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Abstract: At the conceptual stage of design, designers only
have vague ideas of initial shapes which they gradually refine. These
imprecise shapes may be specified by a set of fuzzy shape descriptors
which represent the intent of a designer. It is also desirable to be
able to save them in a database for future reference or for use as
initial shapes for new designs. Most research on fuzzy databases
has been focused on theoretical aspects while a fuzzy database is
rarely seen in practice, especially in the design area. This paper
aims to construct a fuzzy shape database to support shape design
by integrating fuzzy data processing and fuzzy querying functions
into a conventional database. A possibility-based framework is used
for a fuzzy relational database model.
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1. Introduction

Design is generally defined as a process of creating a description of an artifi-
cial object that satisfies certain constraints. Conceptual design is the process
in witch tentative design alternatives are produced. This process is generally
achieved by sketching and prototyping. Conceptual design is intrinsically im-
precise with imprecision coming from both designers’ thinking and practical
problems. At this stage, designers have only vague ideas of initial shapes that
they gradually refine. Therefore, appropriate tools should satisfy the require-
ments of fuzziness in shape description, and allow designers to work at a higher
level without having to consider precise details so that their creativity is not
hindered. Existing CAD systems based on rigid, precise geometric represen-
tation such as vertices, edges and surfaces lack these imprecise properties. In
order to support the top-down shape design process, it is desirable to be able
to represent the intent of a designer using a set of descriptive words that we
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call shape descriptors. The fuzzy set approach that was introduced by Zadeh
(Zadeh, 1965, 1999) is particularly suitable for handling the imprecise shape
perception process of humans and hence is chosen for the shape representation.
In addition to its perceptual aspect, a shape also needs to be physically mod-
elled in a CAD (Computer-Aided Design) system so designers can communicate
their designs to manufacturers, therefore an underlying geometric shape repre-
sentation is needed. We have constructed a fuzzy shape specification system to
bridge these two aspects of shape (Pham and Zhang, 2000), where each set of
shape descriptors corresponds to a set of shapes that looks similar yet slightly
different. We call this set of shapes a fuzzy shape.

In many cases, successful designs may be stored in a database and retrieved
later to be used as initial shapes for new designs. The database that performs
fuzzy shape management is called a fuzzy shape database. Most research on
fuzzy databases has been focused on theoretical aspects while fuzzy databases
are rarely seen in practice, especially in the design area. This paper aims to
construct a fuzzy shape database to support shape design by integrating fuzzy
data processing and fuzzy querying functions into a conventional relational data-
base. We concentrate on fuzzy shape representation, indexing, retrieving and
querying issues.

In a fuzzy database, the fuzzy set approach is used to represent and ma-
nipulate imprecise or uncertain information. Fuzzy relational database is an
extension of conventional relational database in the sense that it allows fuzzy
attribute values or fuzzy relations to be represented in a relational model. A key
characteristic of fuzzy database is that the domain values need not be atomic.

There are two main aspects in the application of the fuzzy set approach to
the database area:

e Building fuzzy front-end querying systems for regular, crisp databases,
such as the well-known SQLf and FQUERY systems (Kacprzyk and Zadro-
zny, 1997; Petry and Bosc, 1996). This kind of systems is used to make
the query more flexible. Fuzziness happens only at the query level.

e Building a full Database Management System (DBMS) that can facilitate
the manipulation of imprecision and vagueness represented by fuzzy sets.
In such a system, fuzziness happens in the database itself including at-
tribute data, relationship and entity as well as external querying (Petry
and Bosc, 1996; Pons et al., 1997; Vila et al., 1995; Yazici et al., 1999).

Our work belongs to the second class because all shape descriptors are de-
scriptive terms associated with fuzzy sets and all parameters hold fuzzy set
values. Yet in practice, we map this application to the first class by treating the
attributes with fuzzy set values in a similar way as multiple-valued attributes
are usually treated in a conventional relational database. Add-in functions are
employed to perform fuzzy updating, querying and retrieving.

Current fuzzy database representation approaches can be categorised into
three frameworks according to the way fuzzy data is represented: similarity-
based (Buckles and Petry, 1982; Petry and Bosc, 1996), fuzzy-relation-based



A fuzzy shape database to support conceptual design 143

(Baldwin, 1983; Baldwin et al., 1995) and possibility-based (Bosc and Gali-
bourg, 1989; Petry and Bosc, 1996; Prade and Testemale, 1987; Umano, 1982).
The similarity-based framework associates a domain similarity relation with
each attribute instead of just an identity relation. This method relies on the
pre-partition of attribute’s domain and the pre-definition of the correspond-
ing similarity relation. The fuzzy-relation-based framework uses weighted tuples
to represent fuzzy relations in which each tuple is associated with a degree of
truth while the values of individual attributes are crisp. As this framework
represents the imprecise information through a membership value associated
with the overall tuple, it is not very expressible. In practice, it is often used
along with other frameworks such as the possibility-based framework (Baldwin
et al., 1995; Umano, 1983). The possibility-based framework uses possibility dis-
tribution to represent imprecise information including linguistic terms. In this
framework, the relation is an ordinary relation yet available imprecise informa-
tion about the value of an attribute for a tuple is represented by a possibility
distribution. Hence, this representation is more flexible and expressive than
the similarity-based framework and the fuzzy-relation-based framework. As the
possibility-based fuzzy database model associates imprecise information directly
with data items, it satisfies the need for storing fuzzy shapes whose parameters
are represented as possibility distributions. We will therefore focus on this
framework in this paper.

This paper is organized as follows. In Section 2, we introduce the geomet-
ric and perceptual representation of fuzzy shapes. A fuzzy shape specification
system that provides the original data for the fuzzy shape database is briefly
outlined. The shape descriptions that are based on the vague perception in the
design process are then discussed. In Section 3, an overview of the database
structure is outlined. Section 4 presents the conceptual modelling of this fuzzy
shape database. Section 5 gives the shape indexing methods that index shapes
in several different ways. For quick and crisp searching of shape, a shape iden-
tification number is automatically generated and will be used as the primary
index. For general shape retrieval, the combination of shape name and version
is used as an alternative index. For flexible and vague shape retrieval, the com-
bination of a set of shape descriptors is employed as another candidate index
of shapes. Since the first indexing method is very common in database design
and the second indexing method is conventional in engineering databases, we
do not need to discuss these techniques in this paper. Instead, we will focus
on the third shape indexing approach. In Section 6, a knowledge-base assisted
shape querying method is discussed. A graphical user interface is constructed
for natural-language-like query input and a graphical three-dimensional shape
display window is employed for supporting query output. The SQL querying
mechanism of a commercial database management system is employed as the
underlying querying engine. In Section 7, the possibility-based fuzzy shape re-
trieval method is presented. A hierarchical shape matching approach that aims
to speed up the fuzzy shape retrieval process is discussed. Finally, Section 8
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provides the implementation and test results. Conclusions and future work are
given in the last section.

2. Shape representation

Many representational schemes exist for modeling 3D shapes: Constructive Solid
Geometry (CSG), Boundary Representation (B-Rep), sweeping, cellular decom-
position (Bronsvoort, 1990; Mntyl, 1988), NURBS (Piegl and Tiller, 1997), and
parametric and feature-based modeling (Shah and Mntyl, 1995). These model-
ing methods are based on precise representations of geometric objects, such as
vertices, edges, surfaces as well as exact topology relationships between them.
These methods are good at supporting the detail design process where all pre-
cise design details must be represented. However, they are not suitable for
supporting conceptual design which is inherently qualitative and uncertain.

