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Abstract: In this paper we introduce a generalized second-order
Riemann-type derivative for C1,1 vector functions and use it to es-
tablish necessary and sufficient optimality conditions for vector op-
timization problems. We show that these conditions are stronger
than those obtained by means of the second-order subdifferential in
Clarke sense considered in Guerraggio, Luc (2001) and also to some
extent than those obtained in Guerraggio, Luc, Minh (2001).
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1. Introduction

The class of C1,1 functions, that is differentiable scalar functions whose deri-
vatives are locally Lipschitz was first brought into attention by Hiriart-Urruty,
Strodiot and Hien Nguyen (1984). The need for investigating such functions,
as pointed out in Hiriart-Urrury, Strodiot and Hien Nguyen (1984) and Klatte,
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Tammer (1988), comes from the fact that several problems of applied math-
ematics including variational inequalities, semi-infinite programming, iterated
local minimization by decomposition etc., involve differentiable functions with
no hope of being twice differentiable. By introducing generalized Hessian matri-
ces with the help of Clarke’s generalized Jacobians, Hiriart-Urruty, Strodiot and
Hien Nguyen (1984) succeeded in extending Taylor’s expansion and exploited it
to derive the second-order optimality conditions for scalar problems with data
from this class of functions. Further applications were developed in Klatte,
Tammer (1988), Luc (1995), Luc, Schaible (1996), Yang, Jeyakumar (1992),
Yang (1993, 1994).

The analysis has been generalized to vector functions by Guerraggio and
Luc (2001), where by means of Clarke’s second-order subdifferential second or-
der necessary and sufficient optimality conditions for unconstrained vector opti-
mization problems are established. In Guerraggio, Luc (2003) the same authors
also give second-order optimality conditions for constrained vector problems.

In this paper a generalized Riemann derivative for C1,1 vector functions is
introduced. By means of this derivative we give necessary and sufficient second-
order optimality conditions for unconstrained vector optimization problems. We
prove that these conditions are stronger than those given in Guerraggio, Luc
(2001) and give some comparison with the results from Guerraggio, Luc, Minh
(2001). When f is a scalar C1,1 function the obtained optimality conditions
reduce to those proved in Ginchev, Guerraggio (1998).

2. Preliminary concepts

A function f from Rm to Rn is said to be of class C0,1 at x0 ∈ Rm when it is
locally Lipschitz at x0. We say that f is of class C0,1 when f is locally Lipschitz
at any point of Rm. If f is locally Lipschitz at x0, then, according to the
Rademacher Theorem, it is almost everywhere differentiable in a neighborhood
of x0. Hence the Clarke’s generalized Jacobian of f at x0 ∈ Rm, denoted by
∂f(x0) can be defined as the set:

∂f(x0) = cl conv{lim f ′(xi) : xi → x0, f ′(xi) exists},

where f ′ denotes the Jacobian of f and cl conv{. . .} stands for the closed convex
hull of the set under the parentheses.Now assume that f is a differentiable vector
functions from Rm to Rn whose derivative is of class C0,1 at x0. In this case
we also say that f is of class C1,1 at x0. We say that f is of class C1,1 when it
is of class C1,1 at any point of Rm. Denote by f ′′ the Jacobian of the function
f ′ : Rm → Rm×n. The Clarke’s generalized Jacobian of f ′ at x0 is then denoted
by ∂2f(x0) and called the second-order subdifferential of f at x0, more precisely:

∂2f(x0) = cl conv{lim f ′′(xi) : xi → x0, f ′′(xi) exists}.

Thus, ∂2f(x0) is a subset of the finite dimensional space L(Rm, L(Rm,Rn))
of linear operators from Rm to the space L(Rm,Rn) of linear operators from Rm
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to Rn. The elements of ∂2f(x0) can therefore be viewed as bilinear functions on
Rm×Rm with values in Rn. For the case n = 1, the term “generalized Hessian
matrix” was used in Hiriart-Urrury, Storiot, Hien Nguyen (1984) to denote
the set ∂2f(x0). By the previous construction the second-order subdifferential
enjoys the properties of the generalized Jacobian. For instance ∂2f(x0) is a
nonempty convex compact set of the space L(Rm, L(Rm,Rn)) and the set-
valued map x → ∂2f(x) is upper semicontinuous (u.s.c.). Let u ∈ Rm; in the
following we will denote by Lu the value of a linear operator L : Rm → Rn at the
point u ∈ Rm and by H(u, v) the value of a bilinear operator H : Rm ×Rm →
Rn at the point (u, v) ∈ Rm × Rm. So we will set:

∂f(x)(u) = {Lu : L ∈ ∂f(x)}

and:

∂2f(x)(u, u) = {H(u, u) : H ∈ ∂2f(x)}.

