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Abstract: We consider the following problem: is there a ratio-
nal or fair price for the reports made by analysts, experts, investor
advisers concerning the rate of return (RR) of investments? We de-
fine the notion of the value of information included in the family of
probability distributions of the RR. Next, we illustrate this notion
for a linear-quadratic utility function.
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1. Introduction

According to a popular and almost universally accepted opinion, information
is one of the most important and desired goods. In the world of economy
a person possessing information has an advantage over worse informed rivals.
That person can use opportunities not known to others, or avoid errors which
they will probably make. The larger and better the information, the greater the
possible profit of its user. That is why one of ways of risk reduction is enlarging
information. It is done at the price of expensive investigation, provided, of
course, that its cost does not exceed the resulting advantages. However, even
though the saying ”time is money” is widely accepted, the saying ”information
is money” is not in common use. Moreover, the problem of money-information
exchange and substitution, and, in general, pricing and trading information is
almost absent in the economic literature (though prominent economists such
as e.g. Kenneth Arrow tried to face those problems, see for instance Arrow,
1970) and in the operations research literature. This is clearly in conflict with
the opinion on the value of information, expressed at the beginning: we do not
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know how to estimate or measure that value or compare it to other values. In
the mathematical literature this problem has been investigated from a different
angle. See for instance the papers of M.H.A. Davis, M.A.H. Dempster and R.J.
Elliott (1991), M.H.A. Davis, I. Karatzas (1994) and references given there.

Definitions of measures of information characterize the amount of informa-
tion contained in a message with the known probability distribution, completely
ignoring what the information pertains to and how, and with what result, it will
possibly be used in a decision process. In order to understand better this com-
plicated matter, to limit the area of considerations and to pose some questions,
let us consider a stock exchange.

What value does the information included in so-called ”historical data” have
for a stock-exchange investor? Here we have in mind the information included
in data pertaining to previous economic performance of stock exchange com-
panies, information about performance of their competitors, co-operators, and
other companies in the branch, not necessarily present on the stock exchange.
How will the value of information change if we increase the set of data by taking
into account more and more companies and branches and go farther back in the
past? Obtaining information interesting for our investor from an increasing set
of data (as we simultaneously go back into the past and increase the field of
observation by analyzing data from larger and larger economic areas) will prob-
ably require more efficient methods of data analysis, better computer hardware
and software, but mainly, and maybe most of all, a coherent economic theory
explaining and systematizing the registered data; a theory, which is not only
internally consistent but, also coherent with data. This is a domain of activity
not only for theoreticians of economics but also for analysts, experts and tax
advisors. Investigations if this kind are probably expensive. First of all they
contribute a lot to our understanding of economic phenomena and processes
and that is why they are indispensable. On the other hand, results of such
investigations constitute attractive material for investors, enabling them, e.g.
to estimate more precisely the returns of specific companies, and thus to make
better decisions.

Is there any relationship between money spent on work of theoreticians,
analysts, experts and investment advisors and the advantage for the investor fi-
nancing these investigations? The purpose of this paper is to attempt answering
some of the above questions. We focus in particular on a fundamental question:
what value for an investor does the information about statistics of returns of
specific companies present and how does this value change when the statistics
change?

The plan of the paper is as follows. In Section 2 we present assumptions
concerning the way of parametrization of statistics of distributions. In Section
3 we consider a decision problem for an investor having an additional option
of purchasing information just before making an investment decision. Analysis
of this ”thought experiment” allows us to define a notion of information value.
We illustrate this notion in Section 4 by an example from portfolio theory. In
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Section 5 we briefly present conditions of trading information.
This paper continues and extends the ideas and results published earlier in

Banek (2000, 2002) and discussed later in Banek (2001).

2. Assumptions

For simplicity, we assume in the entire paper that the family of probability
distribution functions obtained as a result of analytic investigation concerning
the vector ξ of returns is Gaussian; as is commonly known, this reduces the
problem to investigating only two statistics: the vector m of mean values and
the covariance matrix Q.

Let us assume that the above statistics are parametrized by t ≥ 0, i.e.,
{(mt, Qt) ; 0 ≤ t ≤ T }, T < ∞.