Qualitative shape models such as geons have been used for object recog-
nition in the computer vision area (Biederman, 1987; Dickinson et al., 1993;
Dickinson, 1994) because they are suitable for dealing with imprecise data or
lack of data. However, qualitative models cannot provide sufficient quanti-
tative information that is required for shape specification and manipulation in
CAD/CAM (Computer-Aided Design and Manufacturing) systems. Deformable
superquadrics are composed of basic super-ellipsoids and their deformations.
Basic shape parameters and deformation parameters provide precise quantita-
tive information about a shape. Since the linguistic descriptions of a shape can
be linked to shape parameters directly, deformable superquadrics also provide
qualitative information. The properties of being both quantitative and qualita-
tive makes superquadrics the ideal candidate for bridging qualitative conceptual
shape design and detail design. These properties also make it possible for us
to introduce fuzzy set approach into a CAD system, where fuzzy sets are used
to represent design intents formulated by descriptive terms and shape para-
meters are used to construct a solid model. We have therefore chosen to use
superquadrics as the basic representation for 3D shapes, where a shape is rep-
resented by a set of shape descriptors and a set of shape parameters. The
descriptors are the semantic features of a shape such as roundness or bendiness.
The parameters are the geometric elements of a shape that are used to define a
shape geometrically. The following subsections explain these shape parameters
and descriptors in more detail.

2.1. Geometric representation: deformable superquadrics
Superquadrics may be expressed by an implicit equation:
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where, €1, €2 are shape parameters which control the shape roundness and
squareness along the north-south direction and the west-east direction, respec-
tively. For example, if a; = a2 = a3z = 1, the shape is a cube when €1 = 5 — 0,
and the shape is a sphere when €1 = e = 1. When ¢7 and 5 change from nearly
0 to 1, the shape change continuously from a cube to a sphere. a1,a2 and a3 are
scalar parameters which represent the length of a shape along the x, y and z
axes, respectively. Since the shape description of an object does not relate to its
size, we let a1 = 1 and a9, a3 represent the ratio of as/a; and as/a;. Thus ag
and ag control the relative dimension of the two cross sections of a superquadric
shape. For example, when ¢; = ¢ = 1, if as = a3 = 1, the shape is a sphere,
otherwise it is an ellipsoid.

Several deformation parameters, k;, ky, k, and ¢, are employed to control
the deformation quality tapering, bending and twisting. The parameters k, and
k, control the tapering property. When k;, = k, = 0, there is no tapering, while
when k; = k, = 1, the shape is extremely sharp (one end is reduced to a point).
The parameter k, controls the bending property. When k, = 0, the shape is
not bent at all while when k, > 0, the shape can change from slightly bent to
extremely bent. The parameter ¢ controls the twisting property. When ¢ = 0,
shape is not twisted at all while when ¢ > 0, shape can change from slightly
twisted to extremely twisted. With the incorporation of the four deformation
parameters into the original superquadrics, a deformable superquadric shape
can be represented by eight shape parameters:

{517 €2, a2z, a3, kwa kya k’Ua t}

For further information on deformable superquadrics, please refer to Barr (1981,
1984, 1992), Pham and Zhang (2000).

The small number of parameters makes deformable superquadrics easy to
control. However, it is still difficult for designers to create desired shapes using
these parameters directly because this requires a good understanding of the un-
derlying mathematical model which general users do not possess. In addition,
some of the parameters have not direct engineering meaning and the relation-
ship between these parameters and shapes is non-linear, hence the process of
generating shapes by trial-and-error is tedious. On the other hand, designers of-
ten have some vague ideas of geometric shapes in mind and wish to obtain such
a shape quickly. An effective supporting tool should allow them to express their
intent in a natural and semantic way. Therefore, we proposed to use a set of
shape descriptors to represent shape and link them to shape parameters through
a fuzzy shape specification system (Pham and Zhang, 2000). We discuss this
perceptual representation of shape in Section 2.2.
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2.2. Possibility-based perceptual representation: fuzzy shape de-
scriptors

Most of the shapes used in design are geometric shapes which can be defined
by mathematical equations and their combinations. However, it is more con-
venient and intuitive for designers to represent shapes using common shape
descriptors, especially in the conceptual design stage where rough expression is
sufficient. Since the human ability for shape recognition is only approximate,
it is not necessary to depend on exact quantitative details to make judgements.
Furthermore, such judgments are slow and error prone. Instead, in a previous
paper (Pham and Zhang, 2000), we use fuzzy concepts to describe the global
characteristics of shapes because they are more natural. To do so, we first col-
lected a set of words, such as round, square, cylindrical, ellipsoidal, bent, sharp,
twisted and pinched as well as a set of linguistic hedges, such as extremely, very,
moderately etc. to represent the description of a shape. A set of shape descrip-
tors, including roundness, squareness, bevel-ness, pinchness, flatness, taperness,
bendness, twistness, and shearness, were used to describe a shape.

A fuzzy set, which is characterized by a membership function, is a mapping
from the universe of discourse (or reference set) to the interval [0, 1] (Kruse et
al., 1994). In other words, a fuzzy set is a set that allows its members to have
partial degrees of membership. There are a large variety of different interpreta-
tions of fuzzy sets in the literature such as possibility functions, similarity-based
functions, or preference functions (Ruspini et al., 1998).

A possibility distribution is a mapping from the universe of discourse (or ref-
erence set) to the unit interval [0, 1], where at least one element has the grade 1
(Kruse et al., 1994). Possibility can be interpreted physically to represent pref-
erence: the most feasible ones are usually preferred. It can also be interpreted
in an epistemic way to represent the consistency of a datum with the available
information (Ruspini et al., 1998).

Possibility theory is related to but independent of fuzzy sets because it can be
derived with or without reference to fuzzy sets. Normal fuzzy sets and possibility
distributions may have the same representation but with different interpreta-
tions. The grade of membership expresses the extent to which a well-known
value in the universe belongs to an ill-defined set. The degree of possibility
refers to the strength of a value to be the actual value given an ill-defined set.
When a fuzzy set is used to represent the uncertain information about the value
of a single-valued variable, the degree attached to a value means the possibility
that this value is the actual value of this variable. The fuzzy set is then inter-
preted as a possibility distribution, which expresses the degrees of plausibility
or preference of the possible values of the ill known variable.

Zadeh (1978) suggested using a fuzzy set to convey the meaning of a concept
such as tall or old. The use of fuzzy sets to represent the value of a variable
induces a possibility distribution. In imprecise conceptual shape design, a fuzzy
set can be used to convey the meaning of a linguistic concept such as extremely
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square. Thus, the value of the variable of a shape can be represented by a
possibility distribution induced by this description in a predefined universe of
discourse. In this context, a fuzzy set is equated with a possibility distribution.
For example, squareness can be extremely square, moderately square or slightly
square in the universe of discourse of [0, 3] and corresponding possibility distri-
butions are shown in Fig. la. The grade of membership function represents the
degree of a value being in a fuzzy set, but also the degree of possibility with
which the variable takes this value. The value of each shape parameter is also
a possibility distribution (Fig. 1b) which is inferred from several shape descrip-
tors through a fuzzy shape specification system, where the relationship between
shape descriptors and shape parameters is represented by a set of rules. For
example, if squareness is extremely square then €1 is nearly zero. An experimen-
tation of shape description was carried out to investigate how people perceive
and describe shape characteristics. The resultant data was used to construct
fuzzy membership functions for these shape descriptors and the inference rules
that link these descriptors to the values of the shape parameters. More details
on this shape specification system may be found in Pham and Zhang, (2000).