We recall some important properties from Guerraggio, Luc (2001, 2003):

(i) Mean-value Theorem: Let f be of class C0,1 and a, b ∈ Rm. Then:
f(b) − f(a) ∈ cl conv{∂f(x)(b − a) : x ∈ [a, b]},

where [a, b] = conv{a, b};

(ii) Taylor’s expansion: Let f be of class C1,1 and a, b ∈ Rm. Then:
f(b) − f(a) ∈ f ′(a)(b − a) +

1

2
cl conv{∂2f(x)(b − a, b − a) : x ∈ [a, b]}.

Guerraggio and Luc (2001, 2003) have given necessary and sufficient op-
timality conditions for vector optimization problems, expressed by means of
∂2f(x).

In the following f will always denote a function of class C1,1 at the considered
point x0.

Now we set:

∆2
Rf(x0, t, u) =

f(x0 + 2tu) − 2f(x0 + tu) + f(x0)

t2
.

The following theorem can be easily deduced from Theorem 2.1 in La Torre,
Rocca (2001/02) and characterizes functions of class C1,1 in terms of
∆2

Rf(x0, t, u).

Theorem 2.1 Assume that the function f : Rm → Rn is bounded on a neigh-
borhood of the point x0 ∈ Rm. Then f is of class C1,1 at x0 if and only if
there exist neighborhoods U of x0 and V of 0 ∈ R and a constant M ≥ 0
such that ‖∆2

Rf(x, t, u)‖ ≤ M for every x ∈ U , t ∈ V \{0} and u ∈ S1 =
{u ∈ Rm : ‖u‖ = 1}.
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Definition 2.1 The second upper Riemann derivative of the function f at the
point x0 ∈ Rm in the direction u ∈ Rm is defined as:

f ′′

R(x0, u) = Limsupt→0+∆2
Rf(x0, t, u),

where Limsup denotes the upper limit of sets in the sense of Kuratowski, that
is, the set of all cluster points of sequences ∆2

Rf(x0, tk, u), taken as tk → 0+.

Remark 2.1 Riemann introduced (for scalar functions) the homonymous no-
tion of second-order derivative while he was studying the convergence of trigono-
metric series, Riemann (1892). If g is a function from R to R, the second-order
Riemann derivative of g at the point x ∈ R is given by:

lim
t→0+

g(x + 2t) − 2g(x + t) + g(x)

t2
,

if this limit exists. Taking lim sup or lim inf instead of lim one obtains upper and
lower Riemann derivatives. For properties and applications of Riemann deriva-
tives one can see Ash (1967, 1985), Marcinkiewicz, Zygmund (1936), Zygmund
(1959). Hence the previous definition generalizes the notion of Riemann deriv-
ative to functions from Rm to Rn.

The following theorem states basic properties of f ′′

R(x0, u) for a C1,1 func-
tion f .

Theorem 2.2 f ′′

R(x0, u) is a nonempty and compact subset of Rn.

Proof. The thesis is an obvious consequence of Theorem 2.1.

The next result links the second upper Riemann derivative to ∂2f(x).

Theorem 2.3 f ′′

R(x0, u) ⊆ ∂2f(x0)(u, u).

Proof. Applying Taylor’s expansion we can write for t > 0 “small enough”:

f(x0 + 2tu)− f(x0 + tu) ∈ tf ′(x0 + tu)u+

t2

2
cl conv{∂2f(x)(u, u) : x ∈ [x0 + tu, x0 + 2tu]}

and:

f(x0) − f(x0 + tu) ∈ −tf ′(x0 + tu)u+

t2

2
cl conv{∂2f(x)(u, u) : x ∈ [x0 + tu, x0]}.

