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Abstract: In the paper the effects of nucleation and growth of
voids in the plastic porous media are investigated. Three different
forms of the model are considered: the augmented Gurson model
(total porosity model) with variable nucleation and growth material
function, the same model with constant growth material function
and the separated porosity model.

The identification of the material functions parameters is based
on Fischer’s experimental data set for axisymmetric tension of steel
specimens and formulated as a typical nonlinear regression problem
using the least squares approach. The resulting minimization prob-
lem is solved by means of our own implementation of the Boender
at al. global minimization method.

Calculations and statistical analysis (Akaike, FPE and Vuong
tests) have led to a conclusion that the growth material function
in the uniaxial tension for steel may be assumed to be constant
although not necessarily equal to one.
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identification, global optimization, nonlinear regression, nonlinear
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1. Introduction

In many mechanical problems of plastic flow and fracture of dissipative solids
the intrinsic micro-damage effects are observed. Some researchers use a set
of internal state variables to describe the intrinsic microdamage effects, while
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others admit only one porosity parameter £ and some material constants. We
consider the latter way of description. In such constitutive models, in the form
of the proposed evolution equation all parameters have to be determined. The
evolution equation for the porosity parameter £ has to describe the nucleation
and growth mechanisms of microvoids.

The formation of microvoids in commercial grade materials is attributed to
the presence of inhomogeneities which can be in the form of dispersed inclusions
and/or second phases. The microvoids appear either as cracks in the particles
or as failure of the particle-matrix interfacial bonding. The actual microvoid
morphology depends upon the interrelation of various microstructural parame-
ters as well as the local deformation state.

There have been many studies directed toward better understanding of void
evolution and developing constitutive relations for inelastic porous solids. The
model by Golganu et al. (1995), Sgvik and Thaulow (1997), Pardoen and Delan-
nay (1998), Pardoen, Doghri and Delannay (1998) and Pardoen and Hutchinson
(2000), accounts for void shape effects and distribution of voids, respectively.
In addition, some other effects, such as the strain mode effect in matrix (e.g.
Koplik and Needleman, 1988; Tvergaard, 1990; Leblond et al., 1995; and Li et
al., 2001) on the void growth, have been studied. All the analyses have shown
clearly that besides the stress triaxiality and equivalent plastic strain, there are
other effects influencing the growth of voids.

The volume fraction of microvoids £ as a function of equivalent plastic strain
€p given by Fisher (1980) is plotted in Fig. 1. It should be stressed that Fisher’s
data are complete in that sense that they deliver not only the total porosity but
also the nucleation part of porosity. In the first part of our calculations we have
not exploited that information. Also the results presented in our earlier paper
(Nowak and Stachurski, 2002) have used the total measure of porosity neglecting
the rest of the experimental information. This is somehow justified because the
majority of the experimental results available in the literature contains only
measurements of the total porosity (see Needleman and Rice, 1978; Saje et al.,
1982).

It is postulated that the evolution equation for porosity parameter has the
form (see Needleman and Rice, 1978; Perzyna, 1984; or Perzyna and Nowak,
1987)

& = (g)nucleation + (g)growth = W

= h(&, 8o : DP + g(&,,§)D? : I

where i~L, g are the material functions, I denotes the unit tensor, €, is the
equivalent plastic strain, o is the Cauchy stress tensor, D? denotes the plastic
rate of the deformation tensor and the operator: means the trace of second
order tensors.

It is assumed that the nucleation mechanism occurs mainly at second-phase
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particles, by decohesion of the particle-matrix interface and by the particle
cracking. The growth process is postulated to be controlled only by the plastic
flow phenomenon. Both assumptions are justified by the experimental observa-
tion results for metals (see a review paper by Needleman and Rice, 1978).

The first term in the evolution equation (1) for the porosity parameter £
describes debonding of second-phase particles from the matrix as the plastic
work progressively increases. The nucleation material function h depends on
the equivalent plastic deformation €, and the porosity {. The second term in
Eq. (1) is related to the growth mechanism. It is assumed that the growth
material function g also depends on the equivalent plastic deformation €, and
the porosity &.