Moderately X
1 square Kz

Extremely

Slightly square

square

€
X (squareness)

b) Membership function for a

a) Membership functions for a
shape parameter ¢,

shape descriptor squareness

Figure 1. Membership functions for shape descriptors and shape parameters

3. System architecture

To efficiently support 3D shape storage and retrieval, the fuzzy shape database

consists of the following components:
1. A Graphical User Interface (GUI) that is used to input a user’s query.
The commonly used shape descriptive terms are displayed in the GUI and
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users need only to click on the buttons to formulate simple or composite
shape queries.

2. A translator that is used to generate valid, standard queries. This trans-
lator is required because initial queries need to be intuitive and easy to
understand for the user but they cannot be used to retrieve shape directly
since not all descriptors used in the GUI level are stored in the database.
For compactness and uniqueness, a set of standard shape descriptors is
chosen to code the shape and stored in the database. The intuitive queries
must be translated into standard queries before the querying process is
performed.

3. A fuzzy predicate evaluation module which handles fuzzy data manipu-
lation. The descriptive terms inputted by users are associated with their
granule meaning through a fuzzy predicate library. When a new fuzzy
shape needs to be inserted into the database, a fuzzy data closeness mea-
sure, which represents the similarity of two shapes, is used to check data
redundancy. The possibility and certainty degrees are employed to per-
form hierarchical data retrieving.

4. An existing relational database which provides the basis for the imple-
mentation of this fuzzy database. It provides the basic DBMS resources
and some SQL program tools for user’s application. All information about
a shape, including shape identifier, name, version, perceptual descriptors
and geometric parameters as well as membership functions associated with
fuzzy attributes, are stored in the shape database.

5. A rendering software which is used to display the 3D shapes retrieved
from the shape database. As a fuzzy shape represents a set of shapes
that have similar properties, a multi-viewed window is needed to display
several typical shapes of a fuzzy shape.

Fig. 2 shows the basic structure of the fuzzy shape database.

4. Conceptual modelling of the fuzzy shape database

The Entity-Relationship (ER) model has been widely accepted for conceptual
database design because of its ease of use and that the entities and relation-
ships are natural concepts in the real world (McFadden et al., 1999). Therefore,
the Fuzzy Entity-Relationship model (Chen, 1998), which incorporates fuzzy set
theory to the basic ER concepts, is used to represent the conceptual structure
of the fuzzy shape database. Since fuzzy shape descriptors and parameters
are represented by possibility distributions, we chose to use a possibility-based
fuzzy database model. In database design, the fuzziness can happen at three
levels (Chen, 1999; Petry and Bosc, 1996). The first level is the fuzzy concep-
tual model which results in fuzzy semantic objects including fuzzy entity sets,
fuzzy relationship sets, and fuzzy attribute sets. Fuzziness in this level may
arise during database design and may be solved by designers before database
implementation. The second level concerns the occurrences of entities and re-
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Figure 2. Fuzzy Database Structure

lationships. The third level deals with fuzzy attribute values. The fuzzy shape
database has only fuzzy attribute values and all entities and relationships are
ordinary. Hence, we consider the conceptual modeling process of the fuzzy rela-
tional shape database to be similar to that of a conventional relational database
because we can consider the fuzzy attributes to be ordinary except for the fuzzy
representation of their values.

4.1. Schema design

A shape is described by a set of shape descriptors and represented by a set
of shape parameters. It also has a name, version and an underlying identifier.
All shape descriptors are fuzzy terms and corresponding certainty levels. Each
fuzzy term has a label and an associated fuzzy set represented by a possibility
distribution. All parameters also possess fuzzy set values. Although shape
parameters can be derived from shape descriptors, we store them explicitly in
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the database because they are used as design solutions. As a shape has many
descriptors and parameters, the detailed E-R model is very big, hence we present
here only an abstract E-R model in which Di and Pi represent fuzzy descriptors
and parameters respectively (Fig.3).

In Fig. 3, a shape has four attributes: the shape identifier SID, the name
and corresponding version number of a shape as well as the identifier of the
set of descriptors. The version of a shape, is introduced here to facilitate the
gradual refining process of the same design object. It is also useful when a
designer prefers to assign the same name to a design object but has different
design solutions for it. DesSet stands for Description Set which has DesSetID
as identifier and a list of fuzzy descriptors. ParSet is a Parameter Set which
has ParSetID as identifier and a list of fuzzy parameters. Each descriptor or
parameter is an attribute of the shape with a value expressed as a possibility
distribution. Such an attribute is called a fuzzy attribute. For each descriptor
Di, DiID is its identifier, DiLabel is the label of a fuzzy predicate, and DiDOF
is the preferred threshold. For each parameter Pi, PilD is the identifier of a
parameter and PiValue is the corresponding possibility distribution. The Fuzzy
Predicates are used to represent the distribution parameters of fuzzy shape
descriptive terms such as extremely bent. Each fuzzy predicate has its identifier
FPID and corresponding fuzzy distribution parameters FPValue. We represent
DesSet in a separate table to avoid the table Shape being too big. Since ParSet
is dependent on DesSet, it is also saved in a separate table.

4.2. Data types

A key aspect of a fuzzy relational database is that the domain values need not
be atomic. In a possibility-based approach, the available information about the
value of a single-valued attribute A for a tuple ¢ is represented by a possibility
distribution Tl4¢). The universe of discourse of this distribution is D(J{e},
where D is the domain of attribute A and e is an extra element which means
the attribute does not apply to tuple ¢t. The possibility distribution is a set of
the possible and mutually exclusive values of A(t) in D |J{e} with possibilities
between 0 and 1.

The possibility distribution representation of data provides a unified frame-
work to deal with precise and imprecise values. A precise value can be repre-
sented as a possibility distribution with the membership grade 1 for one crisp
element and the membership grades zero for all other elements. Since the stor-
age space required for an imprecise value is much more than a precise value, we
still use different data types in the fuzzy shape database for different attributes
depending on the real values they may take. For example, attributes that might
have fuzzy values are represented by possibility distributions no matter whether
their real values are crisp or fuzzy, while attributes that can only take precise
values are represented by the precise data type.

Since the shape database is limited to the specific application domain, only
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three types of data are involved. The first type is the precise value such as
shape identifier ID = 20. The second type is the fuzzy set value without label
such as shape parameter pl = {1/0.2,1.2/0.8,1.6/1.0,1.8/0.4}. The third type
is the mized fuzzy notion and fuzzy set value such as the descriptor roundness
= extremely round with membership grade over 0.9, where extremely round is
the label of a membership function. The third type is essentially the same as
the second, i.e., fuzzy set values represented by possibility distributions. We
treated it as a separate data type in practice for efficiency.

5. Fuzzy shape indexing

Database indexing is the study of data structures to allow for efficient search
and retrieval of a collection of data. The choice of an index depends on the
nature of the data and the expected query types. The shape indexing and
retrieval approaches can enhance the efficiency of geometric searching and have
been explored mainly in image processing area (Lu, 1999). However, only few
attempts have been made in CAD systems (Cybenko et al., 1997; Kriegel, 1993;
Kriegel et al., 2001; M. Hardwick et al., 2000; McWherter et al., 2001). Existing
shape indexing approaches are based on precise shape representation and cannot
facilitate fuzzy shape indexing and retrieval. We therefore aim to develop a
shape indexing approach based on the proposed fuzzy shape representation.