Hence, by addition:

∆2
Rf(x0, t, u) ∈

1

2
cl conv{∂2f(x)(u, u) : x ∈ [x0 + tu, x0 + 2tu]}+

1

2
cl conv{∂2f(x)(u, u) : [x0 + tu, x0]}.
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Since the map x → ∂2f(x) is u.s.c., then for any ε > 0, there exists a neighbor-
hood U of x0 such that whenever x ∈ U there holds:

∂2f(x)(u, u) ⊆ ∂2f(x0)(u, u) + εB,

where B is the closed unit ball in Rn. So, for t “small enough” we have:

(i) cl conv{∂2f(x)(u, u) : x ∈ [x0 + tu, x0 + 2tu]} ⊆ cl conv
[

∂2f(x0)(u, u)+
εB] = ∂2f(x0)(u, u) + εB;

(ii) cl conv{∂2f(x)(u, u) : x ∈ [x0 + tu, x0]} ⊆ cl conv
[

∂2f(x0)(u, u) + εB
]

=
∂2f(x0)(u, u) + εB.

Hence we have, for t “small enough”:

∆2
Rf(x0, t, u) ∈ ∂2f(x0)(u, u) + 2εB.

If tk → 0+ is a sequence such that ∆2
Rf(x0, tk, u) → L ∈ Rn, then L is an

element of f ′′

R(x0, u) and L ∈ ∂2f(x0)(u, u) + 2εB, since this set is compact.
Since ε is arbitrary and ∂2f(x0) is closed we obtain:

L ∈ ∂2f(x0)(u, u)

and the theorem in proved.

Remark 2.2 The set f ′′

R(x0, u) is not necessarily convex, but since ∂2f(x0)(u, u)
is convex, it follows also that convf ′′

R(x0, u) ⊆ ∂2f(x0)(u, u).

Remark 2.3 The forthcoming Example 3.1 shows that the inclusions in Theo-
rem 2.3 and remark 2.2 can be strict.

The search for ”second order subdifferentials” smaller than ∂2f(x) has a
recent development in Guerraggio, Luc, Minh (2001), Jeyakumar, Luc (1998).
In these papers, the authors introduce the notion of approximate Hessian for C1

functions and by means of this concept give second order optimality conditions
for a vector optimization problem. We recall below the notion of approximate
Jacobian and the related notion of approximate Hessian.

Definition 2.2 Let f be a continuous function from Rm to Rn. An approxi-
mate Jacobian ∂Af(x) of f at x is defined as a closed set of M ∈ L(Rm,Rn)
such that for every u ∈ Rm and v ∈ Rn it holds:

(vf)+(x, u) ≤ sup
M∈∂Af(x)

〈v, Mu〉 ,

where vf(x) =
∑n

j=1 vjfj(x) and (vf)+(x, u) is the upper Dini directional deriv-
ative of the function vf at x in the direction u, that is:

(vf)+(x, u) = lim sup
t→0+

(vf)(x + tu) − (vf)(x)

t
.
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Now let f : Rm → Rn be of class C1. The Jacobian matrix map ∇f
is a continuous vector function from Rm to the space L(Rm,Rn). An ap-
proximate Hessian ∂2

Af(x) of f at x is defined as a closed subset of the space
L(Rm, L(Rm,Rn)) being an approximate Jacobian of ∇f at x.

Second order optimality conditions in terms of approximate Hessians for vec-
tor optimization problems are given by Guerraggio, Luc, Minh (2001). Their
approach is not fully comparable with the one based on Riemann derivatives.
Nevertheless, Example 5.1 in the last section shows that the approach based on
Riemann derivatives can give better results. Let us underline also that the ap-
plication of Riemann derivatives gives a computational advantage in comparison
to the conditions based on approximate Hessians.

3. Necessary optimality conditions for weakly efficient and

ideal solutions

In this section we prove second-order necessary optimality conditions for uncon-
strained vector optimization problems, which are stronger than those provided
by Guerraggio and Luc (2001).

Assume that the space Rn is partially ordered by a closed, convex, pointed
cone C, with a nonempty interior and denote by Ac the complement of the set
A.

