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Abstract: We consider a vector minimax Boolean programming
problem. The problem consists in finding the set of Pareto optimal
solutions. When the problem’s parameters vary then the optimal
solution of the problem obtained for some initial parameters may
appear non-optimal. We calculate the maximal perturbation of pa-
rameters which preseves the optimality of a given solution of the
problem. The formula for the stability radius of the given Pareto
optimal solution was obtained.

Keywords: sensitivity analysis, stability radius, Boolean pro-
gramming, Pareto optimal solution.

1. Introduction

Stability theory is an integral part of any traditional section of mathematics.
J. Hadamard included the stability condition in the concept of a well-posed
mathematical problem on a par with conditions of existence and uniqueness
of solution (see Hadamard, 1902). In optimization the question of stability of
a problem arises in the case when the set of feasible solutions and (or) the
choice function depend on parameters, for which the area of change is known
only. The presence of such parameters in optimization models is caused by
inaccuracy of initial data, non-adequacy of models to real processes, errors of
numerical methods, errors of approximation and other factors. So, it appears
important to the classes of problems in which small changes of input data lead
to small changes of the result. The problems with such properties are called
stable. It is obvious that any optimization problem arising in practice can not
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be correctly formulated and solved without the use of results of the stability
theory.

The common presence of discrete optimization models in economy, manage-
ment and design caused a great interest of many specialists in the questions of
stability, sensitivity and postoptimality analysis of combinatorial optimization
problems (see, e.g., Sotskov et al., 1995, 1998; Sergienko et al., 1995; Libura
1996, 2000; Greenberg, 1998; Hoesel and Wagelmans, 1999).

A vector optimization problem is usually understood as the problem of find-
ing a set of efficient solutions, i.e. of choosing from the set of feasible solutions
the alternatives which satisfy a given optimality principle. In the case where the
partial criteria of the problem have an equal importance, the Pareto optimality
principle (see Pareto, 1909) is most often used. Investigation of the stability of
a vector optimization problem means usually the study of behavior of the set of
efficient solutions under changing problem’s parameters.

One of the methods of sensitivity analysis is related to the finding of the so
called stability radius (see e.g. Sotskov et al., 1995; Chakravarti and Wagelmans,
1999), defined as the limiting level of perturbations of problem’s parameters for
which the initially optimal solution remains optimal.

2. Statement of the problem

The problem of stability in the minimax Boolean programming problem can
be formulated as follows. Let C = (cij) ∈ Rn×m, n, m ∈ N, m ≥ 2, Ci =
(ci1, ci2, ..., cim), Em = {0, 1}m, and T be the non-empty subset of the permu-
tations set Sm, which is defined on the set Nm = {1, 2, ..., m}. On the set of
feasible solutions (i.e. Boolean vectors) X ⊆ Em, |X | > 1, we define the vector
criterion

f(x, C) = (f1(x, C1), f2(x, C2), ..., fn(x, Cn)) −→ min
x∈X

.

The components (partial criteria) are functions

fi(x, Ci) = max
t∈T

∑

j∈N(x)

cit(j), i ∈ Nn,

where

t =

[

1 2 ... m
t(1) t(2) ... t(m)

]

,

N(x) = {j ∈ Nm : xj = 1}, x = (x1, x2, ..., xm)T .

Suppose that Ci[t] = (cit(1), cit(2), ..., cit(m)). Then we can rewrite the partial
criteria in the following form

fi(x, Ci) = max
t∈T

Ci[t]x, i ∈ Nn.
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The problem of finding the set of efficient solutions (the Pareto set)

Pn(C) = {x ∈ X : π(x, C) = ∅}

is called a vector minimax Boolean programming problem and denoted Zn(C),
with

π(x, C) = {x′ ∈ X : q(x, x′, C) ≥ 0(n), q(x, x′, C) 6= 0(n)},

q(x, x′, C) = (q1(x, x′, C1), q2(x, x′, C2), ... , qn(x, x′, Cn)),

qi(x, x′, Ci) = fi(x, Ci) − fi(x
′, Ci), i ∈ Nn, 0(n) = (0, 0, ..., 0) ∈ Rn.