In a conventional database, the data item is self-indexed. For example, the
condition ”sid = 10” can find the tuple whose attribute sid is 10 if this tuple
exists. Therefore, it is quite easy to find a desired tuple which satisfies the
search condition by Boolean matching. However, a fuzzy value cannot index
itself because the index must be suitable for all elements in the fuzzy set. For
example, the fuzzy predicate “roundness = extremely round” cannot index a
shape which is extremely round. A Degree of Fulfilment (DOF) of a user to
the predicate “roundness = extremely round” must be used. If the datum is
represented as a fuzzy set in the database, only one DOF is not enough to
retrieve a tuple. In this case, two degrees, possibility degree and necessity degree
can be used along with the predicate to retrieve a tuple. Hence, the indexing
task in fuzzy database is a severe problem. Usually an additional attribute is
employed as identifier (Petry and Bosc, 1996).

Yazici and Cibiceli (1999) utilized the multi-level grid file approach to de-
velop an access structure for similarity-based fuzzy databases. In this approach,
the domain of an attribute with fuzzy values is partitioned into several regions
related to predefined fuzzy predicates. Each predicate has an identification
code. Then, the region of each predicate is further divided into three parts:
left, middle and right. This partition process can be performed recursively until
the desired granule level is reached. Each sub-region has a unique local code,
which is a bit pattern. The code of each sub-region is the concatenation of its
parents’ code and its own local code. An additional bit is used to identify if an
item is a fuzzy or crisp value. The original value is then associated with this
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bit pattern. Take the attribute of human height for example. Three predicates
are used: short, middle and tall. Their bit codes are assumed to be 00, 01, 11.
Then, the short predicate is divided into three parts: short left, short middle
and short right with the local code 00, 01 and 11. Then, the index for short
middle is 0001. This approach can index both crisp and fuzzy values. Hence, it
is suitable for indexing a database which may have both crisp and fuzzy values
for the same attribute such as the height of a person (heterogeneous attribute).
However, fuzzy values need to be first defuzzified into crisp values in order to
obtain a suitable code. That is to say, a fuzzy set is not indexed by its fuzzy
value but by the crisp value of its defuzzification result. This makes the fuzzy
values lose their fuzziness very early and may lead to the loss of the effectiveness
of indexing. This indexing approach relies on the pre-partition of the attribute
domain.

Bosc proposed some indexing principles for a possibility-based fuzzy data-
base, where the value of an attribute is a fuzzy set represented by a possibility
distribution (Bosc and Galibourg, 1989). This approach works as follows:

e The indexing of a tuple is not by the fuzzy values themselves but by
their support or core. The support of a fuzzy set is the crisp set of all
elements in the universe of discourse with nonzero membership grades
and the core of a fuzzy set is the crisp set of all elements in the universe
of discourse with membership grade(s) one (1). For example, if a fuzzy
set is represented as a trapezoid and the vertices (a,b, ¢, d) are from left
to right, the support bound is [a, d] and the core bound is [b, c]. The four
bound values, including the lower and upper bounds of the support and
core of the possibility distribution, are used to index the fuzzy set.

e A two-step searching is employed for fuzzy selection. Firstly, a subset of
initial relations is determined by comparing the support and core bounds
of the datum set and the condition set; secondly, a measure indicating
the minimum degree to which a datum possibly or necessarily satisfies
a condition is computed over the reduced relation and compared to a
predefined threshold. Thus, a fuzzy selection is converted to a Boolean
multi-key searching.

Since the calculation of possibility and necessity degree requires that the
fuzzy sets of interest have bounded supports, the Bosc’s indexing structure
is suitable for databases where the values for the same attribute are of the
same type (homogeneous) and the supports of all fuzzy sets are closed intervals.
As the Bosc’s indexing approach uses only the supports of fuzzy sets and the
possibility and/or necessity degrees for indexing, it does not rely on the pre-
partition of the attribute domain.

In the fuzzy shape database, the values of all shape descriptors are fuzzy
real numbers within finite domains, hence they are homogeneous. The ”homo-
geneity” restriction of the Bosc’s indexing approach is trivial in this case. On
the other hand, it is difficult to pre-partition the fuzzy attribute domain into
a certain granule level. Therefore, the Bosc’s indexing approach is chosen for
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fuzzy shape indexing and retrieval according to shape descriptors. However, it
is used as the secondary index because the searching process based on fuzzy
sets is much slower than searching a single value. An integer number that is
automatically generated by the database management system is employed as
the primary index for efficiency.

5.1. Primary index

Since searching through shape descriptors that are represented by fuzzy set is
relatively slow, we provide the shape ID which is automatically generated by
the conventional DBMS as the primary index. Frequent users may search a
shape using this number. We also provide the combination of name and version
as an alternative index of shape. This is the conventional indexing method
used in current CAD systems. These two indexing methods are implemented
by crisp searching and relevant techniques that can be found in many database
textbooks. Since we aim to introduce the fuzzy set approach into CAD systems
in order to support the conceptual design, the semantic searching of shape
through fuzzy descriptors is essential. Hence an indexing method based on
fuzzy descriptors is discussed in the next section.

5.2. Fuzzy descriptor index

The shape parameters (P) are derived from shape descriptors (D) and corre-
sponding Degrees of Fulfilment to predefined membership functions (DOF) as
well as the Fuzzy Inference System (FIS) in a shape specification system. Hence
the shape parameters can be denoted as P = F(D, DOF, FI1S). Once the Fuzzy
Inference System is generated, we consider it as fixed. The shape parameters
are determined only by the shape descriptors and corresponding thresholds. So,
it can be denoted as P = F(D,DOF). For the same set of descriptors and
DOF5, the set of fuzzy parameters will be the same. Therefore, the descriptors
and DOFs can be used to index a fuzzy shape. When retrieving a shape, the
descriptors and corresponding DOF levels can identify the appropriate tuples in
the fuzzy shape database. Since the shape descriptors people use are numerous
and not all of them can be applied to index a shape, a primary set of shape
descriptors is selected for indexing. Other descriptors will be mapped to these
basic descriptors or their combinations through a translator.
The primary set of shape descriptors includes:

e round-ness, square-ness, bevel-ness, pinch-ness and flat-ness in north-
south direction and east-west direction of superquadrics.
taper-ness (along X and Y axis)
bend-ness (along Z axis)
twist-ness (around Z axis)
shear-ness (along X axis)
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Although the expressive ability of these primary shape descriptors is still
very limited, they can describe all the shapes currently representable in our
superquadrics-based 3D shape modelling system. The perceptual shape de-
scription is the media for fuzzy shape representation, specification, storage and
retrieval. For example, we assume that in the conceptual design stage, the
designer intends to have a shape which is ellipsoidal and extremely bent with
satisfaction degree 0.8. This specification implies that the descriptor round-
nessl (roundness in east-west direction of a superquadric shape) has a fuzzy
value extremely round with satisfaction degree 0.8 and the descriptor bendness
has a fuzzy value extremely bent with satisfaction degree 0.8. There will be a set
of crisp shapes that can fulfill this specification with different certainty levels.
We call this set of crisp shapes a fuzzy shape. This fuzzy shape can be indexed
and retrieved according to the shape descriptors and their linguistic values. We
assume that the membership function of the fuzzy predicate extremely roundis a
triangle characterized by points {(0.7,0), (1,1),(1.3,0)} in the universe of [0, 3].
The membership function of the fuzzy predicate extremely bent is a piece-wise
linear function characterized by points {(0.14,0),(0.4,1),(1,1),(1,0)} in the
universe of [0,1]. Then the membership function of the descriptors roundnessi
and bendness are derived from the two fuzzy predicates and the satisfaction
degree (bold lines in Fig. 4). The supports of the descriptors roundness! and
bendness are [0.94,1.06] and [0.35, 1] respectively. These lower and upper bound
values of supports are used as indices of the corresponding shape descriptors.
They can be used for filtering out many irrelevant tuples in the shape database
during shape retrieval which will be discussed in a later section.

