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Abstract: The relation between extremal values of the error and
the coefficients of its differential equations is one of the central prob-
lems of control systems in chemical industry, because extremal values
of the error sometimes cause serious damages to the environment or
to the system itself. Analytical formulae for the determination of
these values are known only for the second-order systems. In this
paper a method which permits to determine extremal values of the
error in higher-order systems is proposed.
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1. Introduction

In the process of design of the dynamic control systems we encounter the prob-
lem of determining the maximal transient error z. and the moment of time ¢,
when it appears. The maximal error z. characteries the attainable accuracy,
and time t, - the velocity of the rise of the transients. Let us consider the dif-
ferential equation determining the transient error in a linear control system of
the n-th order with lumped and constant parameters:

d™x(t) A" ta(t) dx(t)
a0~ +aq T +...4+ Un—1— +apz(t) =0 . (1)
The initial conditions are determined by the force function and the system
parameteres ag, a1, ag, . .., ay.

Let us assume, in general that

I(ifl)(o)zci#o for i=1,2,...,n .
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The solution of equation (1) takes the form

z(t) = Z Apestt (2)
k=1

where sj, are the real, different roots of the characteristic equation
aps" +a1s" V.. . 4+ ap_1s+a, =0 . (3)

The necessary condition for the transient error z(t) to attain an extremal value
at t = t. is given by the relation

dCC(t) S st
dt = ZSkAke kb (4)
k=1
We will also need higher derivatives and use the relations
Fr(t) N,
T:;SZA;&”, p=1,2,....,n—1 . (5)

The equations (2) and (5) represent a system of n linear equations with re-
spect to unknown terms Aye®*’. Its matrix of coefficients is the Vandermonde’s
matrix:

1 1 1
S1 S92 Sn
: (6)
n—1 n—1 n—1
S1 &) Sn

Without loss of generality we assume for the sake of simplicity that equation
(3) has only single roots: s; # s; for i # j. With this assumption the matrix
(6) has an inverse and the system (2) and (5) can be solved.

For this purpose we denote by V the Vandermonde’s determinant of the
matrix (6) and by V; the Vandermonde’s determinant of order (n — 1) of the
variables s1,...,8;-1,8j+1,...,5n.

We denote also by @SJ ) the fundamental symmetric function of the r-th order

of (n — 1) variables s1,...,8j-1,8j4+1,-..,80; 7 =0,1,...,n — L
o) = 1
(I)g“]) = Z(_l)ra"r-l—i S;‘a .] = 1725 sy 1
i=0

It is possible to show that the elements of the inverse matrix to the matrix (6)
have the form:

(=) (4
el v (7)

Qij =
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The solution of the system (2) and (5) is as follows

1)k+7 .
Aje’F Zak 201 = Z (= & @51k_)j ka(Jfl)(t)
j=1
or

kV n
Ape®rt = ’“Z 7ol «U-V(), k=1,2,....n . (8)
Jj=1

It is evident that for t = 0 we know 2~ (0), and the substitution of ¢ = 0 into
the equations (8) gives:

k
CUV S apal w6 (0) | (9)

n
j=1

or in the explicit form

A=Y (=170 20D (o)

j=1

(5 —sK) Y, k=1,2,...,n .

=

< e
Nl
Eap

After the substitution of (9) into (8) we obtain

n k n
poit kz 1a® 2610 sz e 2D ) |

=1 j=1
and finally for £k =1,2,...,n we have:

n

skt i(_l)jq);k_)jx(jfl)(o) = Z(—l)jéik_)jx(jfl)(t) . (10)

Jj=1 Jj=1

Multiplying both sides of all the equations (10) and using Viéte’s relation be-
tween the roots s, and the coefficient a; of the characteristic equation,

Zsk = —Qaq (11)

k=1

we obtain the main result:

e—at ﬁ i(—l)j®5ﬁ_)j:1:(j D

k=1 j=1

H
i »:13

_Zn: WoeU=D@y . (12)