Let M be any of the cones Cc, C\{0}, and int C. The unconstrained vector
optimization problem corresponding to the pair (f, M) is written as:

minMf(x), x ∈ Rm,

which amounts to finding a point x0 ∈ Rm (called the optimal solution) such
that there is no x ∈ Rm with f(x) ∈ f(x0) − M . If this is true for all x in
some neighborhood of x0, then we call x0 a local optimal solution. The optimal
solutions of the vector problem corresponding to (f, Cc) (respectively (f, C\{0})
and (f, int C) are called ideal solutions (respectively, efficient solutions and
weakly efficient solutions). It follows directly from the definition that x0 is a
local ideal solution if and only if there is a neighborhood U ⊂ Rm of x0 such
that:

f(x) − f(x0) ∈ C, ∀x ∈ U.

Guerraggio and Luc (2001) have proved necessary and sufficicient optimality
conditions for vector problems, that we summarize in the following theorems.

Theorem 3.1 (i) Let x0 ∈ Rm be a local weakly efficient solution. Then the
following conditions hold:
a) f ′(x0)u ∈ (−int C)c, ∀u ∈ Rm;
b) ∂2f(x0)(u, u)∩(−int C)c 6= ∅, for u ∈ Rm with f ′(x0)u ∈ −(C\int C).
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(ii) Let x0 ∈ Rm be a local ideal solution. Then the following conditions
hold:
a) f ′(x0) = 0;
b) ∂2f(x0)(u, u) ∩ C 6= ∅, ∀u ∈ Rm.

Theorem 3.2 (i) Assume that one of the following conditions holds at a
point x0 ∈ Rm:
a) f ′(x0)u ∈ (−C)c, ∀u ∈ Rm;
b) ∂2f(x0)(u, u) ⊆ int C, for u ∈ Rm such that f ′(x0)u = 0.
Then x0 is a local efficient solution.

(ii) Assume that the following conditions hold at a point x0 ∈ Rm:
a) f ′(x0) = 0;
b) ∂2f(x0)(u, u) ⊆ int C, ∀u ∈ Rm\{0}.
Then x0 is a local ideal solution.

Now we prove second-order necessary optimality conditions for unconstrained
vector optimization problems, expressed by means of Riemann derivatives.

Theorem 3.3 Let x0 ∈ Rm be a local weakly efficient solution. Then the fol-
lowing conditions hold:

(i) f ′(x0)u ∈ (−int C)c, for every u ∈ Rm;
(ii) f ′′

R(x0, u) ∩ (−int C)c 6= ∅, for u ∈ Rm, with f ′(x0)u ∈ −(C\int C).

Proof. Condition (i) has been given in Theorem 3.1 and so we prove only
condition (ii).

We begin observing that for any t > 0, u ∈ Rm and j = 1, 2, 3, . . ., the
following identity holds (see also Ginchev, Guerraggio, 1998):

f(x0 + tu) − f(x0) = t
f(x0 + t

2j u) − f(x0)
t
2j

+
t2

2

j
∑

i=1

1

2i
∆2

Rf(x0,
t

2i
, u).

(1)

Let t > 0 and u ∈ Rm be fixed. Observe that as j → +∞, we have:

f(x0 + t
2j u) − f(x0)

t
2j

→ f ′(x0)u

and therefore
∑+∞

i=1
1
2i ∆

2
Rf(x0, t

2i , u) converges. Furthermore, for t̄ ”small enough”,
from Theorem 2.1, we get that the set {∆2

Rf(x0, t, u) : t ∈ (0, t̄)} is bounded.
Hence, it readily follows that ∀γ > 0, ∃δ = δ(γ) > 0, such that:

2) ∆2
Rf(x0, t, u) ∈ f ′′

R(x0, u) + γB,

for t ∈ (0, δ(γ)).
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Now, for β ∈ (0, δ(γ)), consider the sequence:

ak =

k
∑

i=1

1

2i
∆2

Rf(x0,
t

2i
, u) +

(

1 −
k
∑

i=1

1

2i

)

∆2
Rf(x0, β, u) .