In the classical models of portfolio selection (Markowitz, Roy) an investor
possessing a cash amount M > 0 selects a portfolio x = col (x1, ..., xn), x1 +
... + xn = M , whose expected return and covariance are 〈x, m〉, xT Qx respec-
tively, where 〈, 〉 means scalar product, and T stands for transposition, i.e.,
xT = (x1, ..., xn). In this paper we shall consider an extended version of the
problem in which the investor has an extra option: he can buy the results
{(ms, Qs) ; 0 ≤ s ≤ t}, (m0, Q0) = (m, Q) of experts’ investigation at a price ct,
under the conditions which we shall describe later. Using the ”best” estimators
(mt, Qt) of ξ, he will select the portfolio whose expected return and covariance
are mow

Et 〈x, ξ〉 = 〈x, Etξ〉 = 〈x, mt〉 , (1)

Et 〈x, ξ − mt〉
2

= Et 〈x, ξ − mt〉 〈ξ − mt, x〉

= Etx
T [ξ − mt] [ξ − mt]

T
x

= xT Et

(
[ξ − mt] [ξ − mt]

T
)

x

= xT Qtx (2)

where Et means the conditional expected value relative to the P measure on
the probability space (Ω, ̥, P ) on which all random objects in this paper are
defined, i.e., for a bounded Borel function f we have

Et [f (ξ)] = E {f (ξ) |̥t }

where ̥t means a sigma-sub-field of ̥ containing all data used by analysts to
evaluate {(ms, Qs) ; 0 ≤ s ≤ t}. We assume that ̥s ⊂ ̥t for s ≤ t, and that
̥s = ∩t>s̥t for 0 ≤ s ≤ T .

Remark 1 Note that the family (̥t) depends very much on the experts’, statis-
ticians’, or investor advisers’ choices and decisions as to how to select material
from historical data, and how to parametrize it. The parameter t can be inter-
preted as the number of working hours which the experts spend analyzing data
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included in ̥t , or their salary, or something else. The choice: go deeper into
the past, or increase the area of observation, or in other words: what data have
to be included in ̥t (a control problem for data mining) is of independent in-
terest, but will not be pursued here.

Let us assume that the parametrization of the statistics {(mt, Qt) ; 0 ≤ t ≤ T }
was selected in such a way that for t ≥ s, the increase IF (t)−IF (s) of the Fisher
measure

IF (t) =

∫

Rn

‖∇ρn (t, x)‖
2

ρn (t, x)
dx, (3)

where

ρn (t, x) =
1√

(2π)n detQt

exp

{
−

1

2
(x − mt)

T
Q−1

t (x − mt)

}
, (4)

is proportional to t − s, i.e.,

IF (t) − IF (s) ∼ t − s. (5)

Because for the density ρn given by formula (4) we have

IF (t) = TrQ−1
t , (6)

it was proposed in (Banek, 2000) to write

Q−1
t = Q−1

0 +

∫ t

0

HT
s Hsds (7)

where {Hs; s ∈ [0, T ]} is an ̥t-adapted stochastic process with values in the set
of square-integrable matrices with elements

(
hij

s

)
, i. e.,

P

(∫ T

0

(
hij

s

)2
ds < ∞

)
= 1.

If Hs = H and TrHT H > 0, then

IF (t) − IF (s) = Tr
(
Q−1

t − Q−1
s

)
= Tr

∫ t

s

HT Hds

= (t − s)TrHT H. (8)

In general

IF (t) − IF (s) = Tr

∫ t

s

HT
s Hsds. (9)



Information pricing for portfolio optimization 871

In conclusion, in order to satisfy the requirement (5), it is necessary to
assume that Q−1

t is given by formula (7), or, equivalently, to assume that

Qt =

(
I + Q0

∫ t

0

HT
s Hsds

)−1

Q0, (10)

∫ t

0

Tr
(
HT

s Hs

)
ds > 0 for t ≥ 0, (11)

Q0 = QT
0 , Q0 > 0 (positive definite) (12)

Let us remark that matrix (10) satisfies the following Riccati differential equa-
tion:

d

dt
Qt = −QT

t HT
t HtQt, Qt=0 = Q0, (13)

and that the derivative of the portfolio’s variance is equal to

d

dt
xT Qtx = −xT QT

t HT
t HtQtx

= −‖HtQtx‖
2
≤ 0 (14)

Property (14) shows that the family {(mt, Qt) ; 0 ≤ t ≤ T } of statistics is well
(correctly) parametrized in the sense that the greater the value of the parameter,
the smaller the portfolio variance (i.e., risk in Markowitz theory).