The number

ρn(x0, C) =
{

sup Ω if Ω 6= ∅
0 otherwise

is called the stability radius of the efficient solution x0, where

eΩ = {ε > 0 : ∀C′ ∈ ℜ(ε) (x0 ∈ Pn(C + C′))},

ℜ(ε) = {C′ ∈ Rn×m :‖ C′ ‖∞< ε}.

3. Basic results

For any x0 6= x and any permutation t ∈ T we introduce the following notations:

T (x0, x) = {t ∈ T : ∀t′ ∈ T (N(x0, t) 6= N(x, t′))},

N(x, t) = {t(j) : j ∈ Nm, xj = 1}, T̄ (x0, x) = T \T (x0, x).

Lemma 3.1 Assume that x0 6= x, t0 ∈ T̄ (x0, x). Then Ci[t
0]x0 ≤ fi(x, Ci) for

any index i ∈ Nn and matrix C ∈ Rn×m.

The efficient solution x0 is called trivial if the set T (x0, x) is empty for any
x ∈ X\{x0} and non-trivial otherwise.

Theorem 3.1 The stability radius ρn(x0, C) of any trivial solution x0 is infinite.

Proof. Let x0 ∈ Pn(C). Since x is trivial, the equality T = T̄ (x0, x) is true for
any x ∈ X\{x0}. By Lemma 3.1, the inequality (C +C′)i[t

0]x0 ≤ fi(x, Ci +C′
i)

holds for any x ∈ X\{x0}, t0 ∈ T, i ∈ Nn, C′ ∈ Rn×m. Hence q(x0, x, C +
C′) ≤ 0(n). So, the solution x0 ∈ Pn(C) preserves efficiency for any independent
pertubation of matrix C. Thus, ρn(xo, C) = ∞. Theorem 3.1 is proved.

Lemma 3.2 Let x0 be non-trivial, ϕ > 0. Suppose that for any matrix C′ ∈ ℜ(ϕ)
and x ∈ X\{x0} there exists an index i ∈ Nn such that qi(x, x0, Ci + C′

i) > 0.
Then, x0 ∈ Pn(C + C′) for any matrix C′ ∈ ℜ(ϕ).
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For any non-trivial solution x0 put

ϕn(x0, C) = min
x∈Q(x0)

max
i∈Nn

min
t0∈T (x0,x)

max
t∈T

Ci[t]x − Ci[t
0]x0

σ(x0, t0, x, t)
,

where

σ(x0, t0, x, t) = |(N(x0, t0) ∪ N(x, t))\(N(x0, t0) ∩ N(x, t))|,

Q(x0) = {x ∈ X\{x0} : T (x0, x) 6= ∅}.

The following statements are true

Ci[t]x − Ci[t
0]x0 + ||Ci||∞σ(x0, t0, x, t) ≥ 0, i ∈ Nn, (1)

t0 ∈ T̄ (x, x0) −→ ∃t ∈ T (σ(x0, t0, x, t) = 0). (2)

It is easy to see that 0 ≤ ϕn(x0, C) < ∞.

Theorem 3.2 The stability radius ρn(x0, C) of any non-trivial solution x0 is

expressed by the formula

ρn(x0, C) = ϕn(x0, C).

Proof. First let us prove that ρn(x0, C) ≥ ϕ := ϕn(x0, C). For ϕ = 0, there is
nothing to prove. Let ϕ > 0. Then, for any x ∈ X\{x0} there exists an index
i ∈ Nn such that

min
t0∈T (x0,x)

max
t∈T

Ci[t]x − Ci[t
0]x0

σ(x0, t0, x, t)
≥ ϕ.

Using (1) and (2) we get the following statements

qi(x, x0, Ci + C′
i) = max

t∈T
(Ci + C′

i)[t]x − max
t0∈T

(Ci + C′
i)[t

0]x0 =

= min
t0∈T

max
t∈T

(Ci[t]x − Ci[t
0]x0 + C′

i[t]x − C′
i[t

0]x0) ≥

≥ min
t0∈T

max
t∈T

(Ci[t]x − Ci[t
0]x0 − ||C′

i||∞σ(x0, t0, x, t)) =

= min
t0∈T (x0,x)

max
t∈T

(Ci[t]x − Ci[t
0]x0 − ||C′

i||∞σ(x0, t0, x, t)) >

> min
t0∈T (x0,x)

max
t∈T

(Ci[t]x − Ci[t
0]x0 − ϕσ(x0, t0, x, t)) ≥ 0.

