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Abstract: The exact stability bound of the parasitic parameter
for a discrete-time singularly perturbed system is determined by the
linear fractional transformation (LFT) framework. Two systematic
approaches including time-domain and frequency-domain methods
are proposed to solve this problem based on the unified LFT frame-
work. One employs the Kronecker product of LFTs and the guardian
map theory. The other is to plot the eigenvalue loci of a real rational
function matrix. Two examples are given to show the feasibility of
the approaches.
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1. Introduction

Singular perturbations arise naturally in many control systems as a result of
the presence of small physical parameters, such as small time constant, mass,
capacitance, etc. Singularly perturbed systems or two-time-scale systems, con-
sist of a slow subsystem and a fast subsystem. An overview of discrete-time
or continuous-time singularly perturbed systems was given in Naidu and Pao
(1985), Naidu, Price and Hibey (1987), Kokotovic, Khalil and O’Reilly (1986).

The stability bound problem is of great practical significance for analysis
and synthesis in singularly perturbed systems. For continuous-time cases, this
problem has been investigated by various methods and some solutions have been
proposed in Fang (1988), Chen and Lin (1990), Sen and Datta (1993), Mustafa
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(1995), Li et al. (1997), Chen and Lin (1999). For discrete-time cases, an ap-
proach based on Nyquist plot to determine the stability bounds was developed
in Li and Li (1992). In Kafri and Abed (1996), the authors used guardian
map theory to address this problem and gave less stringent assumption than
Li and Li (1992). Recently, Li, Chiou and Kung (1999) and Ghosh, Sen and
Datta (1999) used the critical stability criterion to solve this problem by the
bialternate product.

In this paper two systematic approaches in time domain and frequency do-
main are proposed to determine the exact stability bounds of a discrete-time
singularly perturbed system. The Schur stability is considered. It means that
all eigenvalues of the system lie in the open unit circle. The approaches are
essentially based on the LFT framework which was successfully applied to con-
tinuous cases, see Chen and Li (1999). For the time domain approach, the
stability bounds are determined by using the Kronecker product of LFTs and
the guardian map theory. For the frequency domain approach, they can be also
determined by plotting the eigenvalue loci of a rational function matrix. It is
seen that the results in Li and Li (1992) can be easily obtained by the frequency
domain approach. An appealing advantage of the system in LFT description is
to provide a unified framework for evaluating the exact stability bounds.

In Li and Li (1992), Li, Chiou and Kung (1999), a nonsingularity assumption
for a subsystem matrix was made, but it is not necessary in our approaches.
Compared with Kafri and Abed (1996), the LFT framework proposed in this
paper provides a matrix with smaller dimension, which is used to find out the
stability bounds in constructing the guardian map. Although the method from
Ghosh, Sen and Datta (1999) could be used to reduce the dimension of the
computational matrix, however, it involved a one-dimensional search over the
positive real domain.

This paper is organized as follows. In the following section some preliminar-
ies are briefly reviewed and the LFT description systems are proposed. Main
results for determining the exact bounds by time-domain and frequency-domain
approaches are given in Sections 3 and 4, respectively. Two examples are given
in Section 5 to show the feasibility of the approaches. Finally, a brief conclusion
will be given in the last section.

2. Preliminaries and LFT description systems

Suppose that M is a matrix partitioned as M =

[

M11 M12

M21 M22

]

and △ is a

matrix of appropriate dimension. The upper and lower linear fractional trans-
formations (LFTs) are defined as, Doyle, Packard and Zhon (1991)

Fu(M,△) := M22 + M21△(I − M11△)−1M12, (1)

Fl(M,△) := M11 + M12△(I − M22△)−1M21, (2)
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respectively. Clearly, the existence of the LFTs depends, respectively, on the
invertibility of matrices I − M11△ and I − M22△.

The Kronecker product of two square real matrices A and B is denoted by
A ⊗ B, Lancester and Tismenetsky (1985). If A is an m1 × m1 matrix and B
is an m2 × m2 matrix, then A ⊗ B is an m1m2 × m1m2 matrix with (i, j)-th
block aijB. The Kronecker product of two LFTs was established in Lin and
Chen (1999).