For the statistic mt we see that it is a martingale relative to the sigma-sub-
field ̥t, since mt = Et [ξ], which means that for 0 ≤ s ≤ t ≤ T we have

Es [mt] = E [mt |̥s ] = ms. (15)

This statement is supported by the argument that there is no reason to suppose
a priori that during analytical (and statistical) investigations a trend distin-
guishing the conditional returns mt from the value m0 will appear.

We adopt in this paper the following convention. In order to distinguish de-
terministic functions from stochastic processes, we shall always use the notation
c (t), Q (t), H (t), etc., for functions and ct, Qt, Ht for processes.

Example 1 For a matrix H =
(
hij
)
, hij ∈ L2 [0, T ] define the observation

process

yt =

∫ t

0

H (t) ξds + wt (16)

where {wt; 0 ≤ t ≤ T } is a Wiener process independent of ξ. Then, from the
Kalman-Bucy filtering theory (see Liptser, Shiryaev, 1977, for example) it fol-
lows that the conditional distribution of ξ is given by the formulae

P (ξ ∈ A |ys; 0 ≤ s ≤ t ) =

∫

A

ρ (t, z) dz
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where ρ (t, z) is Gaussian with the mean

mt = m0 +

∫ t

0

Q (s)HT (s) dνs

with the innovation process (a Wiener process)

νt =

∫ t

0

[dys − H (s)msds]

and the covariance matrix

d

dt
Q (t) = −QT (t)HT (t)H (t)Q (t) , Q (0) = Q0.

In this example ̥t = σ {ys; 0 ≤ s ≤ t}, and (16) have a nice interpretation as
a simple linear econometric model build by the experts.

Example 2 Denote by C ([0, T ] , Rm) a space of continuous function on [0, T ]
with values in Rm, and introduce a matrix H =

(
hij
)
, where hij :.[0, T ] ×

C ([0, T ] , Rm) → R, are bounded and non-anticipative, i.e., if y1, y2 belong to
C ([0, T ] , Rm), and y1 (s) = y2 (s) for 0 ≤ s ≤ t, then hij

(
s, y1

)
= hij

(
s, y2

)

for 0 ≤ s ≤ t. Define the observation process

yt =

∫ t

0

Hsξds + wt (17)

where Ht =
(
hij (t, y)

)
, with {wt; 0 ≤ t ≤ T } a Wiener process independent of

ξ. Then, from the Liptser-Shiryaev filtering theory (see Liptser, Shiryaev, 1977)
it follows that the conditional distribution of ξ is given by the formulae

P (ξ ∈ A |ys; 0 ≤ s ≤ t ) =

∫

A

ρ (t, z) dz

where ρ (t, z) is Gaussian with the mean

mt = m +

∫ t

0

QsH
T
s dνs

with the innovation process (a Wiener process)

νt =

∫ t

0

[dys − Hsmsds]

and the covariance matrix

d

dt
Qt = −QT

t HT
t HtQt, Qt=0 = Q0.

As above ̥t = σ {ys; 0 ≤ s ≤ t}, and (17) describes a linear (more advanced)
econometric model build by the experts. The explanatory variables hij used in
this model may depend on the past of the dependent variables y.
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3. Value of information

Let us consider the situation of an investor maximizing his utility function

U (x, m, Q, M) (18)

subject to the constraints

Φi (x, m, Q, M) = 0, i = 1, ..., p, (19)

where x, m, Q, M denote, as before, an investment vector, the vector of mean
values, the covariance matrix and the amount of cash, respectively. Let us
assume that a solution x⋆ of the above problem exists and set

W (m, Q, M) = U (x⋆, m, Q, M) . (20)

Next, assume that the investor has the option of purchasing information
before making investment decisions: he can buy a segment

St , {(ms, Qs) ; 0 ≤ s ≤ t}

at a price ct, where {ct; t ≥ 0}, c0 = 0, is a Gt-adapted stochastic process on
(Ω, ̥, P ) with continuous, increasing realizations. Here Gt = σ {(mt, Qt) ;
0 ≤ t ≤ T } is a sigma-sub-field of ̥t .