Both sides of equation (12) are composed of the symmetric polynomials of vari-
ables s1, ..., s,. Due to this it is possible to present these terms as the polynomi-
als of the coefficients aq, ..., a,. Using Viéte’s relations it is possible to replace
the roots s by the coefficients ay, and to avoid the calculation of the roots by
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the solution of algebraic equations (3). It is now possible to find the relation
between the extremal error x, and the time . using the necessary condition
(M (t.) = 0, in the relation (12). We have the basic result

n n ) k a Y n n ) k a
1> (17 ai-bt.) = et T (-1 2U=V(0) . (13)
k=1

j k=1 j=1

(SRS
(S

2
From the relation (13) it is evident that the values of the sequence of extremums
Te,, diminish with the rate of e =%« i =1,2,....

From Viéte’s relation we have:

o= 1
fI)’f: S1+8o+...+8k 1+...4+8,=—a1 — Sk
<I>§= 5152+ 8183+ ...+ S18k—1 + 51541 + ... + S15p+ (14)
+8283 + ...+ S2Sk—1 + S2Sk4+1 + ...+ 828, + Sp—1Snt
+ o + o =
= ag— 815k — S2Sk — ... — SpSk

Taking into account the relations (14) in the equation (13) we obtain the final re-
lation between x., x(e2), . ,xé"‘l); 2(0),zM(0), ..., 2" D(0); te, a1, a0, ..., an.

The explicit relations for n = 2 and 3 are as follows:

21 B0)eM(0) + — (= 0(0))° .

n=2 (ze)? - emle = (I(O)) as a2

The value of the time t. can be calculated from the equation (4).
If the characteristic equation (3) has real single roots then we have

U a0 + (@ TR0
In , aj] > 4az
vai —4daz  2a2z(0) + (al —y/a? — 4@2);1:(1)(())

In the case when equation (3) has complex conjugate roots we have for
k=0,1,2,... and a? < 4ay

te =

1
te = ——— -
4a2—a%
2(2a22(0) + (a1 + \/4as — a2) 2V (0
arctan ( 22(0) + (e 2 ) ()) + km

(2a22(0) + alx(l)(O))2 — ((4az — a?) 2(1(0))
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Forn =3
a3 + 152 + s (o), + (af2)"] et =
= a22%(0) 4 2aza3z™ (0)2 (0) + (aras + a%)z(az(l)(O))zx(O) +
+(a1az — as) (:c(l)(O))3 + (arag + 3a3)z? (0)zM (0)z(0) + (15)
+ara3z® (0)2%(0) + as (x(2)(0))2x(0) +
+(a? + az)z®(0) (2V(0))” + 2a1 (22(0)) "2 (0) + () (0))* .

The determination of the times t., from the equation (4) is difficult and will be
done later.

Before doing this we make the following remark. The plot of a solution of
equation of the 3" order is shown in Fig. 1.

It is evident that the times t., are invariant with respect to the perpendicular
displacement of the curve (see Figs. 1, 2).

X

*(0)=c, #H0)=c*

™ Xz )=0 t
tv

Figure 1. Plot of the third order func- Figure 2. Plot of third order functions
tion after prependicular displacement

(=}

N ’

z 1

The perpendicular displacement leads to changes of values of extremums
and the initial value z(0), but the values of moments of time t.,, and the form
of the curve remain the same. We make use of this remark by performing
such perpendicular displacement of the whole curve that one of the extremums
assumes the value z(t.;) = 0, and of course the initial value 2(0) changes its
value to *(0).

It is evident that these values may be zero, one, or two, when we have three
real different roots s1, s, s3, and infinite when we have a case with one real root
s;, and one pair of the complex, conjugate roots sz 3 = a £ jw.