Lemma 2.1 (Lin and Chen, 1999) Let △M ∈ C
q2×p2 and △N ∈ C

s2×r2 . Sup-
pose that M and N are complex matrices partitioned as

M =

[

M11 M12

M21 M22

]

∈ C
(p1+p2)(q1+q2),

N =

[

N11 N12

N21 N22

]

∈ C
(r1+r2)×(s1+s2)

then

Fl(M,△M ) ⊗ Fl(N,△N ) = Fl(G,△G)

where

G =







M11 ⊗ N11 Ip1
⊗ N12 M12 ⊗ N11

M11 ⊗ N21 Ip1
⊗ N22 M12 ⊗ N21

M21 ⊗ Is1
0 M22 ⊗ Is1






=

[

G11 G12

G21 G22

]

,

△G =

[

Ip1
⊗△N 0
0 △M ⊗ Is1

]

.

The discrete-time models of sampling singularly perturbed continuous sys-
tems can be classified into two categories: the slow sampling model

∑

1 and the
fast sampling model

∑

2, described in Naidu, Price and Hibey (1987), Li and
Li (1992), Kafri and Abed (1996), Li, Chiou and Kung (1999), and Ghosh, Sen
and Datta (1999),

∑

1
:

x(k + 1) = A11x(k) + εA12y(k)
y(k + 1) = A21x(k) + εA22y(k)

(3)

and

∑

2
:

x(k + 1) = (In1
+ εA11)x(k) + εA12y(k)

y(k + 1) = A21x(k) + A22y(k).
(4)

In both of them x(k) ∈ Rn1 and y(k) ∈ Rn2 are the state vectors at the k-th
instant. The constant matrices Aij , i, j = 1, 2, are of consistent dimensions.
The singular perturbation parameter ε is a small positive scalar.
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The stability bound problem of a discrete-time singularly perturbed system
is to determine the upper stability bound ε∗ such that the overall system remains
stable for all ε ∈ (0, ε∗).

Let X(k) = [xT (k) yT (k)]T and ε be considered as a parameter uncertainty,
then the system

∑

1 can be rewritten as an LFT description of

∑

1
: X(k + 1) = Fl(M, εIn2

)X(k) = Fl

([

M11 M12

M21 M22

]

, εIn2

)

X(k) (5)

where

M11 =

[

A11 0
A21 0

]

n×n

, M12 =

[

A12

A22

]

n×n2

,

M21 = [ 0 In2
]n2×n, M22 = 0n2×n2

.

Similarly, the system
∑

2 can be rewritten as an LFT description of

∑

2
: X(k + 1) = Fl(N, εIn1

)X(k) = Fl

([

N11 N12

N21 N22

]

, εIn1

)

X(k) (6)

where

N11 =

[

In1
0

A21 A22

]

n×n

, N12 =

[

In1

0

]

n×n1

,

N21 = [ A11 A12 ]n1×n, N22 = 0n1×n1
.

Remark 2.1 Although the slow sampling model can be represented in different
forms, Li and Li (1992), Kafri and Abed (1996), Li, Chiou and Kung (1999),
Ghosh, Sen and Datta (1999), these forms can be equivalently transformed to
the canonical model

∑

1 by a state-variable transformation, Li, Chiou and Kung
(1999), Ghosh, Sen and Datta (1999). Thus, the stability analysis can be carried
out only for the system

∑

1 since stability is invariant under any state-variable
transformation. On the contrary, the representation of the fast sampling model
∑

2 is unique.

In the sequel, two systematic approaches including time-domain and frequency-
domain methods are developed to determine the exact stability bounds for both
models

∑

1 and
∑

2.