In this paper we focus on the identification of material functions with the
Fisher’s (1980) experimental data. Some parts of our work parallel and extend
what has been carried out by Perzyna and Nowak (1987) and by Nowak and
Stachurski (2001, 2002). All of them focus on the total porosity model. In paper
one only theoretical total porosity model has been proposed. Two last papers
document its numerical verification with various variants of material functions.
In the current paper we propose another model with separated nucleation and
growth effects, carry out numerical identification of both models and compare
the results.

We consider the separate evolution equations for the voids growth and the
voids nucleation, i.e. we used the model in the form of two differential evolution
equations with two state variables (growth of volume of fraction of voids and
nucleation fraction of voids). We have assumed the additivity of the two kinds
of porosity components. Therefore in the right hand sides of the two differen-
tial equations appear sum of the porosity components (see equation 12). The
model and the appropriate mean square functional for that case are presented
in Section 4.

The Gurson’s voided media plastic flow model itself is a set of differential
equations (equilibrium, constitutive, plastic flow and porosity evolution equa-
tions). The involvement of the Bridgman’s equilibrated solution for the stress
state reduces this set to one differential equation. To obtain the calculated
porosity parameter, &, in the first case, we had to solve poorly conditioned dif-
ferential evolution equation (1). The second case involves a set of two ordinary
differential equations.

The material function formulae used in the first case are described and the
corresponding resulting least squares problem is introduced in Section 5. Data
used for parameter estimation are presented in Section 6. The computational
results are shown and discussed in Section 7. Some conclusions and observations
are also stated. In Tables la, 2a, 3a the "best” minima found for each interval
are collected. The presentation of the whole set of local minima is restricted to
three sectors due to the lack of space (see Tables la, 2a and 3a). Section 8 is
devoted to the analysis of the identification results. Finally, Section 9 contains
some concluding remarks.
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In this paper we focus on the traditional least squares formulation (see for
example Levenberg, 1944; Marquardt, 1963) of the identification problem, where
the sum of the second powers of deviations of the calculated and measured values
is minimized. We have expected existence of many local minima in our problem.
Therefore we have used our own implementation of the global minimization
procedure of Boender at al.in the form presented in Toérn and Zilinskas (1989)
in standard ANSI C language. It combines the clusterization approach with local
minimization. Locally, we have used the BFGS quasi-Newton method with the
numerical gradient estimation (see for instance Bazaraa et al., 1993; Bertsekas,
1997; Fletcher, 1987; Stachurski and Wierzbicki, 2001). The BFGS method
is an unconstrained optimization method; however, in our implementation we
have introduced box constraints on the parameters. Differential equations have
been solved by means of the Rosenbrock method for stiff differential equations
(see Press et al., 1993). Details of the implementation can be found in Nowak
and Stachurski (2001).

2. Porosity model in the case of total porosity
2.1. Porosity evolution at the neck

In the following considerations the uniaxial test is carried out in the room tem-
perature. At the neck there exists a complex state of stress and maximum
deformations. A material point is identified by the Cartesian convected coordi-
nates ' (i = 1,2,3) in the reference state. In the current deformed state the
coordinates of the material point, relative to the Cartesian frame, are denoted
by z¢ . We assume, following Chakrabarty (2000), that after a neck has been
formed in a cylindrical tensile specimen, the distribution of the stress across a
transverse section is not uniform. We have assumed an augmented version of
the Gurson’s (1977) porous material model with the following porosity evolution

! £1r(eD")+ 9(&)(1 = tr(D”). (2)

It is the Gurson’s form of the equation of porosity evolution with varying g(€,) as
proposed by Perzyna (1984). Non constant g(€,) reflects the influence of voids
from the neighbourhood on the growth of a particular void. In equation (2)
the plastic strain controlled nucleation criterion suggested by Gurson’s (1977)
analysis of experimental data obtained by Gurland (1972) is assumed. The
nucleation of microvoids is not dependent on the hydrostatic stress. We assume
that h(ép,) and g(€p) are functions depending on plastic strain and unknown
parameters.