Clearly, for t ∈ (0, γ(δ)), ak belongs to the convex compact set conv {f ′′

R(x0, u)+
γB}. By letting k go to +∞, we get the inclusion:

+∞
∑

i=1

1

2i
∆2

Rf(x0,
t

2i
, u) ∈ conv {f ′′

R(x0, u) + γB}.

Now, assume that u ∈ Rm is such that f ′(x0)u ∈ −(C\int C), and ab
absurdo suppose that:

f ′′

R(x0, u) ∩ (−int C)c = ∅,

that is f ′′

R(x0, u) ⊆ −int C. Since f ′′

R(x0, u) is compact and int C is open and
convex, we obtain the existence of a number γ > 0 such that:

conv[f ′′

R(x0, u) + γB] ⊆ −int C.

Hence, for t “small enough”, we obtain:

f(x0 + tu) − f(x0) = tf ′(x0)u +
t2

2

+∞
∑

i=1

1

2i
∆2

Rf(x0,
t

2i
, u)

∈ −(C\int C) − int C ⊆ −int C,

which is absurd. So the proof is complete.

Remark 3.1 Since f ′′

R(x0, u) ⊆ ∂2f(x0)(u, u), the necessary conditions of the
previous theorem are stronger than those proved by Guerraggio and Luc (2001)
in terms of ∂2f(x0)(u, u). The same remark holds for Theorem 3.4. Example
3.1 shows that the conditions expressed by means of Riemann derivatives can
work when the conditions of Theorem 3.1 do not.

Example 3.1 Consider the function f : Rn → Rn defined for x = (x1, . . . , xn)
∈ Rn as f(x) =

(∫ x1

0
|z| dz , . . . ,

∫ xn

0
|z| dz

)

and let C = Rn
+. It is easy

to see that the point x0 = 0 ∈ Rn is not a local weakly efficient solution.
We have f ′(x)u = (|x1|u1, . . . , |xn|un) for u = (u1, . . . , un) ∈ Rn and in
particular f ′(x0) = 0 ∈ Rn×n. For the second-order subdifferential we have
∂2f(x0)(u, u) = I u2

1 × · · · × I u2
n, where I = [−1, 1] ⊂ R. The second-order

necessary condition from Theorem 3.1, (i), is satisfied, therefore we cannot con-
clude on this basis that x0 is not a local weakly efficient point. For the second-
order Riemann derivative we have f ′′

R(x0, u) = (sign(u1)u2
1, . . . , sign(un)u2

n).
In particular, if all the coordinates of u are negative we have f ′′

R(x0, u) =
(−u2

1, . . . ,−u2
n) ∈ −int C . Therefore for such u the second-order necessary

condition from Theorem 3.3 is not satisfied and on this basis we can conclude
that x0 is not a local efficient point.
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The following theorem states necessary conditions for local ideal solutions.

Theorem 3.4 Let x0 ∈ Rm be a local ideal solution. Then the following con-
ditions hold:

(i) f ′(x0) = 0;
(ii) for every u ∈ Rm we have convf ′′

R(x0, u) ∩ C 6= ∅.

Proof. Condition i) is stated in Theorem 3.1 and so we prove only condition ii).

Ab absurdo, assume that x0 is a local ideal solution, but ii) does not hold,
so that there exists a vector u ∈ Rm such that:

convf ′′

R(x0, u) ∩ C = ∅,

that is convf ′′

R(x0, u) ⊆ Cc. Since convf ′′

R(x0, u) is compact and Cc is open,
there exists a number γ > 0 such that:

conv[f ′′

R(x0, u) + γB] = convf ′′

R(x0, u) + γB ⊆ Cc.

From the proof of the previous theorem, we know that for every γ > 0, there
exists δ > 0 such that for all t ∈ (0, δ) there is:

+∞
∑

i=1

1

2i
∆2

Rf(x0,
t

2i
, u) ∈ conv{f ′′

R(x0, u) + γB}.

Using identity (1), we find that for t “small enough”, f(x0 + tu) − f(x0) ∈ Cc,
which is a contradiction.

It is easy to see that when a function f : Rm → R is considered, then from
the previous theorems we recover the necessary conditions for a local extremum,
proved by Ginchev and Guerraggio (1998), as stated in the following result.