After the displacement of the whole curve we have such a situation that at
the extremal point the following relations are true:

[2(0), te;]

#[z*(0), te,]
[27(0), te,]

0
0y . (16)
0

T
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These three homogeneous equations determine two independent values of time
te, tes-

The main determinant of these three equations is equal to zero, and from
this it is possible to find the unknown value z*(0). As the illustration of this
method we take the third order equation.

2. Solution of the third order equation

Let us consider the equation

dPx Pz dzr
= =0 17
e +a o) + ao 7t + azx = (17)

with the following initial conditions

z(0) =
z(0) = ¢ , (18)
LL‘(O) = C3

where a1, a2, a3 are constant parameters.
The solution of the equation (17) is as follows:

3
t)=> Age'! (19)
k=1

where sy, are the nonzero different roots of the characteristic equation s34 a;s2+
ass+ a3 =0 and Ag, k= 1,2,3 are determined by the relations

c3 — (s2+ s3) ca + s2s3C1

)
A =
' (51— 52)(s1 — 53)
c3 — (814 s3) c2 + s183¢1
Ay = 20
? (82 = s1)(s2 — 83) (20)
Ay = c3 — (514 s2) ca+ s152¢1
(53 - 51)(53 - 52)

For determination of the extremal values of the solution (19) we use the neces-
sary condition

da(t)
dt

—0. (21)

i

te

The differentiation of the relation (19) gives dzsft) = S0 spApeskt
Using (21) we obtain the following equation for finding t.,: 22:1 spApeskt = 0.
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We apply now the method proposed in Section 1, and use the set of equations
(16) with the notation (18).

SlAlesltei + SQAQGSQtei + 83A3653tei =0
sy Ajestter 4 sgAjes2tei 4 s3Ajessles = 0 (22)
Ai*eslt@i + A3652t@i + A§653tﬁi =0

where A}, A%, A% denote the coefficients (20) but with the initial condition ¢}
and co, c3 unchanged.

The main determinant of equations (22) with respect to eSite: es2tei esste;
is equal to zero:

5141 s2As 5343

A= SlAiF SQA; 83A§ =0. (23)
A Ay A3

After the substitution of A, Ay, Az from (20) to the determinant (23) we obtain

s15283[—c3(c)? + (¢ + cies)c; — 1]

A= (81— 82)(s2 — 83)(s3 — 1)

=0 (24)

or in an equivalent form (see Gérecki, 1966¢)

as[(c})?es — ¢i(c3 + cics) + c1c3]

 /27a3 + (4a3 — 18ayaz)a + (4a3 — a2a3)as

=0 . (25)

From this relation it results that for the existence of a real cj there has to be
(c3 4+ c1c3)? —dercies >0 (26)

or equivalently (c3 — c1c3)? > 0, but this is always true.

This means that if there exists ¢; for which an extremum z. exists, then
there exists also ¢} for which the condition (11) is fulfilled. Taking into account
(24) or (25) we obtain the relation between given initial conditions ¢q, ¢z, c3 and
an unknown initial condition cj:

c3(c})? = (34 cies)ef +cica =0 . (27)

From equation (27) we obtain the main result that either ¢ = ¢; and the
displacement of the function x(t) is not needed, or

== (28)

Depending on whether it is a minimum (¢ > 0) or maximum (cz < 0) of the
function z(t), the value of ¢; must be appropriately modified. If the roots s, s,
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s3 are real we obtain the following solutions for t.,, ¢ = 1,2,3 from relations
(22):

- 1 1|6~ (s2 + s3)c2 + S283¢7
S9 — 81 cs — (s1+ s3)ca + si1s3c)

- 1 1|~ (s1+ s3)c2 + s183¢ (29)
S3 — Sg c3 — (s1+ s2)ca + si1s2c]

te, = 1 n c3 — (52 + 81)02 + 828161(
51 — 83 c3 — (s2 + s3)ca + s283¢%

Two of equations (29) are independent.
In the case of one real root s; and two complex conjugate roots s3 3 = a£ jw
we obtain an infinite number of solutions for ¢.,, k =0,1,2,...