Remark 2 Since ̥t ⊃ Gt, possibly ̥t ) Gt, the condition that ct, is ̥t−,
instead of Gt− adapted, could mean that ct contains some additional information
not included in St.

Technically the transaction can be performed as follows: an information
seller shows to an information buyer a band with a record of the statistics
forming the segment St, along with a record of realization of the relevant price
{ct; t ≥ 0}. The buyer pays ct and immediately decides whether to look at
the band (and to pay) any more or to stop the process. Such a procedure is
necessary because of the specific properties of information as an object of trade
(e.g. it is impossible to see a piece of information and then to refuse purchasing
it).

The investor, viewing segments {St; t ≥ 0}, solves for each t a problem
(18)(19) with the couple (m, Q) replaced by (mt, Qt), and the cash amount
M replaced after payment by M − ct.

A generalized investor problem has the following form: find

supE [U (x, mτ , Qτ , M − cτ )] (21)

subject to the constraints

0 ≤ cτ ≤ M, τ ≥ 0, (22)



874 T. BANEK, R. KULIKOWSKI

Φi (x, mτ , Qτ , M − cτ ) = 0, i = 1, ..., p, (23)

where τ ≥ 0 is a Markov stopping time relative to Gt, i.e., {τ (ω) ≤ t} ∈ Gt for
t ∈ [0, T ].

Let us notice that for fixed t ≥ 0,

sup [U (x, mt, Qt, M − ct) ; Φi (x, mt, Qt, M − ct) = 0, i = 1, ..., p]

= W (mt, Qt, M − ct) .

So, the problem (21)(22)(23) reduces to the following optimal stopping prob-
lem:

Problem 1 Find

supE [W (mτ , Qτ , M − cτ ) ; τ ≥ 0, 0 ≤ cτ ≤ M ] (24)

relative to Gt -Markov stopping time τ ≥ 0, satisfying the condition

0 ≤ cτ ≤ M.

Definition 1 (Value of Information) Let V = {Vt, t ≥ 0}, V0 = 0, be a
Gt-adapted stochastic process on (Ω, ̥, P ) with continuous, non-decreasing tra-
jectories, such that the process

ut , W (mt, Qt, M − Vt) (25)

is a Gt-martingale. The random variable Vt, which is the value of the process
V for the parameter t, is called the value of the information included in the
segment St = {(ms, Q (s)); 0 ≤ s ≤ t} defined for the investor (21)(22)(23), or
equivalently (24).

Remark 3 If the charge for the information included in the segment St, equal
to ct, is set correctly then we have a ”fair game” between the seller and the
buyer, in the sense that the buyer gains nothing (on average) and loses nothing
(on average). Moreover, his (average) anticipations of future growths and drops
of the criteria index are also equal to zero. This means that we have to do
with an equivalent information-money exchange. Such a ”just” charge is called
the information value and denoted by Vt. In the language of mathematics that
means that the process ut is a Gt-martingale.

Considering the investor’s problem of purchasing information from histori-
cal data we see that there are two possible extreme cases and many others in
between. The first is when the analysts offering the segments {St; t ≥ 0} have
done their job earlier. In this case the square error matrix Qt of estimation of ξ

is known to them and can, or even should be known to buyers in order to con-
vince them of the quality of the job done. Consequently, the functions t → Q(t)
and t → c(t) should be known to investors as well. In the second extreme case,
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the analysts’ job will be done in the future and will continue as a function of
financial support. In this case, t → Qt and t → ct are random processes, ct

being σ {(ms, Qs) ; 0 ≤ s ≤ t} adapted. Between these two extreme cases there
are also possible ”mixed cases”, for instance a part of the job, say St, is already
done for some horizon t > 0, i.e., Q(s) is a known deterministic function on [0, t]
and {Qs; s ≥ t} is a stochastic process with initial value Qt = Q(t), and so on.

Some remarks are now in order. Why would the analysts sell St if they actu-
ally have ST , T > t, available? In most countries this is known as withholding
material information by an investment adviser and is expressly prohibited by
regulatory bodies.