Extremely round Extremely bent

)
|
|
r
I
|
|
1

0.7 0.94 1 bendness

1.06 1.3 youndnessl

a) Membership function for roundnessl. b) Membership function for bendness.

Figure 4. Support of shape descriptors

In addition to the primary shape descriptors which are used for shape in-
dexing, we also employ a set of secondary shape descriptors at the user inter-
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face level. A list of commonly used descriptive terms, including 3D geometric
primitives, geometric descriptors and linguistic hedges, is extracted from sev-
eral references. The secondary shape descriptors, which are currently used in
the system are geometric shape descriptors such as cubical, conical, spherical,
cylindrical and ellipsoidal. The secondary shape descriptors are mapped to the
combinations of primary shape descriptors through a translator.

6. Fuzzy shape queries

Querying and retrieving of data from a database is an important activity. Fuzzy
querying allows users to formulate queries using linguistic words, hence it is
more flexible than crisp querying. In addition, fuzzy queries produce naturally
ranked results whereas conventional queries bring back only undifferentiated
tuples. Fuzzy queries may also provide reasonable answers where crisp queries
fail to find solutions. When querying the shape database, a user can formulate a
query by searching the shape name and version. Frequent users may also query
shapes using the shape ID, which is automatically generated by the computer.
However, it is sometimes desirable to search shapes using natural-language-like
shape descriptors, especially for occasional users. It is also desirable to allow
users to express preferences and thus make the querying results more feasible.
Using vague predicates represented by fuzzy sets to perform a query is one
approach to achieve the above targets.

6.1. Query requirement analysis

Query requirement analysis is based on the task the query will complete and the
type of users. The aim of querying a shape database is to obtain the appropriate
shape. People usually perceive a shape by commonly used regular shape names,
by pictures or by shape description. For example, for a cubical shape, people
will describe it as cube, cuboid, cubic, cubical, or square. Hence, the system
should allow querying by shape descriptions. If the shape number of this cube
in the shape database is 10 and the user knows this number, s/he may just
ask "list out the 10*" shape”. The query system should respect the diversity of
querying, therefore multiple query options should be provided.

The users can be classified into primary users who use the system regularly
and secondary users who use the system only casually. The query system should
allow primary users to input their query as quickly as possible. This is achieved
by querying the database using shape ID or name. For novice or casual users,
the system should provide effective guidance. The Query-By-Example method
and intelligent query assistant are usually employed to guide the query process.
In the shape database, the underlying shape descriptors represent the geometric
characteristics of shapes along different directions based on the shape represen-
tation approach. Although they are represented by words and can be understood
by professional users, it is still hard for general users to understand and formu-
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late shape queries using these descriptors. Hence, a Graphical User Interface is
utilised to help users to formulate query. Commonly used shape descriptors are
displayed in the GUI and they will be translated into underlying basic shape
descriptors through a translator. In addition, the support messages, such as
on-line help and error messages should be provided.

6.2. Categories of queries

The shapes are classified into two classes: fuzzy shapes and crisp shapes. The
main difference between these two kinds of shapes is the data associated with the
shape parameters. For a crisp shape, each parameter has only one value whereas
for a fuzzy shape, each parameter has a fuzzy set value. In the case of fuzzy
query on crisp shapes, each tuple will be assigned a Degree of Fulfilment (DOF)
to the fuzzy condition. In the case of fuzzy query on fuzzy shapes, the similar
method as fuzzy query on crisp shapes can be employed but the calculation
method for DOF is different and two DOFs are needed. In the latter case, we
use the possibility and necessity degrees to measure the extent to which a datum
satisfies a condition.

In a fuzzy database, the crisp data and the fuzzy data can be represented
uniformly by fuzzy sets, and a crisp value is only a special case of a fuzzy value
where the membership grade is one for a crisp element and zero for all others
(Bosc and Galibourg, 1989). Since the fuzzy shape database is mainly used for
storing and retrieving initial fuzzy shapes that have fuzzy set values, hereafter
we consider fuzzy queries on fuzzy data only. The possibility /necessity measures
will be used to represent the upper and lower bounds of the satisfaction degree
of a fuzzy datum with respect to a fuzzy condition.

The categories of fuzzy queries can be further classified into the following
classes: simple query and combined query. A simple query refers to a query by
a single condition. For example, the user inputs a single shape descriptor such
as extremely round and a series of shapes will be retrieved from the database
and will be displayed on the screen in multiple views. A combined query refers
to a query composed of multiple descriptions. For example, a user inputs a
combination of shape descriptions, such as extremely round and slightly bevel,
and a series of shapes will be retrieved from the database and will be displayed
on the screen.

Shape description combination can be classified into feasible combination
and infeasible combination. Feasible combination means that two descriptors
on the two sides of an AND operator can be used to describe the same shape at
the same time. For example, the descriptors extremely cylindrical and slightly
bent can exist at the same time because they describe a shape that is a slightly
bent cylinder. Infeasible combination means that two descriptors on the two
sides of an AND operator cannot be used to describe the same shape at the
same time. For example, a cylindrical shape cannot be pyramidal. The feasible
combination can be passed to the inference engine for deriving the result values.
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The infeasible combinations will be checked out by the system according to a
constraint table and the user will be asked to reformulate another query.

6.3. Query input and generation

A conventional database query language, such as SQL, requires of users to un-
derstand the logical database schema, relational algebra and the query language
itself to formulate a query. The popular QBE (Query-by-Example) avoids using
a special query language yet still makes the DBMS users to work on the table
level. Therefore, it is very difficult for novice users to communicate their needs
to DBMS. Integrating artificial intelligence techniques and database techniques
in order to support novice users to access database has become increasingly
popular (Wu et al., 1996). Since the underlying shape representation is difficult
to understand for general shape designers or users, it is extremely difficult for
them to query the shape database through SQL or QBE directly. It is desirable
to provide a mechanism to allow users to perform a query according to com-
monly used shape descriptors, hence it is necessary to construct a friendly and
intelligent database query front-end. By intelligent query, we mainly mean the
following:

a) Allowing end-users to formulate database queries using natural-language-
like descriptive terms with fuzzy internal meaning. Although a completely
natural language interface is most desirable, automatic interpretation of a
natural language such as English is very difficult because of its complexity
and ambiguity. In addition, it is impossible for us to obtain the fuzzy
meaning for all words even if they are limited to shape description, hence
only a selected set of shape descriptors such as very round are allowed in
the menu-based GUI (Graphical User Interface).

b) Having knowledge and reasoning ability for formulating conventional queries
according to general inquiries. A set of primary shape descriptors is se-
lected and associated with corresponding fuzzy sets. A set of secondary
shape descriptors is also used in shape query and they are mapped to the
combinations of the primary shape descriptors through a translator.