. 17 arctan 2w(ce — s1¢})[es — (a 4+ s1)ca + asicf]

‘ km| . 30
k 2w [03 — (a + 51)02 + 04510*1(]2 _ w2(02 _ SICT)2 + kT ( )

The substitution of the relations (28), (29) or (30) into (19) gives the extremum
values of z(t).

3. Limitations of the method and their overcoming

In the case when the initial value of the first derivative c; = 0, we have an
extremum for ¢ = 0, but we cannot apply relation (28). In this case we calculate
the value of the determinant (26), using approximate solutions of z(¢) and (¢).
Developing in the solution (2) and in the relation (4) the exponential functions
in the Taylor series around ¢ = 0 we obtain

SkAt

b — 1
* 1!

+ 0(sRAt)?, k=1,2,...,n . (31)

Substituting the relation (31) into the relations (2) and (4) we get

~ D (14 spAt) Ay (32)
k=1
dx(t) "
~ 1+ spAAF =0 .
o ;sk( + sp A AL =0 (33)

Elimination of the variable At from equations (32) and (33) gives the discrimi-
nant A in the form

() (st - () =

This formula is valid for an arbitrary degree n.
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We take into account that
n
S -
k=1
n
Z SkA;;* = 63*
k=1

n
2 Ak
E S Ak

k=1

kK
C3

By eliminating on this basis we obtain after At the new values of initial condi-
(c5°)°

xk )
C

tions and the relation c¢j* = which is valid for an arbitrary degree n and

the increment of time At, as W:éll as ¢i*, ¢3*, c3* which are different from zero.
In this way the obstacle connected with co = 0 is removed. Up to these
results it was necessary to know the values of roots of the characteristic equation.
Now we show that it is possible to overcome also this difficulty and to obtain
formulae which depend only on the coefficients a; of the characteristic equation.
We denote the right-hand side of the equation (15) by w(cy, ca,c3). If we
put the value ¢ instead of ¢; in equation (15) we must put x, = 0. We obtain
then from equation (15) that

*ok
1

(2) et = w(cf, ea,es) - (34)
Substracting both sides of equation (34) from equation (15) we obtain

I:G%.’L'g + aq G/3$g2)$g + as ($22))2$e] ea1te = ’U}(Cl , C2, 03) - ’U}(CT, C2, 03) (35)

but
w(cy, c2,c3) —w(cl,ce,c3) =
=a3(c? — ¢ ?) + (2a2a3ce + araszes)(cd — ¢ ?) +
+[(aras + a3)c3 + (a1a2 + 3as)cacs + axcy) (c1 — ¢f) = (36)
— {ag [c? +cier+ e 2} + [2@2@302 + a1a303} (c1 4 ¢))+
+[(aras + a3)c3 + (a1az + 3az)cacs + azc3] Fer — )
and
L — ¢ = . (37)
Taking into account relations (36) and (37) in the dependence (35) we have
[a32? + araszPz. + as (1722))2} e = R(cy, ¢}, e, c3) (38)
where

R= a§ [c% +dcdie+d 2} + [2a2a362 + alagcg} (c1 4 c))+
+(

2y 2 2
aras + a3)c; + (a1az + 3az)cacs + azes .
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Dividing both sides of the equality (38) by the formula (34) yields

Te \2 x R(cy, ¢}, ca,c
@3( )+ mas Ty +ar = Blond ) yo
Te Te w(cl ,€2,C3)
Finally, taking into account formula (34) we have

_1 1
e~ 3% teqs (¢t g, c3)

:1:‘81’2 =

2a3
. [al + \/a% — 4faz — R(cl,CT,02,03)w%(c>{,02,03)e*%a1t6] . (39)

Relations (29), (30) and (39) can be used for parametric optimization, when the
coeflicients a; are functions of parameters of the controller.