In order to explain our reasoning, let us consider many advisers, say N,

working in different offices (shops). Each k-th offers for sale Sk ≡ Stk
only. The

advisers work on the same material (available to the public opinion). They work
by using standard procedures, so the possible differences in the results obtained
come from the possible differences, for instance, in computational power, which
depends on the equipment in the offices and so, generally, depends on previous
investments in the offices. Thus, taking into account Remark 1, we are led to
the conclusion that Sk ⊂ Sk+1, k = 1, ..., N −1. The investor goes to k = 1 and
decides if the information he bought is enough for him to construct a portfolio.
If so, he stops the process. If not, he goes to k = 2 and first negotiates the
payment arguing that he already has a piece of knowledge S1 and so he is going
to pay for the increment only. Here the situation is quite similar to the case of
a shoemaker, when the customer wishes to order one shoe only, since he already
has one from an other shoemaker. Next, the investor decides if the information
he has bought from k = 2 is enough or not, etc. For N large enough this process
can be idealized by the continuous process of buying St, t ≥ 0 from one source.
Moreover, the process can be stopped at arbitrary t ≥ 0.

In contrast to the square error matrix Q, the mean mt is always a stochastic
process for buyers. It does not depend on whether the analysts’ job was done
in the past or will be done in the future.

In this paper we shall deal with the first case only.

Proposition 1 Assume that
(I) Ht is deterministic: Ht = H (t), t ≥ 0,

(II) the scalar valued function ϑ (t, m, M) , W (m, Q (t) , M) is of class C1,2,1

(R+ × Rn × R+),
(III) mt is a continuous, square-integrable martingale with the representation

mt = m0 +

∫ t

0

σ (s) dbs, t ≥ 0, (26)

where
(
σij
)
, σij ∈ C (R+), is a matrix satisfying the condition

∑

ij

∫ ∞

0

[
σij (s)

]2
ds < ∞
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and bt is a Gt-adapted, vector valued standard Brownian motion,
(IV) for some Gt-measurable process Vt, the process ut , ϑ (t, mt, M − Vt) is a

continuous, square-integrable Gt-martingale,
(V) f (t, V, m) ≥ 0 where

f (t, V, m) ,

{
Ltϑ(t,m,M−V )
∂M ϑ(t,m,M−V ) for (t, V, m) ∈ R+ × [0, M ] × Rn,

0 for V ≥ M,
(27)

Lt ,
∂

∂t
+

1

2

∑

ij

σij (t)σji (t)
∂2

∂mi∂mj
, ∂M ,

∂

∂M
.

Then Vt is a pathwise solution of the following stochastic ODE:

dVt

dt
= f (t, Vt, mt) , V0 = 0, (28)

and so it is a non-negative Gt-adapted process with non-decreasing C1 trajecto-
ries (except possibly at the random point T = min {t ≥ 0; VT = M}).

Proof. Equation (28) follows from Ito’s formula (see Karatzas, Shreve, 1991, for
example) for the process

ut = ϑ (t, mt, M − Vt) .

Indeed,

dut = Ltϑ (t, mt, M − Vt) dt−∂Mϑ (t, mt, M − Vt) dVt+ a martigale term (29)

and to make ut a martingale, Vt must annihilate the first two terms on the right
in (29). Thus, if Vt satisfies (28), then (V) implies it must be non-decreasing.
Since (II) and (III) implies existence of a C1 solution of (28), the result follows.

The usefulness of the value of information concept follows from the observa-
tion that the simple scalar process Vt divides the ”big” space R+ ×Rn ×R+ of
triples (t, m, c) into two regions: R+ × Rn × [0, Vt) and R+ × Rn × (Vt, M ]. If
(t, mt, c (t)) belongs to the first subset, then the purchase at the time t is reason-
able. If it belongs to the second, then it is not. Hence, the subset R+×Rn×{Vt}
separates the purchase and ”non-purchase” regions. In some cases the usefulness
of the concept is immediate as the next result shows.