¢) Providing end-users with substantial guidance in query formulation by per-
forming validation checking and automatically applying some constraints
as users select their query from GUIL

General intelligent query systems also generate cooperative responses for ill-
formed queries and provide natural language explanation of the query result
(Wu et al., 1996). A fuzzy query itself is a kind of intelligent query because
it decreases the chances for the null answer and can provide ordered weighted
answers naturally, so we will not design a separate cooperative answering system.
As the query result is a fuzzy 3D shape that is displayed on the screen as response
to a query, whether the query result is correct or not is intuitive. Hence we do not
need to translate the query results back to natural language-like explanations.
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When constructing GUI, we constrain the user’s query to a restricted linguis-
tic domain, that is, the commonly used shape description words. The users can
input their query in the query window through menu selection. All available
shape descriptors and corresponding linguistic hedges are listed in the query
window. The default logic operator is AND. Users need only to click on the
check box to formulate query.

Once the query is formulated, a constraint table (Table 1) of description
combinations is employed to perform validity checking for combined queries
through a validation-checking module. The valid general query is passed to the
translator and translated into a combination of internal (primary) descriptors
according to the mapping rules that are derived from the relationship table of
user descriptors and internal descriptors (Table 2). For example, IF shape IS
cylindrical THEN shape in north-south direction IS extremely square and shape
in east-west direction IS extremely round.

Table 1. Constrainst of shape description combinations

Square Round Cylindrical | Ellipsoidal Conical Tapered | Bent

Square Y Y N N N Y Y
Round Y N Y N Y Y
Cylindrical Y N N Y Y
Ellipsoidal Y N Y Y
Conical Y Y Y
Tapered Y Y
Bent Y

Note: Y - means that combination is accepted, N - that it is not.

Table 2. User descriptors-interal descriptors relationship
Sql | Rd1 | Sq2 | Rd2 | Obl | Ob2 | Tpl | Tp2 Bt

Square T T T T

Round T T T T

Cylindrical | T T T

Ellipsoidal T T T

Conical T T T T T

Tapered T (And/or)T

Bent T

Note: T for True means that for a commonly used shape descriptive
term columns correspond to internal shape descriptors, the corre-
sponding internal shape descriptor while rows to commonly used
shape descriptors is true.

The main difference between this translator and a conventional knowledge
base is that in a conventional knowledge base, the facts and rules are fixed and
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users perform different queries. Whereas in this translator, the rules and queries
are fixed but the facts are changed according to the user’s input. The output
of this translator is a standard fuzzy query that is then passed to the fuzzy
processing module to perform shape retrieval. The relevant techniques for fuzzy
shape retrieval will be discussed in the next section.

7. Shape retrieval

Shape retrieval methods can be classified into two classes: content-based re-
trieval and annotation-based retrieval. Content-based retrieval concentrates on
lower level shape features such as geometric parameters. Annotation-based re-
trieval is based on higher level semantic features such as perceptual descriptions,
therefore it can support direct, natural queries. Annotation-based retrieval is
complementary to content-based retrieval and depends on the conceptual data
available. In a fuzzy shape specification system, the conceptual data such as
shape descriptions is acquired in the design process and can be stored in the
database. They are very important information for fuzzy shape retrieval. By
using these annotations (or symbols), the user can query the database using
higher level descriptors rather than the detailed shape parameters. The anno-
tations used in shape database include the feature-based descriptive terms such
as very round, extremely sharp, slightly bent etc. These terms will be used to
help fuzzy shape retrieval. Unlike the annotation-based retrieval in conventional
database which is based on alphabetic matching, the annotation-based retrieval
in fuzzy database, is performed on the granule meanings of each annotation.

The fuzzy sets of geometric parameters are stored in the shape database but
general users usually do not query the shape database by shape parameters.
Instead, they query the shape database by shape descriptors. Shape descriptors
and corresponding DOF's (thresholds) are also stored in the database but we
cannot query them in a crisp way because every shape descriptor has a granule
meaning. Hence, querying the shape database using shape descriptors should
be based on their granule meaning. We propose to use a fuzzy predicate and
a threshold (or DOF) to define a fuzzy set which is related to a shape descrip-
tor. The DOF functions as a linguistic hedge that modifies a predefined fuzzy
predicate in order to obtain a fuzzy datum set. The fuzzy set associated with
a predicate used in fuzzy query acts as the condition set. The possibility and
necessity degree proposed by Prade and Testemale (1984) can be used to per-
form shape retrieval. The query form attribute = value in relational database
can be extended to attribute = value with degree 6, where 6 can be possibility
or necessity degree.

Given two fuzzy sets in the same universe of discourse, they can be compared
according to the possibility and necessity measures. This comparison leads to
two types of degrees: the possibility degree and the necessity degree, meaning
to what extent two fuzzy sets possibly and necessarily match. The possibility
degree II represents the extent of the intersection between the pattern set and
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the datum set. It is the maximum membership value of the intersection set. The
necessity degree N represents the extent of semantic matching of a pattern set
for a given datum set. It is the minimum membership value of the union of the
pattern set and the complement of the datum set. The interval defined by [N, IT]
represents the lower and upper bounds of the degree of matching between such
pattern and datum sets. Since what is necessary must be possible, the possibility
degree is always not less than the necessity degree. The proof of this property
and the detailed formulas for calculating the possibility and necessity degrees
can be found in Bosc and Galibourg (1989), Prade and Testemale (1984). Fig.
5 shows a pattern and a datum fuzzy set as well as the corresponding possibility
and necessity matching degrees.

Pattern set Datum set Curve for Complement
(round) calculating of Datum set
possibility or

necessity degree

a)  The possibility degree is 1.0 b)  The necessity degree is 0.4 ~ Parameter

Figure 5. Possibility degree and necessity degree

A simple fuzzy query to a fuzzy database involves only one fuzzy condition
and is performed by calculating the necessity and possibility degrees of a datum
set to the pattern set. Compound condition involves the disjunction, conjunc-
tion, or negation of simple conditions. When the attribute values are logically
independent (i.e., the value of one attribute does not rely on or is controlled
by the values of other attributes), the overall necessity and possibility degrees
of a tuple are the combination of elemental possibility and necessity degrees
using min/max operator. The detailed equations that express the decompos-
ability properties of possibility and necessity degrees can be found in Bosc and
Galibourg (1989), Petry and Bosc (1996).

Our initial test on shape retrieval using possibility /necessity degrees shows
that the possibility degree is too optimistic while the necessity degree is too
pessimistic. For example, if the cores of the possibility distributions of two
fuzzy sets have one common point, then the possibility degree is 1 even though
the two compared sets are very different from each other. On the other hand,
the necessity degree for a triangle fuzzy set A to lie in A is only 0.5. This makes



162 J. ZHANG, B. PHAM, P. CHEN

the meaning of the entailment relation counter-intuitive and causes difficulties
in shape retrieval. Hence, we use the possibility degree as a filter and compose
another entailment measure called certainty degree for shape retrieval.

Given two fuzzy sets A and B in the same universe of discourse, the certainty
degree to which B lies in A is the ratio of the cardinality of the intersection of
these two fuzzy sets to the cardinality of B. The cardinality (or power) of a fuzzy
set is the sigma-count (sum) of the membership degrees of all elements (Yager
and Filev, 1994). We can see that the certainty degree is reflexive (the certainty
degree to which A lies in A is 1.0) but not symmetric (the certainty degree to
which A lies in B is not the same as that of B lies in A). The certainty degree
is 1.0 if two fuzzy sets have exactly the same representation and 0.0 if their
supports have no common region. In other cases, the certainty degree varies
between 0.0 and 1.0. The overall certainty degree of a tuple over composite
domains is the combination of the certainty degrees of elemental domains. In
fuzzy retrieval, given a fuzzy condition and a fuzzy datum, if their certainty
degree is higher than a predefined threshold, the datum satisfies the condition
and will be retrieved otherwise it will be discarded.

