Al

α = Supp
(

Al
(α)

)

for each

fuzzy cluster Al
(α), l = 1, c, α ∈ (0, 1]. If the parameter u is not determined,
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then u = 1.
The fuzzy allotment method can be considered as a basis for elaboration of

hierarchical fuzzy clustering algorithms. Algorithms of classification on graphs
can be elaborated also, because the matrix of fuzzy tolerance can be presented
as a weighting graph. These algorithms can be very effective in some particular
cases.

These perspectives for investigations are of great interest both from the
theoretical point of view and from the practical one as well.
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