Proposition 2 Assume (I) - (V) and additionally (VI)

E [ϑ (t, mt, M − Vt + δt) |Gs ] ≥ ϑ (s, ms, M − Vs + δs) (30)

when E [δt |Gs ] ≥ δs, (31)

E [ϑ (t, mt, M − Vt + δt) |Gs ] ≤ ϑ (s, ms, M − Vs + δs) (32)

when E [δt |Gs ] ≤ δs, (33)
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for any Gt-adapted process δt. Then the optimal stopping time for the problem

supE [(Vτ − cτ ) ; τ ≥ 0, 0 ≤ cτ ≤ M ]

is also optimal for the problem

supE [ϑ (τ, mτ , M − cτ ) ; τ ≥ 0, 0 ≤ cτ ≤ M ] .

Proof. Let δt , Vt − ct. Then ηt , ϑ (t, mt, M − ct) = ϑ (t, mt, M − Vt + δt) is
a supermartingale (submartingale) if δt is a supermartingale (submartingale).
From the optional sampling theorem it follows therefore that the implications
(31)(30) and (33)(32) hold for the stopping times τ ≥ 0, 0 ≤ cτ ≤ M , assuming
they hold for the ordinary ones. From the well known properties of the so-
called Snell envelope in the optimal stopping theory (see Kazatzas, Shreve,
1998, Appendix D, for instance) follows that (31) and (33) hold for the best
stopping time τ1 of the first problem, i.e., for t = τ1 in (31) and for s = τ1 in
(33). Set t = τ1 and s = τ ≤ τ1 in (30)(31) and integrate both sides. Set s = τ1

and t = τ ≥ τ1 in (32)(33) and integrate both sides. The resulting inequalities
show that τ1 is optimal for the second problem as well.

We are now in a position to state an important problem.

Problem 2 What should in fact the information buyer’s strategy look like? In-
deed, to solve the optimal stopping problem, the investor has to know the process
(Vt, ct), but then he or she has to know (mt, Qt), and hence does not need to
buy anything. Vicious circle !

Indeed, one reason for introducing the concept of information value process
Vt is to answer the question: when one should stop the buying process. In
this paper we are dealing only with the case where c (t), Q (t) are deterministic
and known to the buyer. From (28) it follows that Vt is Gt-adapted, hence the
stopping problem

supE [ϑ (τ, mτ , M − Vτ + δτ )]

over all Gt−stopping times τ ≥ 0, 0 ≤ c (τ) ≤ M is well posed and the buyer
stops the process at the optimal time τ⋆ for which the triple (τ⋆, mτ⋆

, c (τ⋆))
belongs to the purchase region, thus getting the segment S⋆ = {(ms, Q (s)) ; 0 ≤
s ≤ τ⋆} at the price c (τ⋆).

4. Application in portfolio optimization

In this section we will illustrate the concept of information value with an example
based on portfolio theory.

Let m ∈ Rn, Q = QT denote, as before, the vector of mean values and the
covariance matrix of the returns, J = col (1, ..., 1), M ≥ 0 the cash amount of
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an investor, r > 0 the largest risk-free interest rates, and β > 0 the investor’s
risk aversion coefficient.

A linear-quadratic utility function has the form

U (x0, x, m, Q, M) = rx0 + 〈x, m〉 − βxT Qx (34)

in which x is a portfolio of risky assets and x0 is a risk-free investment. Since the
risk-free investments are included in (34) separately, we may assume without
loss of generality that

Q > 0. (35)

We introduce notation:

p (t, m) = mT Q−1 (t) m,

q (t) = JT Q−1 (t)J,

ρ (t, m) = mT Q−1 (t) J,

φ (t, m) =
p (t, m) q (t) − ρ2 (t, m) + 4βρ (t, m)

4βq (t)
+

r2q (t)

4β
.

The main result in this section gives an explicit representation of the infor-
mation value process.

Theorem 1 If φ (t, m) and the matrix
(
σij (t)

)
are such that

Ltφ (t, m) ≥ 0, (t, m) ∈ R+ × Rn, (36)

then (i) the information value process Vt has the representation

Vt =

∫ t

0

v (s, ms) ds, t ≤ T = inf {s; Vs = M} , (37)

where

v (t, m) =
1

r
Ltφ (t, m) , (38)

(ii) the function

ϑ (t, m, M) = φ (t, m) + rM (39)

satisfies the hypothesis (VI) of Proposition 2.