3. Time-domain approach

The guardian map was introduced in Saydy, Tits and Abed (1990) as a use-
ful tool for studying generalized stability of parametrized families of matrices.
With the system matrix Fl(M, εIn2

), the LFT description of the system
∑

1, a
guardian map for Schur stability is given by

det(Fl(M, εIn2
) ⊗ Fl(M, εIn2

) − In ⊗ In) := det(Fl(M̂, εI2nn2
)) (7)
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where

M̂ =





M11 ⊗ M11 − In2 Ir ⊗ M12 M12 ⊗ M11

M11 ⊗ M21 0 M12 ⊗ M21

M21 ⊗ Ir 0 0



 :=

[

M̂11 M̂12

M̂21 M̂22

]

. (8)

The matrix Fl(M̂, εI2nn2
) can be calculated directly from Lemma 2.1, and

it is required to be nonsingular to guarantee Schur stability of the system
∑

1

for all ε ∈ (0, ε∗). The only assumption in the following theorem is that A11

is Schur stable. The invertibility of A11, assumed in Li and Li (1992), Li,
Chiou and Kung (1999), is not required. Thus, this paper gives less stringent
conditions for stability analysis as shown in Kafri and Abed (1996).

Theorem 3.1 Let A11 be Schur stable. The discrete-time singularly perturbed
system

∑

1 is Schur stable for all ε ∈ (0, ε∗). Then the exact stability bound ε∗

is given by

ε∗ =
1

λ+
max

(M̃)

where M̃ = M̂22 − M̂21M̂
−1
11 M̂12 and λ+

max(M̃) denotes the largest positive real
eigenvalue of the matrix M̃ .

Proof. Since A11 is Schur stable, and thus M11 =

[

A11 0
A21 0

]

, the nominal

system matrix of Fl(M, εIn2
) with ε = 0 in

∑

1, is Schur stable. This implies

that matrix M̂11 = M11 ⊗ M11 − In2 is nonsingular. Hence, from the guardian
map theory we have

System
∑

1 is Schur stable

⇔ Fl(M̂, εI2nn2
) is nonsingular

⇔ det(M̂11 + εM̂12(I2nn2
− εM̂22)

−1M̂21) 6= 0

⇔ det(In2 + εM̂−1
11 M̂12(I2nn2

− εM̂22)
−1M̂21) 6= 0

⇔ det(I2nn2
+ ε(I2nn2

− εM̂22)
−1M̂21M̂

−1
11 M̂12) 6= 0

⇔ det(I2nn2
− εM̂22 + εM̂21M̂

−1
11 M̂12) 6= 0

⇔ det(I2nn2
− εM̃) 6= 0.

As a result, ε∗ is the smallest positive real value such that det(I2nn2
−εM̃) = 0.

Therefore, the system
∑

1 preserves the Schur stability for all ε ∈ (0, ε∗).

Similarly, the guardian map for Schur stability of the system
∑

2 is given by

det(Fl(N, εIn1
) ⊗ Fl(N, εIn1

) − In ⊗ In) := det(Fl(N̂ , εI2nn1
)) (9)
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where

N̂ =





N11 ⊗ N11 − In2 In ⊗ N12 N12 ⊗ N11

N11 ⊗ N21 0 N12 ⊗ N21

N21 ⊗ In 0 0



 :=

[

N̂11 N̂12

N̂21 N̂22

]

. (10)

The matrix Fl(N̂ , εI2nn1
) must be nonsingular to guarantee Schur stability of the

system
∑

2 for all ε ∈ (0, ε∗). It is worth noting that there is a significant differ-

ence between
∑

1 and
∑

2. The nominal system matrix, N11 =

[

In1
0

A21 A22

]

in
∑

2 with fixed n1 eigenvalues of one, is not Schur stable. Thus, Theorem
3.1 can not be directly applied to the system

∑

2 because the invertibility of

N̂11 = N11 ⊗ N11 − In2 does not exist. However, the guardian map is also
applicable, and thus the following theorem is established.

Theorem 3.2 Assume that A22 is Schur stable. The discrete-time singularly
perturbed system

∑

2 is Schur stable for all ε ∈ (0, ε∗). Then the exact stability
bound ε∗ is given by

ε∗ = λ+
min(U, V )

where U =

[

I2nn1
0

0 0

]

, V =

[

N̂22 −N̂21

N̂12 −N̂11

]

and λ+
min(U, V ) denotes the

smallest positive real generalized eigenvalues of the matrix pair (U, V ), i.e.,
det(U − λV ) = 0.