4. Example

Let us consider the problem of synthesis of the proportional controller for the
third order object. The transfer function of the object is

b182 + bas + b3
aps3 + a152 +azs+az

G(s) =

1
The input transform is U(s) = = and the transfer function of the ideal controller

has the form Gr(s) = K.
The transform function of the whole closed-loop system is given by

__KG(s) _
Clo)= 17 RGE) ~ "
b152 + bys + b3

K .
CL083 —|— (a1 + Kb1)82 + (CLQ —|— KbQ)S —|— as —|— Kb3

The transient error is equal to
e(t) = x(o0) — x(t) . (41)
The output signal in the steady state is

Kbs

x(o0) = lim sX (s) = ;13% G.(s) = @ Kb

s—0
The transform of the transient error can be calculated from (41) and (42):

1 Kby
E(s)=~-|—— -G,
(5) s |as + Kbs Gels)

The initial values of the transient error and its derivatives are

Kb
Cc1 = E(O) = SE}I&SE(S) = (]/34—7}3{1)3 .
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From relation (41) we deduce that (V) (t) = —2()(¢) and the initial value of the
derivative of error

co =eM(0) = —zM(0) = sli>nolo s[—sX(s) + x(0)] (43)
z(0) = sli>nolo sX(s) = Slingo[—Gc(s)] =0. (44)

From (43), (44) and (40) we have

Kb
co =eM(0) = lim s[—sX(s)] = lim s[—G.(s)] = ==
5§—00 85— 00 agp
and similarly
cs=e?0) = lim s[—s°X(s) — sz(0) — x(l)(())] =
. _Kb2 n Kbl ag +Kb1
B ag ag an
and in general for the transfer function
bis" L+ bas" 24 .+ by,
G(S): 1S + 0258 . + +
a18" + a8+ 4+ ... +a,
fori=1,2,...,n
X b a1 as (; Qi
@)= -2 2L G-y o 22.0-2 0y 1 . 1+ DL (D
00 = —22 4 | b0 (0) 4 Bl (0) 44 L))
b
©®) = -2
0= -~

The initial value after displacement is

g K3

C3 - —aobg +b1(a1 +Kb1) )

*_
1 =

The extremum value of the transient error is

by b2 }
a3+Kb3 bl(al +Kb1)—a0b2

sezcl—c’{:K[

Using the necessary condition for the calculation of the extremal value of e,
with respect to gain K we obtain

dee by b .

dK as + Kbs bl(al +Kb1) — agpbs

L R U )
(a3 + Kb3)2 [bl (a1 + Kbl) — a0b2]2 '

+K
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From (45) we find finally that the optimal gain for the minimum &, is equal to

1 Ja
Ki,= U b—;’(albl —aghy), n=+1. (46)

The minimal value of the extremal transient error after using (46) is given by

217\/17%%13 (albl — @0b2) — [ag + g—%(albl — aobz)}
Te, , =
v as — Z%(Cbllh — agbs)

5. Solution of the n-th order equation

Let us consider the relation (2), which represents the solution of equation (1),
Le. w(t) = > p_, Ages .

For the elimination of n-exponential elements e®** it is necessary to find (n—
3) additional equations in comparison to the solution of the 3" order equation.
To do this, let us observe that after the perpendicular displacement the curve
representing x(t) relation (1), all the derivatives of z(t) are not changed. In
comparison to the equation of the 3" order there is an essential difference,
because the values of the higher derivatives of the extremal points, beginning
from the second order, are not known. To overcome this difficulty we take into
account the fact that the values of higher derivatives remain invariant during
the perpendicular displacement. Let us find the differences between apropriate
derivatives at the extremal points before and after the displacement

These differences are equal to zero, and in this way we obtain the additional
(n — 3) homogeneous equations. The set of the n linear independent equations
takes the form

Ajesite + Aes2te 4 4 A¥esnte =)
s1Ajestle 4+ g9 Ajes2te + .+ s, AfeSnte =0
s1Aestte 59 Age®2te 4+ 5, A€t =0

s2(Ap — Ap)esrte + s3(Ay — Ab)es2te + ...