Proof. From the second lemma in the Appendix we have (39). Hence from (27)
it follows that

f (t, V, m) =

{
1
r Ltφ (t, m) for (t, V, m) ∈ R+ × [0, M ] × Rn,

0 for V ≥ M,
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proving (37). Since ut = ϑ (t, mt, M − Vt) = φ (t, mt)+r (M − Vt) is a Gt−mar-
tingale, and

ϑ (t, mt, M − c (t)) = ϑ (t, mt, M − Vt + δt)

= φ (t, mt) + r (M − Vt) + rδt

= a martingale + rδt,

(ii) is obvious.

5. Price of information

The price for the information included in a segment St is a result of a bargaining
process (or game) between the seller and the buyer. If

ct < Vt, (40)

then the purchase is reasonable. If, on the contrary,

ct > Vt (41)

then it is not. When

ct = Vt (42)

then we say that the information is ”of value”.
Consider, for instance, the situation of a seller who guessed (or knew from

a buyer) the values r and β appearing in (34). If he decides to set the highest
possible price: ct = Vt, for t ≥ 0, then from Theorem 1 and Proposition 2
follows that the optimal τ∗ = 0. But this choice (optimal for the buyer) is
totally unsatisfactory for the seller, scice he earns nothing (!). Clearly, this is
a consequence of an asymmetric information structure and shows once more
the dominant role the information structures play in the games and bargaining
problems.

The information value V as defined in the Section 2 is an individual char-
acteristic of the segment St depending on the particular investor, his subjective
risk estimation, risk aversion (utility function), the cash amount M , etc. We
describe it by introducing a notion of the information value Vt (a) for an investor
with parameter a, a = (U (·) , M).

The average value of the information included in the segment St may be
defined as

Vt =

∫
Vt (a) dp (a) (43)

where p (a) is an appropriate measure on C (R+) × R+.
In the simple market of one seller and many buyers the price ct of the segment

St will probably fluctuate around (43), and generally it will be a complicated
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theoretical matter even to estimate the range of these fluctuations. The general
case of many buyers and sellers will be still more difficult.

Summary We have presented the concept of information value as a property
which is jointly attributed to: (1) the parametrized family of probability distri-
bution functions of the investment returns, and (2) a specific investor with his
oun preferences and possibilities. This is the concept of an equivalent money -
information exchange. In the mathematic language this last requirement is ex-
pressed by the property of being a martingale: when the price for information
equals its value, the utility function of the investor is a martingale. For a partic-
ular utility function of linear-quadratic form we have expressed the information
value explicitly. Possible extensions of our results to the free-market theory of
information value require further studies.
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Appendix

With the notations

p = mT Q−1m,

q = JT Q−1J,

ρ = mT Q−1J,

we have two elementary lemmas:

LemmaA1

max
〈x,J〉=a

[
〈x, m〉 − βxT Qx

]

=
pq − ρ2 + 4βρ

4βq
−

βa2

q
.

Proof. Since Q > 0 we may define Q−1/2 (the square root of Q−1) and

m̃ = Q−1/2m, J̃ = Q−1/2J,

y = Q1/2

[
x −

1

2β
Q−1m

]
.

Then

〈x, m〉 − βxT Qx =
p

4β
− β ‖y‖

2
,

〈x, J〉 =
〈
y, J̃

〉
+

ρ

2β
.

Hence

max
〈x,J〉=a

[
〈x, m〉 − βxT Qx

]

= max
〈y, eJ〉=b

[
p

4β
− β ‖y‖2

] (
b = a −

ρ

2β

)

=
p

4β
− β min

〈y, eJ〉=b
‖y‖2

=
p

4β
− β

b2

q
.

LemmaA2

max
x0+〈x,J〉=M

[
rx0 + 〈x, m〉 − βxT Qx

]

=
pq − ρ2 + 4βρ

4βq
+

qr2

4β
+ rM.
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Proof. Since

max
x0+〈x,J〉=M

[
rx0 + 〈x, m〉 − βxT Qx

]

= max
x0

{
rx0 + max

〈x,J〉=M−x0

[
〈x, m〉 − βxT Qx

]}

it is enough to apply the previous lemma.