Proof. Analogous to the Theorem 3.1,

System
∑

2 is Schur stable

⇔ Fl(N̂ , εI2nn1
) is nonsingular

⇔ det(N̂11 + εN̂12(I2nn1
− εN̂22)

−1N̂21) 6= 0

⇔ det(N̂11 + N̂12(
1
ε
I2nn1

− N̂22)
−1N̂21) 6= 0.

(11)

It is worth noting that the matrix (1
ε
I2nn1

− N̂22) is not singular for any ε > 0.
The following determinant identity holds

det

([

A B
C D

])

= det(A) · det(D − CA−1B)

if the matrix A is nonsingular. Eqn. 11 is thereby equivalent to

det

([

1
ε
I2nn1

− N̂22 N̂21

−N̂12 N̂11

])

6= 0 ⇔ det

(

1

ε
U − V

)

6= 0.

Then the maximal stability bound ε∗ is the smallest positive number ε such
that
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det

(

1

ε
U − V

)

= 0

holds. Mathematically, the above equation can be rewritten as det(U −εV ) = 0
for ε 6= 0. Hence ε∗ = λ+

min(U, V ). This completes the proof.

Remark 3.1 The generalized eigenvalues of the matrix pair (U, V ) can be easily
be obtained by using the existing software packages, for example, the Matlab
(Matlab..., 1991) command ”eig(U, V )”. If there does not exist any positive real
generalized eigenvalue for the matrix pair (U, V ), then either the system

∑

2

is Schur stable for all ε > 0 or it is not Schur stable for any ε > 0. The precise
situation can be checked by an arbitrarily chosen positive number ε.

4. Frequency-domain approach

In this section, an LFT block diagram is proposed to evaluate the exact stability
bound for a discrete-time singularly perturbed system. Taking the z-transform
for system

∑

1 yields

zX(z) = Fl(M, εIn2
)X(z) (12)

with zero initial conditions. Clearly, (12) can be represented by an LFT block
diagram illustrated in Fig. 1, where z−1In denotes the time-shift operator.

M
)(kX )1(kX

n
Iz
1

2n
I

Figure 1. An LFT block diagram of system
∑

1

Absorbing the time-shift operator z−1In into the matrix M by upper LFT,
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leads to an equivalent block diagram shown in Fig. 2, where

P (z) = Fu(M, z−1In)

= M22 + z−1M21(In − z−1M11)
−1M12

= 0 + [0 In2
]

(

zIn −

[

A11 0
A21 0

])

−1 [

A12

A22

]

= [0 In2
]

([

(zIn1
− A11)

−1 0
z−1A21(zIn1

− A11)
−1 z−1In2

])

−1 [

A12

A22

]

= z−1(A21(zIn1
− A11)

−1A12 + A22). (13)

Figure 2. An equivalent block diagram of Figure 1

Assume that matrix A11 is Schur stable, then P (z) is a stable rational func-
tion matrix of dimension n2 × n2 with poles in the unit circle. Clearly, the
characteristic equation of the system

∑

1 is given by

det (In2
− εP (z)) = 0 (14)

Since the nominal system matrix of the system
∑

1 is Schur stable, of all eigen-
values lie inside the unit circle. For the special case of ε = ε∗, there exist at
least an eigenvalue just on the unit circle. Consequently, the problem of finding
the exact stability bound ε∗ is equivalent to determining the smallest positive
number ε such that

det(In2
− εP (ejθ)) = 0 for 0 ≤ θ < 2π. (15)