(47)
oo+ 82(A, — AX)esnte =0
STTH(Ay — AY)esrte 4+ s (Ag — Ab)es2te .
coFSTTH(A, — A)esnte =0
where, similarly as in the case of the 3"¢ order equation Af,..., A* denote

the coefficients with the initial condition x(0) = ¢}, and the remaining initial
conditions are unchanged.

Snte

The main determinant of the equations (47) with respect to esite ... e
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has the form

Ax A .. Ax
s1A] 5243 sp A%
A A nAn
e DAY T
s1(A1 — A7) s5(A2 — A3) sp(An — A7)
177 (A1 = Af) spT(Az — Af) sn 2 (An — A7)
6. Main results
The determinant (48) is obtained in the form
It
Am— @ =) A )| n22 (49)
[1Gsi—s5)
i=1
i
or in the equivalent form
an—2 9, o
n _x\n o >
A Nis [(c1 — )" 2(c3 0103)} n>2,
where D is determined by the formula (50)
nag ag 0 0
(n—1)a; @ nag aop
(n—=2)ag az (n—1)a; a1 ...
D= (n—3)ag a3 (n—2)az a2 ... : (50)

0 0 0 0 an |y 0,
Proof of this result is in Appendix to the paper.

We assume that the roots of equation (3) are single and different from zero,
for that reason the determinant A can be equal zero only with the adjusted
initial conditions ¢; = ¢} or ¢? = cjes.

In this way we have obtained the following basic result:

THEOREM 6.1 If there exists an extremum of the solution of equation (1) with

the initial condition ci then the value of the extremum is equal to x. = c1 — cj,
2
c

and the new initial condition ci is determined by the relation c] = 2.
cs
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The moments of time at the extremum points can be calculated from the set of
(n — 1) independent equations (47). Then the number of extremums depends
on the initial conditions, and on the roots of the characteristic equation (3).
In particular, if equation (3) has complex conjugate roots, then the number of
extremums can be infinite.

If the characteristic equation has only real roots, then the number of ex-
tremums is between 0 and (n — 1) (see Gérecki, 1993, pp. 121 and 135-136).

The necessary and sufficient conditions for the existence of only single real,
and negative roots of equation (3) are determined by the following theorem (see
Merrow, 1956).

THEOREM 6.2 The necessary and sufficcient conditions for existence of only
single real and negative roots of equation (3) are as follows

1°. All the coefficients ag, a1, .. .,a, must be positive.
2°. All the main even (or odd) main determinants of matriz (51) must be
positive
nag ap 0 0 ...7
(n—1)a1 a nag ao
(n—2)az as (n—1)a; a1 ...
(n—3)as a3 (n—2)az as ... (51)
L 0 0 0 0 ap J onxom
s0
nag ag 0 0
nag  aop (n—1)a; a1 nag agp

AQZ >O, A4: >07

(n—1a1 a1 (n—2)ag az (n—1)ay a;
(n—3)asg as (n —2)as as

R Aoy >0 . (52)
We can also establish conditions for non existence of the extremums of eq. (1).

THEOREM 6.3 Let us consider the transfer function

bis™ 4 bos™ 2+ ...+ b, L(s)
G(s) = = . 53
() aps™ +a1s" 4+ ... +ay, M(s) (53)

We assume that the coefficients by, ...,b, are real, and the coefficients ag, a1,
..., Gy are real and positive, and fulfill the Hurwitz stability conditions.

The necessary and sufficient conditions for non existence of extremums of
equation (1) are that the zeros z; of the numerator L(s) and zeros s; of the
denominator M(s) of the transfer function G(s) (53) fulfill the inequalities s1 >
Zi > 89 > 29...8, > 2z, <0, Res; <0,1=1,2,...,n. All the zeros must be
real and single.
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Figure 3. Ilustration of the Theorem 6.3

7. Example 2: Equation of the n-th order

Let us consider the chain system which consists of n equal elements of R, L, C,
G types as in Fig. 4.