By Lemma 3.2, we obtain that any non-trivial solution x0 preserves efficiency
for any perturbing matrix C′ ∈ ℜ(ϕ) (i.e ρn(x0, C) ≥ ϕ). It remains to check
that ρn(x0, C) ≤ ϕ. According to the definition of ϕ, there exists x ∈ X\{x0}
such that for any i ∈ Nn

ϕ ≥ min
t0∈T (x0,x)

max
t∈T

Ci[t]x − Ci[t
0]x0

σ(x0, t0, x, t)
= max

t∈T

Ci[t]x − Ci[t̃]x
0

σ(x0, t̃, x, t)
. (3)
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Let ε > 0. Consider the following perturbing matrix C∗
i . Every row of this

matrix consists of the elements

c∗ij =

{

α if j ∈ N(x0, t̃)
− α otherwise

where ϕ < α < ε. Using (3) we get the following expressions:

qi(x, x0, Ci + C∗
i ) = max

t∈T
(Ci + C∗

i )[t]x − max
t∈T

(Ci + C∗
i )[t]x0 ≤

max
t∈T

(Ci + C∗
i )[t]x − (Ci + C∗

i )[t̃]x0 = (Ci + C∗
i )[t̂]x − (Ci + C∗

i )[t̃]x0 =

= Ci[t̂]x − Ci[t̃]x
0 − ασ(x0, t̃, x, t̂) < Ci[t̂]x − Ci[t̃]x

0 − ϕσ(x0, t̃, x, t̂) ≤

≤ Ci[t̂]x − Ci[t̃]x
0 − σ(x0, t̃, x, t̂)max

t∈T

Ci[t]x − Ci[t̃]x
0

σ(x0, t̃, x, t)
≤

≤ Ci[t̂]x − Ci[t̃]x
0 − σ(x0, t̃, x, t̂)

Ci[t̂]x − Ci[t̃]x
0

σ(x0, t̃, x, t̂)
= 0.

Hence, x0 is not an efficient solution of the perturbed problem Zn(C + C∗),
where C∗ ∈ ℜ(ϕ). It means that ρn(x0, C) ≥ ϕ. That completes the proof of
Theorem 3.2.

4. Supplementary remarks

In a particular case, when |T | = 1, t =

[

1 2 ... m
1 2 ... m

]

, we have the usual

vector Boolean programming problem with linear partial criteria:

fi(x, Ci) = Cix, i ∈ Nn.

Then, from Theorem 3.2 we conclude that the stability radius of any solution
x0 is expressed by the formula (see Emelichev et al., 2003)

ρn(x0, C) = min
x∈X\{x0}

max
i∈Nn

Cix − Cix
0

σ(x0, x)
,

where

σ(x0, x) =

m
∑

j=1

|x − x0| =

m
∑

j=1

|x| +
m

∑

j=1

|x0| − 2 < x, x0 > .

For the case of a scalar problem (n = 1), our formula for the stability radius
transforms into (compare with Libura, 1993)

ρn(x0, C) = min
x∈X\{x0}

Cix − Cix
0

σ(x0, x)
. (4)

At the end of this paper we give a small example.
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Let n = m = 2, X = {x1, x2}, x1 = (0, 1), x2 = (1, 1), T = {t1, t2},

t1 =

[

1 2
1 2

]

, t2 =

[

1 2
2 1

]

, C =

[

1 1
2 1

]

.

Then

f(x1, C) = (1, 2), f(x2, C) = (2, 3), P 2(C) = {x1}.

By applying Theorem 3.2 we get ρ2(x1, C) = 1
2 . If we remove t2 from the set T ,

then

f(x1, C) = (1, 1), f(x2, C) = (2, 3), P 2(C) = {x1}.

Using (4) we get ρ2(x1, C) = 1.
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