Corollary 3.1 Let f : Rm → R be a function of class C1,1 at a point x0 ∈
Rm. If x0 is a local minimizer of the function f , then the following conditions
hold:

(i) f ′(x0) = 0;
(ii) lim supt→0+ ∆2

R(x0, t, u) ≥ 0, ∀u ∈ Rm.

4. Sufficient optimality conditions for efficient and ideal

solutions

Before giving sufficient optimality conditions, we prove the following lemma.

Lemma 4.1 f ′′

R(x0, u) = f ′′

r (x0, u),
where f ′′

r (x0, u) = Limsupt→0+, u′→u∆2
Rf(x0, t, u′), that is the set of all cluster

points of sequences ∆2
Rf(x0, tk, uk), taken as tk → 0+ and uk → u.
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Proof. The inclusion f ′′

R(x0, u) ⊆ f ′′

r (x0, u) is obvious, so that we have only
to prove the reverse inclusion. Let L ∈ f ′′

r (x0, u); hence there exist sequences
tk → 0+ and uk → u as k → +∞, such that:

L = lim
k→+∞

1

t2k

(

f(x0 + 2tkuk) − 2f(x0 + tkuk) + f(x0)
)

.

We have:

1

t2k

(

f(x0 + 2tkuk) − 2f(x0 + tkuk) + f(x0)
)

=
1

t2k
[f(x0 + 2tkuk) − 2f(x0 + tkuk) + f(x0)

−f(x0 + 2tku) + f(x0 + 2tku) − 2f(x0 + tku) + 2f(x0 + tku)].

Without loss of generality we can assume that:

1

t2k

(

f(x0 + 2tku) − 2f(x0 + tku) + f(x0)
)

→ L′.

Let f = (f1, . . . , fn), with fi : Rm → R. For every i = 1, . . . , n, applying the
mean value theorem we have:

[

fi(x
0 + 2tkuk) − fi(x

0 + 2tku) − 2(fi(x
0 + tkuk) − fi(x

0 + tku))
]

= 2tk
[

f ′

i(x
0 + 2tku + 2θi,ktk(uk − u))(uk − u)

−f ′

i(x
0 + tku + θ′i,ktk(uk − u)) (uk − u)] ,

where θi,k, θ′i,k ∈ (0, 1). Since f ∈ C1,1 we obtain:

∣

∣2tk
[

f ′

i(x
0 + 2tku + 2θi,ktk(uk − u))(uk − u)

−f ′

i(x
0 + tku + θ′i,ktk(uk − u))(uk − u)

]
∣

∣

∣

≤ 2Kitk‖tku + 2θi,ktk(uk − u) − θ′i,ktk(uk − u)‖‖uk − u‖

≤ 2Kit
2
k‖u‖‖uk − u‖ + 2Kit

2
k|2θi,k − θ′i,k|‖uk − u‖2 ,

where Ki is a Lipschitz constant for f ′

i . Hence it is easily seen that:

1

t2k

[

fi(x
0 + 2tkuk) − fi(x

0 + 2tku) − 2(fi(x
0 + tkuk) − fi(x

0 + tku))
]

→ 0.

It follows that L = L′ and the lemma is proved.

Theorem 4.1 Let f be a function of class C1,1 and assume that at the point
x0 ∈ Rm for every u ∈ S1 one of the following conditions holds:

(i) f ′(x0)u ∈ (−C)c;
(ii) f ′(x0)u ∈ −(C\int C) and f ′′

R(x0, u) ⊆ int C.
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Then x0 is a local efficient solution.

Proof. Assume, ab absurdo, that for every u ∈ S1 condition i) or ii) holds, but
x0 is not a local efficient solution. Then there exists a sequence xj → x0 such
that:

f(xj) − f(x0) ∈ −C\{0}. (2)

We can put xj = x0 + tjuj, where tj → 0+, uj ∈ S1, and without loss of
generality we can accept that uj → u ∈ S1. For this u one of the following two
possibilities holds:

(i) f ′(x0)u ∈ (−C)c;
(ii) f ′(x0)u ∈ −(C\int C) and f ′′

R(x0, u) ⊆ int C.
Assume that the first case holds. Then, since f is of class C1,1 and, account-

ing for (2), we have:

f ′(x0)u = lim
t→0+

f(x0 + tu) − f(x0)

t
= lim

j→+∞

f(xj) − f(x0)

tj
∈ −C,

a contradiction.
Therefore the case ii) should be true. The inclusion f ′′

R(x0, u) ⊆ int C and
f ′′

R(x0, u) compact implies that there exists γ > 0 such that f ′′

R(x0, u) + γB ⊆
int C, whence

conv (f ′′

R(x0, u) + γB) = conv f ′′

R(x0, u) + γB ⊆ int C.