Since the perception-based shape retrieval can support natural language
querying, we use a set of primary shape descriptors for shape indexing and re-
trieving. The shape searching process is the matching process of fuzzy granule
meanings of primary descriptors that are listed in the shape indexing section.
We use a hierarchical matching process of fuzzy set to perform fuzzy shape
retrieval. This hierarchical matching process comprises of the following steps:

1. Support-Core Matching. If the supports of two fuzzy sets are not inter-
sected, they are not matched. This filtering process can cut off many
irrelevant tuples.

2. Possibility Degree Matching. The possibility degree is calculated for the
retained tuples from step 1). If this degree is lower than a predefined
threshold, the matching process can stop.

3. Certainty Degree Matching. The certainty degree is calculated for all
tuples retained from step 2).

4. ANDing and ORing: If the compared tuples have more than one fuzzy at-
tribute, the conjunction and disjunction operation is performed to obtain
the overall possibility and certainty degrees for all retained tuples. The
final matching degrees are saved in the fields in the corresponding tables.
This approach is the same as that used in fuzzy-relation-based framework
in the sense that a matching degree is attached to each tuple.

5. Boolean selection based on the matching degree attached to each tuple.

As the large number of possible valuations of incomplete information, com-
plex relational operations such as join operations applied to imprecise attributes
are infeasible (Bosc et al., 2000). Hence, in the shape retrieval process, we per-
form only the selection/projection operations and join operations applied to
precise attributes such as shape identity number. Actually we need to retrieve
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shape ID according to some criteria applied to some shape descriptors. For
example, the possibility matching may look like this:

SELECT shape.shpID
FROM shape, Desl, Des2, Des3
WHERE (((Des1.poss)> 0.9) AND ((Des2.poss)> 0.9) AND ((Des3.poss)>

0.9));

where poss is the possibility degree to which a fuzzy datum satisfies a fuzzy
condition. Once the shape ID is obtained, all shape data can be retrieved
through this primary key. These data can be passed to a 3D shape rendering
system to display the fuzzy shape.

8. Implementation and test results

In the actual implementation, we did not use a special data structure for im-
precise data representation. Instead, we cast the fuzzy data modelling in a
conventional crisp data modelling frame, that is, any fuzzy attribute with a
fuzzy set value is represented as a set of ordinary attributes whose values range
over the underlying distribution domain.

Since the domains of different attributes may be different but all normal
membership functions have the same value range [0, 1], we represent each fuzzy
set using a family of a-cuts, so that all fuzzy sets have uniform representation.
The a-cut of a fuzzy set is a crisp set of elements, for which membership grades
are equal to or greater than «. Since a fuzzy set can be uniquely represented
by a family of a-cuts (Klir and Yuan, 1995), we predefine a set of o values and
each a-cut is characterised by two endpoints of the fuzzy set at this a-level.
In some cases, the two endpoints at one a-level may converge to one point.
Since the set of « levels are the same for all fuzzy sets, we can save it in a
separate table and do not need to save it for each fuzzy set. Hence, all fuzzy
sets can be represented by a set of a-level endpoints in the same representation
scheme and have the same precision determined by the number of a-levels used.
For example, if we partition the interval [0, 1] into five equal intervals, the set
of a level values may be o = {0.0001,0.2,0.4,0.6,0.8,1.0}. The support and
core of a fuzzy set (when @ — 0 and o = 1 respectively) are also naturally
represented in this representation scheme. Hence, this representation scheme is
also consistent with the support-core indexing scheme for fuzzy set proposed in
Bosc and Galibourg (1989) and discussed in Section 5. The family of a-cuts can
represent any shape of fuzzy sets within a finite domain.

The development of a real Fuzzy Relational Management System is generally
expensive and time consuming. However, using an existing system, we can
concentrate on the conceptual and logical design of a database and need not
spend much time on physical design (Bosc and Galibourg, 1989). Therefore,
an existing popular commercial Relational Database Management System is
employed as the basis of implementation in order to take advantage of some
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known access methods already in use. Implementing a fuzzy relational database
in a conventional database allows us to incorporate fuzzy functions into existing
relational databases, an effective way of developing a fuzzy database (Bosc and
Galibourg, 1989).

The fuzzy shape database is mapped into a conventional relational database
by storing the fuzzy set values in separate tables. The crisp and fuzzy shapes
can be stored in one database because they can be represented uniformly using
possibility distribution (currently we got only fuzzy shapes). Microsoft AC-
CESS is chosen as the implementation environment because of its popularity,
easy availability and its friendly user interface as well as its convenience for
communicating with other software packages.

Fuzzy sets provide the imprecise values of single-valued attributes in the
shape database, so they are processed in a ’compact’ form and users do not
need to access their elements separately. Since fuzzy sets take complex data
structures, we can also treat them as objects which have data and associated
methods by building a top level on the current relational database systems to
simulate the object features in an object-relational model.

A GUI is constructed within Microsoft ACCESS to provide a user-friendly
interface to accept query input. A set of commonly used shape descriptors are
displayed on the screen and are grouped into different option groups. Users
need only to click appropriate shape descriptors. Once query conditions and
an overall degree of fulfilment of all conditions are selected, users click Get It
button and the system will perform querying and display the searched shapes
on the screen.

Rules for query generation are stored in a knowledge base which along with
an inference engine is called a translator. The initial query generated in query
GUI is used as the input of the translator. The standard query is generated by
the built-in backtracking facility of a PROLOG programming language, then
it is sent back to the database to perform query through the fuzzy processing
module. A hierarchical matching process based on possibility /certainty degree
is employed to perform shape searching. Since the selection results are fuzzy
shapes which have fuzzy set as parameter values, only typical crisp shapes are
displayed on the screen in multiple views. Typical shapes can be obtained by
defuzzifying shape parameters using typical defuzzification approaches such as
minimum of maximum, maximum of maximum, centroid of area etc. More
details on these approaches may be found in Berkan and Trubatch (1997) and
many other books.

EXAMPLE 1 A series of tests have been performed on this prototype system.
Here we use an example to explain the usage of this shape database. To make
the meaning clear and save space, we list out only the attribute values that need
to be compared in this example. All fuzzy sets take piece-wise linear membership
functions and are represented by a set of a-cut endpoints from left to right at
the « levels a = [0.0001,0.2,0.4,0.6,0.8,1.0].
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Figure 6. Typical shape elements of an extremely square fuzzy shape (Shpl)

We assume three fuzzy shapes are generated using the descriptive terms
extremely square with threshold 0.6, ellipsoidal with threshold 0.4, and ellip-
soidal and extremely bent with threshold 0.8. Typical shape elements of the
three fuzzy shapes are shown in Figs. 6, 7, 8. The membership function
of the fuzzy predicate extremely round is a triangle characterized by points
{(0.7,0),(1,1),(1.3,0)}. The membership function of the fuzzy predicate ex-
tremely bent is a piece-wise linear function characterized by points {(0.14, 0),
(0.4,1),(1,1),(1,0)}. The corresponding fuzzy set values of the descriptors Desl
(roundness1) and Des2 (bendness) derived from the above two fuzzy predicates
are shown in Fig. 4 and in the form of family of a-cuts in Table 3.