Let λi(e
jθ), i = 1, 2, . . . , n2, be the i-th eigenvalue of the rational function

matrix P (ejθ) for a given θ, then the graphs of λi(e
jθ) for 0 ≤ θ < 2π are

the eigenvalue loci of the matrix P (ejθ). Based on the fact that eigenvalues
are continuous functions of the entries of a matrix, λi(e

jθ) is continuous on θ
for i = 1, 2, . . . , n2. In view of this, an explicit solution for ε∗ is obtained by
plotting the eigenvalue loci of P (ejθ) for 0 ≤ θ < 2π.
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Theorem 4.1 Assume that A11 is Schur stable. The discrete-time singularly
perturbed system

∑

1 is Schur stable for all ε ∈ (0, ε∗). Then the exact stability
bound ε∗ is given by

ε∗ =
1

λ+
max(P (ejθ))

where λ+
max(P (ejθ)) denotes the largest positive real eigenvalue of matrix P (ejθ)

for 0 ≤ θ < 2π.

Proof. If the eigenvalue loci of matrix P (ejθ) for 0 ≤ θ < 2π intersect the
real axis at (δ, 0), then there exists a real number ε = 1

δ
satisfying det(In2

−
εP (ejθ)) = 0. Mathematically,

ε∗ = min

{

ε > 0 : det

(

1

ε
In2

− P (ejθ)

)

= 0 for 0 ≤ θ < 2π

}

=
1

λ+
max(P (ejθ))

.

As a result, the exact stability bound ε∗ is the reciprocal of the largest positive
real value where the eigenvalue loci of matrix P (ejθ) for 0 ≤ θ < 2π intersect
the real axis. This completes the proof.

Analogous to the development of Theorem 4.1, the exact stability bound of
system

∑

2 can be obtained in the following theorem.

Theorem 4.2 Assume that A22 is Schur stable. The discrete-time singularly
perturbed system

∑

2 is Schur stable for all ε ∈ (0, ε∗). Then the exact stability
bound ε∗ is given by

ε∗ =
1

λ+
max(G(ejθ))

where G(ejθ) = (ejθ − 1)−1[A11 + A12(e
jθIn2

− A22)
−1A21] and λ+

max(G(ejθ))
denotes the largest positive real eigenvalue of G(ejθ) for 0 ≤ θ < 2π.

Proof. An LFT block diagram can be depicted as shown in Fig. 1 with matrix
M replaced by matrix N and εIn2

replaced by εIn1
. Then the upper LFT of

the time-shift operator z−1In and matrix N is given by

G(z) = Fu(N, z−1In)

= N22 + z−1N21(In − z−1N11)
−1N12

= 0 + [ A11 A12 ]



zIn −





In1
0

A21 A22









−1 



In1

0





= [ A11 A12 ]





(zIn1
− In1

)−1 0

(zIn2
− A22)

−1A21(zIn1
− In1

)−1 (zIn2
− A22)

−1









In1

0





= (z − 1)−1(A11 + A12(zIn2
− A22)

−1A21).
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G(ejθ) is a stable rational function matrix of dimension n1×n1 with assumption
of A22 being Schur stable. The remainder is similar to the development of
Theorem 4.1.

Remark 4.1 In the complex plane of eigenvalues of matrices P (ejθ) or G(ejθ),
if the eigenvalue loci intersect the positive real axis at points (λ+

1 , 0), (λ+
2 , 0),

. . . , (λ+
m, 0), with λ+

m > · · · > λ+
2 > λ+

1 > 0, then ε∗ = 1/λ+
m. In the case where

the eigenvalue loci do not intersect the positive real axis, either the system
∑

2

is Schur stable for all ε > 0 or it is not Schur stable for any ε > 0. The precise
situation can be checked by an arbitrarily chosen positive number ε.

Remark 4.2 The conditions determining the maximal stability bound ε∗ in
Theorem 4.1 and Theorem 4.2 coincide with Li’s results in Li and Li (1992). It
is clear that the LFT framework provides a more systematic and straightforward
development.

Remark 4.3 Comparing time-domain approach with frequency-domain approach,
it is seen that the dimension of matrix to be dealt with in Theorems 4.1 and 4.2
is lower but a sweeping parameter θ is needed. On the other hand, the dimen-
sion of matrix to be dealt with in Theorems 3.1 and 3.2 is larger but no sweeping
parameter is needed.