U - Uy

Klup-u 1)
o—<— o >

Figure 4. The chain LRCG system

Each element of the chain is closed by feedback with a gain K (see Gérecki,

2000). The impedance of the load is equal to the impendance of every element of
1

the chain. The transfer function of the whole system is equal to G(s) = M)
n(s

where
_ sinf(n + 1)¢(s)]
and ¢(s) can be determined from the relation
G+ sONELSL) |5 eosg . (55)

K+1
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From the equation M, (s) = 0 and the relation (54) we obtain

k
Bls) = ==

Using the relations (55) and (56) we have that

k=1,2,....n . (56)

LCs* + (GL + RC)s + GR + 4(K + 1) sin? =0k=1,..,n

2(n+1)

The roots of this characteristic equation for k = 1,2,...,n are

—(GL+ RC) + \/(GL +RC)? — 4LC[GR + 4(K + 1) sin® 52 ]

F12 k= 2LC

Knowing the roots s; we can calculate from equations (47) the moments of time
te, of extremums, and after that from the relation (2) the values of extremums

x(te,)-

8. Remark

The presentation of the new method gives the analytical solution of the tran-
scendental equations. The method will be illustrated by an example of the 3¢
order transcendental equation. Let us consider the following equation

Bleslt + B2€S2t 4 B3653t — O, S1 # So ;& S3 (57)

where Bj, Bs, Bs are constant parameters. We interpret this equation as the
derivative equal to zero of the system

j?(te) =0= Alsleslte + 142526521&E + A383653te . (58)

We look for such a solution x(t) which besides the equation (58) fulfills the
equations

z(te) = 0 = Ajestte + Afe™le + Alessle (59)
and
i(te) = 0= Ajsie®te + Ajsoe®'e + Alsge™te . (60)
The main determinant of the equations (58), (59) and (60) is equal to zero, if
the initial condition satisfy the following relation
2
* C2
G c3 (61)
Comparing the coefficients of the exponential terms in equations (57) and (58)
we obtain

B B
Al— ) A2:_2, A3:—3 .
S1 59 S3

(62)
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From the equation z(t) = 0 = Ajes1t + Aze®2t + Aze®s! we obtain, by putting
t = 0 and using (62), the relations

B, B, B
Aty dg= =424 2=

S2  S3
and from equation (57) we have for ¢t = 0 that
B+ B+ Bs3=cs . (63)
After differentiating equation (57) with respect to ¢ and putting ¢ = 0 we have
Bisi + Basg + Bgss =c3 . (64)
The unknown value of ¢ determined by (61) and using (63), (64) has the form

o (B; + Ba + B3)?
! Bis1 + Bass + Bsss

The unknown values t. of the equation (57) can now be found according to the
described general method.

Appendix: Calculation of the determinant (48)

The determinant (48) was calculated for n = 2,3,4,5. These results enable us
to postulate the conjecture that for an arbitrary n the formula (49) is valid.
The general proof of the relation (49) for arbitrary n was given by Professor
S. Bialas. This proof is as follows:

The elements of the inverse matrix to the matrix Y of Vandermonde have
1 ;
7) ( ~;Vj. Using these

relations it is possible to write the explicit forms (9) for coefﬁment Ay

_Z Yol (65)

the form determined by the relation (7). a;; =

k k
17 o250 — ol et] - (66)

=
NS
L

j=2
By substracting (66) from (65) we obtain

-1 k+1
Ay — ;:%Vk o (c1 = 1), E=1,2,...,n . (67)

n—1
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The substitution of the relations (67) into the formula (49) gives