Table 3 Fuzzy set values for shape descriptors

shpID | Desl (bendness) Des2 (roundness1)
Shpl | 0 (not bent at all) ® (empty set)
Shp2 | 0 (not bent at all) [0.82, 0.82, 0.82, 0.88, 0.94, 1, 1,

1.06, 1.12, 1.18, 1.18, 1.18]
Shp3 | [0.35, 0.35, 0.35, 0.35, 0.35, | [0.94, 0.94, 0.94, 0.94, 0.94,
0.4,04,1,1,1,1, 1] 1,1, 1.06, 1.06, 1.06, 1.06, 1.06]

The fuzzy shape retrieval process is as follows.
1. Inputting descriptive words: ellipsoidal, extremely bent with threshold 0.6.



166 J. ZHANG, B. PHAM, P. CHEN

= o
e T
0 \‘\\ ,.r'/l 1]
T
y axis X axis

24 2
2 °
a0 a0
~N N
2 -2
5% o 2% 7
0 e L 0 e
2 B 0 - i — 0
Y axis X axS y axs X &xis

Figure 7. Typical shape elements of an ellipsoidal fuzzy shape (Shp2)
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2. Translating input words into standard words.

The word ellipsoidal is translated into extremely round in two directions,
keeping the descriptive term extremely bent because it is a standard word.

3. Evaluating the input fuzzy words according to the threshold and the pre-

defined fuzzy predicates.
We use the descriptive words and corresponding thresholds, extremely
bent/0.6, extremely round/0.6 and the predefined membership function
for the predicates extremely bent and extremely round, to derive pattern
sets which are represented by family of a-cuts P1 = [0.3,0.3,0.3,0.3,0.35,
0.4,1,1,1,1,1,1],and P2 = [0.88,0.88,0.88,0.88,0.94, 1,1, 1.06,1.12,1.12,
1.12,1.12].

4. Retrieving data sets which are also represented by family of a-cuts from
database. We obtain two fuzzy data sets for shape Shp3: D1 = [0.35,0.35,
0.35,0.35,0.35,0.4,0.4,1,1,1,1,1],and D2 = [0.94,0.94,0.94,0.94,0.94, 1,
1,1.06,1.06, 1.06,1.06, 1.06].

5. Comparing the supports and cores of corresponding data set and pattern

set.
We first compare the supports of the data sets and the cores of the cor-
responding pattern sets. If all supports of the data sets fall in the cores
of the pattern sets, then the data sets definitely lie in the pattern sets
and the corresponding tuple can be retrieved. The core of the pattern set
P2 is (1,1) and the support of the datum set D2 is (0.94,1.06), so the
support of the datum set is not within the core of the pattern set and fur-
ther calculation is needed. Then we compare the support of the pattern
set P2,(0.88,1.12), and that of the datum set D2,(0.94,1.06). We can
see that they intersect. We can also see that the support of the pattern
set P1 and the datum set D1 also overlap. Hence, the tuple containing
the attribute value (D1, D2) possibly satisfy the condition (P1, P2) and
further calculations are needed. We can easily see that not all supports of
the fuzzy sets in Shpl and Shp2 intersect with those of the corresponding
pattern sets, so that these two shapes cannot satisfy the query conditions
and are discarded in this step.

6. Calculating the possibility and certainty degree.

If the possibility degree is lower than a required threshold then the cer-
tainty degree need not be calculated, otherwise calculate the certainty de-
gree. The possibility degree of P1 and D1 is possl = poss(P1, D1) = 1.0,
the corresponding certainty degree of these two sets is sd1 = sd(P1, D1) =
1.0. Accordingly, we can obtain the possibility degree of P2 and D2,
poss2 = 1.0 and the corresponding certainty degree sd2 = 1.0. Once the
possibility and certainty degrees are obtained, we store them in interme-
diate tables for Boolean selection.

7. Performing ANDing or ORing operation.

Since the attribute values of shape descriptors are independent, we can
use the decomposability properties of possibility and certainty degrees.
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Once we calculate all possibility and certainty degrees for all elemental
querying conditions, we perform the conjunction or disjunction operation
using min/max method. Take the ANDing operation for example, the
overall possibility degree of a tuple is the minimum of the component
possibility degrees. In this example, the component possibility degrees are
all 1.0, so the overall possibility degree of this shape, the minimum of them,
is 1.0 (P = min(possl,poss2) = min(1.0,1.0) = 1.0). The component
certainty degrees are 1.0 and 1.0, the minimum of these two, 1.0, is the
overall certainty degree (SD = min(sdl, sd2) = (1.0,1.0) = 1.0).

8. Performing Boolean selection.
Assume the thresholds for the overall possibility and certainty degrees are
0.9 and 0.6. Since the overall possibility and certainty degrees, 1.0 and 1.0,
are higher than the required thresholds, the tuple containing the attribute
value (D1, D2) are retrieved, otherwise this tuple will be discarded.

9. Displaying shape.
Once we get all possibility and certainty degrees of all possible matching
records, a Boolean selection is used to cull out some shapes for which the
possibility and certainty degrees are lower than predefined thresholds. In
this example, Shp3 is retrieved and the other two shapes are discarded.
Fig. 8 shows the fuzzy shape Shp3 which is a set of extremely bent shapes.
The upper-left shape with the membership grade 0.8 means the possibility
of this shape to be considered as extremely bent. As the shape becomes
increasingly bent, the membership grade increases. The last shape has
membership grade 1 because everybody will consider it to be an extremely
bent shape.

9. Conclusions and future work

A possibility-based fuzzy shape database has been constructed within a con-
ventional relational database. A fuzzy shape is represented by a set of shape
descriptors and shape parameters. It is indexed and retrieved by fuzzy shape de-
scriptors. A graphical user interface is constructed to provide human consistent
and natural-language-like queries. A 3D shape rendering system is developed
to display the retrieved shapes.

This fuzzy shape database provides a perceptual shape indexing and retrieval
mechanism, hence the users can query this database using higher level shape
descriptions in a natural way. The system is only a prototype, but we have seen
the power of combining the fuzzy set approach and visual display in supporting
the fuzzy shape querying. It also provides evidence that a fuzzy database with
fuzzy attribute values can be implemented in a well-developed commercial re-
lational database management system in an effective and economical way. The
main contribution of this paper lies in the method we employed to index and
retrieve 3D shapes using descriptive terms. The perceptual shape indexing and
retrieval mechanisms allow users to query the shape database using semantic
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shape descriptions. They also form an important aspect of introduction of the
fuzzy set approach into CAD systems for supporting conceptual design when
designers have only vague ideas and need fast prototyping.

Future work will involve improving and refining this prototype shape data-
base and extending it to facilitate the management of composite fuzzy shapes. A
composite shape consists of primitive shape elements (simple shapes) and other
composite shapes. Therefore, composite shapes have more complex structural,
physical, technical and other information than simple shapes. It is inefficient to
represent such complex shapes in a conventional relational data model. Thus, a
more powerful model which can reflect the hierarchical and modular nature of
composite shapes and a more efficient manipulation mechanism, which can bring
together all information about a composite shape, are needed. Since the object-
oriented data model organizes and manipulates abstract concepts and real things
in terms of objects with collections of data and operations on the data, it can
support complex data structure and reflect the design process. Hence, it is a
promising candidate for handling complex shapes in CAD systems. Therefore, a
commercial environment with object features will be employed to manage com-
posite fuzzy shapes, and relevant issues for handling fuzzy information will be
explored.
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