Consequently, as in the proof of Theorem 3.3 and Lemma 4.1, there exists δ > 0,
such that for all t ∈ (0, δ) and u′ ∈ S1, ‖u′ − u‖ < δ, there holds:

+∞
∑

i=1

1

2i
∆2

Rf(x0,
t

2i
, u′) ∈ conv {f ′′

R(x0, u) + γB} ⊆ int C.

Applying the above reasonings, we see that for j “large enough” we have:

f(xj) − f(x0) = tjf
′(x0)uj +

t2j
2

+∞
∑

i=1

1

2i
∆2

Rf(x0,
tj
2i

, uj)

and consequently

f(xj) − f(x0) ⊆ −(C\int C) + int C,

which contradicts (2), since the set on the right-hand side does not intersect
−(C\int C). Indeed, if the latter is not true, then we would have −c1 =
−c2 + c0 ⇔ c2 = c0 + c1 for some c0 ∈ int C, c1 = C \ {0}, c2 ∈ C \ int C. The
last equality is contradictory, since the right-hand side belongs to int C, while
the left-hand side does not.
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Theorem 4.2 Let f be a function of class C1,1 and assume that the following
conditions hold at a point x0 ∈ Rm:

(i) f ′(x0) = 0;
(ii) f ′′

R(x0, u) ⊆ int C, for every u ∈ S1.
Then x0 is a local ideal solution.

Proof. Ab absurdo, assume that x0 is not a local ideal solution. Then there
exists a sequence xj = x0+tjuj, uj ∈ S1, uj → u ∈ S1 such that f(xj)−f(x0) ∈
Cc. We have:

f(xj) − f(x0) =
+∞
∑

i=1

1

2i
∆2

Rf(x0,
tj
2i

, uj).

By analogy to the previous theorem we can conclude that for j “large enough”,

+∞
∑

i=1

1

2i
∆2

Rf(x0,
tj
2i

, uj) ∈ int C,

and this is a contradiction.

Remark 4.1 The sufficient optimality conditions proved in the previous the-
orems are stronger than those provided by Guerraggio and Luc (2001), since
f ′′

R(x0, u) ⊆ ∂2f(x0)(u, u).

Example 4.1 Let C = R2
+ and consider the twice differentiable function f :

R → R2 defined as:

f(x) = (x2,

∫ x

0

z2 sin
1

z
dz + cx2),

where c ∈ (0, 1/2). Then, at the local ideal point x0 = 0 we have f ′(0) = 0 and:

∂2f(0)(u, u) = [(2u2, (−1 + 2c)u2), (2u2, (1 + 2c)u2)],

whenever u ∈ R. Hence the sufficient condition on ∂2f(0)(u, u) for 0 to be a
local ideal solution is not satisfied. On the contrary, we have :

f ′′

R(0, u) = (2u2, 2cu2), ∀u ∈ R

and so the sufficient condition on f ′′

R(0, u) for f to be a local ideal solution is
satisfied.

When f is a function from Rm to R, the previous theorems provide the
following sufficient optimality conditions for f (see also Ginchev, Guerraggio,
1998).

Corollary 4.1 Let f : Rm → R be a function of class C1,1 at x0 ∈ Rm and
assume that at x0 the following conditions hold:

(i) f ′(x0) = 0;
(ii) lim inft→0+ ∆2

R(x0, t, u) > 0, for every u ∈ S1.
Then x0 is a local minimizer of f .
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5. Final remarks

In the case of twice continuously differentiable function f : Rm → Rn the
Riemann derivative f ′′

R(x0, u) is a singleton and coincides with the Hessian
f ′′(x0)(u, u). In such a case the necessary conditions from Theorems 3.3 and
3.4 and the sufficient conditions from Theorems 4.1 and 4.2 can be reformulated
in terms of the Hessian. The optimality conditions obtained in such a way can
be referred to as the classical ones. We use the following simple example of a
function f : R → R to underline that the conditions in Riemann derivatives
work also when the classical conditions do not.