5. Illustrative examples

In this section, two examples are presented to illustrate the proposed approaches.

Example 5.1 Let us consider the same example adopted from Li, Chiou and
Kung (1999). The slow sampling model

∑

1 is given by








x1(k + 1)
x2(k + 1)
y1(k + 1)
y2(k + 1)









=









0.9 1.1 −1.7357ε 0.5357ε
0 0.8 0 −2.7882ε

−0.05 1.65 2.5963ε 0.8036ε
0 0.0453 0 1.3423ε

















x1(k)
x2(k)
y1(k)
y2(k)









.

For the time-domain approach, the set of the non-repeated positive real
eigenvalues of the matrix M̃ = M̂22 − M̂21M̂11M̂12 is {0.7108, 0.8556, 1.2001,
2.2499, 3.4642}. The dimension of the matrix M̃ is 16× 16. Based on Theorem
3.1, we obtain ε∗ = 1/3.4642 = 0.2887. On the other hand, for the frequency-
domain approach, the eigenvalue loci plot of P (ejθ) for 0 ≤ θ < 2π is shown in
Fig. 3.

P (ejθ) is a matrix of dimensions 2×2. It can be seen that the largest value of
the eigenvalue loci intersecting the positive real axis is 3.4642. Hence, Theorem
3.2 leads to the stability bound ε∗ = 1/3.4642 = 0.2887. Both results derived
from the two approaches are clearly the same. They also coincide with that
of Li, Chiou and Kung (1999), which was determined by calculating four real
eigenvalues. Although the same result can be obtained by the method of Kafri
and Abed (1996), the matrix size for calculation is 32× 32.
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Figure 3. The eigenvalue plot of matrix P (eθ) for 0 ≤ θ < 2π

Example 5.2 Let us consider the same example as the one analysed in Li and
Li (1992), Kafri and Abed (1996), Ghosh, Sen and Datta (1999). The fast
sampling model

∑

2 is described by








x(k + 1)
y1(k + 1)
y2(k + 1)
y3(k + 1)









=









1 − 6.71ε ε −ε ε
−1 −0.65 0 0

−0.05 0 0.45 0
0.98 0 0 −0.54

















x(k)
y1(k)
y2(k)
y3(k)









.

For the time-domain approach, the set of the non-repeated positive real
generalized eigenvalues of the matrix pair (U, V ) is given by {0.347, 0.3778,
0.5528}, and thus we have the stability bound ε∗ = 0.347 by Theorem 3.2.

On the other hand, for the frequency-domain approach, G(ejθ) is a scalar
function since the dimension of the fast mode is one. The eigenvalue loci plot
of G(ejθ) for 0 < θ < 2π is shown in Fig 4. The local plot of interest is shown
in Fig. 5.

It is seen that the largest value of the eigenvalue loci intersecting the positive
real axis is 2.8815. Hence, Theorem 4.1 leads to the stability bound ε∗ =
1/2.8815 = 0.347. The results derived from both approaches are clearly the
same. The results also coincide with those obtained in Li and Li (1992), Kafri
and Abed (1996), Ghosh, Sen and Datta (1999).
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Figure 4. The eigenvalue loci of matrix G(ejθ) for 0 < θ < 2π

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4
-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Im
a

g
in

a
ry

 A
x
is

Figure 5. The local eigenvalue loci of matrix for G(ejθ)

6. Conclusions

The exact stability bound is derived in an explicit and closed form to guarantee
Schur stability of a discrete-time singularly perturbed system by time-domain
and frequency-domain approaches. An LFT description for the system is pro-
posed to serve as a unified framework for evaluating the exact stability bound in
both approaches. In fact, the approaches can be extended to address more gen-
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eral stability region with a suitable guardian map for time-domain approach or a
sweeping parameter on the regional boundary for frequency-domain approach.
Illustrative examples show that the results obtained by both approaches are
the same, and also the same as those of the existing criteria proposed in the
literature.
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