A7 A% e A
5147 s9.A% e SR Al
e —c" 2| s1B soB ... s,B
A:(l 1) ; 11 ; 12 ;7, in (68)
yn-2 51B11 82B12 - SnBln
8711_2B11 Sg_2B12 Ce 5272B1n
where
B = (D)W o k=1,2,...,n . (69)
It is worth noting that in the formula (68) all the rows beginning from the third
up to the (n — 2)nd are independent of the initial conditions ¢, ¢1,ca, ..., Cp.
Let us denote by B the matrix whose determinant appears in the formula (68)
A7 A3 e A
5147 5943 e snAY
B = SlBll 82B12 . SnBln
S?_2Bll 83_2312 . 82_2317I

Consider the product of the matrices

1 1 . 1 A’{ 81141F SlBll . 871172311
S1 So . Sn A; SQA; 52B12 . Sg_2B12
VBT =
n—1 n—1 -1 —2
] S5 .Sy Ar spAY spBin, . s B,

Taking into account the fact that from the relations (2) and (4) for ¢ = 0 we have
z0=1(0) = ¢;, i = 1,2,...,n we obtain that
AT+ A5+ ...+ A=
S1AT + 5245+ ...+ 5, AL = e

STTVAL +si T s+ sy VAL = e

We can now express the product VBT in the following form

¢t c2 Bz B ... P
c2 ¢z Poz Poa ... Pon
VBT = | ¢3 e B3z Bsa ... [Ban (70)

Cn  Cni4i 6713 6714 ﬁnn
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where ¢p41 = 2"(0) = sT AT + s5AS + ...+ sTA%.
The elements 3;; in the matrix VBT (70) can be written using (69) in the

following form for ¢ =1,2,...,nand j =3,4,...,n
j—2
Sl Bll
j—2
sy, °B
Biyj= [s1 s siv1 ] 2 Pl
ij = 1 2 e Sp . =
j—2
ng Bln
i+j—3  i+j—3 it 71
sy sy oo §bFIT3 (71)
S1 59 Sn
_ 2 2 2
= 57 55 s
S?—l S;L—l Szfl

From the relations (71) it is evident that
ﬁijzo for i+j—3§n—1 (72)

because in the matrix (71) some of the rows will repeat and the determinant of

(71) will be equal to zero. The substitution of (72) into the matrix (70) yields
the following determinant

¢ c2 0 0 ... 0
Co C3 0 0O ... 0
[VBT|=|cs ca 33 Baa ... Ban | =

cs 0 0 ... 0

coc 0 0 ... 0
ca P33 B34 ... Ban cz B33 B34 Bs
' 64n e e n

¢n Bnz Bna .. B
Cn+1 6713 67177, . 677,71 " " " nn

B33 B34 ... P3n B33 B34 ... B3n
- Pas Bas - Ban | _ o | Pas Bas - Pan
2

=cj¢

677,3 677,4 v 67177, 6713 6714 cee 677,71
B33 B34 - Ban
643 644 v ﬁ4n

(cics — c3)

6713 677,4 v 677,71
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From the relations (72) we have

/BBJZO fOI‘ j:172,...,n_1
Baj=0 for j5=1,2,....,n—2
55,]‘:0 for j=1,2,...,n—3 (73)

677,,11]‘ =0 for j =3
and from (71) we obtain

Bsn = Ban—1) = Bsn—2) = --- = Bnz = (=1)"'s1s2...8,V =6 . (74)

Taking into account (73) and (74) we can write

o 0 ... 0 3
o 0 .. B Ban
’VBT’ — (_1)71—1 (C’{C3 — c%) 0 0 - 657171 6571 (75)
6 67174 67175 cee 6nn
= (=1)"%(cies — c3)(s182...8p)" 2 V2,
From (75) we have that the determinant
|B| = |B"| = (—1)"?(cies — c3) (s152...80)" 2 V"2 . (76)

Finally, using (68) and (76) we obtain the main result

n—2
(1 —ep)" 2

A= 7 (=1)"2 ]1;[1 8§ (cies —c3)

and the relation (47) is proved.
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