Example 5.1 Consider the function f : R → R, defined as

f(x) =

{

x3 sin 1
x

+ κx2 , x 6= 0,
0 , x = 0.

Obviously f is of class C1,1 but not of class C2. The point x0 = 0 is a point of
a local minimum for f in the case κ > 0 and is not a point of a local minimim
in the case κ < 0.

The conclusion in this example follows directly by Theorems 3.3 and 4.1.
We have to observe that f ′(0) = 0 and f ′′

R(0,±1) = 2κ. This result cannot
be obtained by the classical second order conditions, since f is not twice dif-
ferentiable at 0. Let us underline that also the classical first order conditions
cannot be applied (we mean that f ′(x) ≤ 0, x0 − ε < x ≤ x0 and f ′(x) ≥ 0,
x0 ≤ x < x0 + ε for some ε > 0 implies that x0 is a point of a local minimum),
since the derivative f ′(x) is not monotonic near x0 = 0.

Now we apply this example to give some comparison with the results ob-
tained in Guerraggio, Luc, Minh (2001). The latter are supposed to improve the
results from Guerraggio, Luc (2001, 2003). In the case of a function f : R → R
the results of Guerraggio, Luc, Minh, 2001 simplify as follows:

Theorem 5.1 Let f : R → R be a continuously differentiable function and
denote by ∂2

Af(x0) the approximate Hessian of f at x0.

a) Necessary Conditions (compare with Guerraggio, Luc, Minh, 2001, The-
orem 3.1)
Let x0 be a local minimizer of f . Then f ′(x0) = 0 and for each u ∈ R there ex-
ists M ∈ cl conv ∂2

Af(x0) or M ∈
(

conv ∂2
Af(x0)

)

∞
\{0} such that M(u, u) ≥ 0

(here A∞ stands for the recession cone of a given set A)

b) Sufficient Conditions (compare with Guerraggio, Luc, Minh, 2001, The-
orem 4.1)
Suppose that f ′(x0) = 0 and for each u 6= 0 and each M ∈ cl conv ∂2

Af(x0) ∪
((

conv ∂2
Af(x0)

)

∞
\ {0}

)

it holds M(u, u) > 0. Then x0 is a strong local mini-
mizer.
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The gradient ∇f(x)u = f ′(x)u of the function from Example 5.1 is given by

f ′(x) =

{

3x2 sin 1
x
− x cos 1

x
+ 2κx , x 6= 0,

0 , x = 0.

Applying the definitions from Section 2, we get (v ∇f)+(0, u) = |uv|+2κ uv.
Therefore, each approximate Hessian ∂2

Af(0) contains points M−, M+, such that
M− ≤ 2κ− 1 < 2κ + 1 ≤ M+ and consequently [2κ− 1, 2κ + 1] ⊆ conv ∂2

Af(0).

Take now for κ one of the following:

10. −1/2 < κ < 0. Then x0 = 0 is not a local minimizer, which can
be established on the basis that the necessary conditions of Theorem 3.3 are
not satisfied. At the same time the inequalities 2κ − 1 < 0 < 2κ + 1 show
that 0 ∈ conv ∂2

Af(0). Therefore, the necessary conditions of Theorem 5.1 are
satisfied. Consequently, on the basis of the necessary conditions of Theorem 5.1
one cannot reject the suspicion that x0 = 0 is a local minimizer.

20. 0 < κ < 1/2. Then x0 = 0 is a local minimizer, which can be established
on the basis that the sufficient conditions of Theorem 4.1 are satisfied. At the
same time the inequalities 2κ − 1 < 0 < 2κ + 1 show that 0 ∈ conv ∂2

Af(0).
Therefore, the sufficient conditions of Theorem 5.1 are not satisfied. Conse-
quently, on the basis of the sufficient conditions of Theorem 5.1 one cannot
establish that x0 = 0 is a local minimizer.
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