Our purpose is to determine the material functions h(€,) and g(€,) on the
basis of the total porosity experimental data set. We have tested many formulae
for h(€p) and g(€,), described in Section 5.
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We have assumed the following form of the evolution equation (2) for a
porous plastic solid

f 1 Opx Oyy 1
== |h——= (A Ao—— +1 1-8M +A+1 3
) ¢ 1Uzz+ 2Uzz+ +9(1 =M+ +1) o (3)
where A\; = EL, Ao = % and \* = Z[(A\1)2+ (A\2)? +1], #i is the derivative of
1 — Efz’ 2 — Egz -3 1 2 )

Efy and
EP_ are the plastic rates of the deformation tensor components in the Cartesian
x, y and z coordinates.

the porosity, €, is the derivative of the equivalent plastic strain. EP

T

2.2. Stress state at the neck

We employ Bridgman’s (1952) solution for the stress state at the center of the
minimum section of the tensile cylindrical sample. It has been obtained due
to the assumption of the uniform deformation of the elements in the minimum
section implying that the circumferential strain rate Eyy is equal to radial strain
rate F,, in the minimum section (see Chakrabarty, 2000, p.161). Inserting this
equality in the equilibrium equations and combining with the yield condition
yields

_ 1R
Oz = Oyy =010 §p_R+1

.. za(l—i—ln (lﬁﬂ))
2pr

The analytical expression for the stress depends on the matrix flow stress,
o and the geometry of the neck, i.e. on the ratio %, where R is the radius of
the minimum section and pr is the neck contour radius. The behaviour of the
matrix material is represented by a piecewise power law of the form ¢ = oy
(€p/€y)N, o, is the yield stress in uniaxial tension, €, is the yield strain of the
matrix material and N is the matrix strain hardening exponent, e.g. for carbon
steel 0y,=175.0 MPa, e,= 0.001 and N= 0.18. Similarly as in Saje, Pan and
Needleman (1982) it is assumed that

for z, y, z=0. (4)

R
— =0.833(¢, — 0.18), for €, >0.18
PR

£ oo, for & <0.18.

PR
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Taking equation (5) into account in the Bridgman’s solution we obtain for
axisymmetric tension

Oz _ Tyy _ (6)

UZZ UZZ

where

/\zln(%p%—i—l)/(l—i—ln(%p%—i—l)). (7

Furthermore, we have assumed the constitutive relation for the porous plastic
solids introduced by Gurson (1977). This constitutive relation can be put into

the form introduced by Rudnicki and Rice (1975), EZ—J— = %PMQM o where &
is the Jaumann rate-of-change of Cauchy stress tensor. Using this relation we
can determine A1 and \g

/\1 = /\2 = (35;3;3 + 504)/(35,22 + 5&) (8)

where Sj; = 0i; — $0kk0i; and
. 1, Okk
= h e . 9
a = ¢ sinh( 26) ©)

3. Formulation of the identification problem in the case of
total porosity

The problem considered in the current section has been reformulated. Our task
is to find the optimal estimates of the unknown parameters in the material
functions h(&,) and g(€,) which appear in equation (1). It is assumed that the
nucleation mechanism in (1)is controlled by the plastic strain only. The identifi-
cation problem is stated as the problem of finding values of the material function
parameters ensuring minimal value of the mean square functional calculated as
the sum of the second powers of differences between the observed output val-
ues Y; and corresponding calculated output values V; (Y; = F(&,z)). Here
F' represents the assumed model. It connects the input independent variable
values, €,;, with the output values, £, and accordingly = denotes the unknown
parameters. Thus, our problem is

min ||Y — Y|? (10)
eV
where V' C R™ denotes the set of admissible parameters values (n is the number

of the unknown parameters to be identified). Substitution of the formula ¥; =
F (&, ) into (10) yields

M
5232{3@- — F(éi,z)}” . (11)
i=1
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The second term in formula (11) represents the calculated output values
Y;, and M is the number of observations (measured input and corresponding
output values). In (11), the second power of the euclidean distance is used. If
V = R™ (the unconstrained case), the minimization of the distance is equivalent
to the minimization of its second power. Therefore, in the least squares method
usually the second power of the distance in the observations space is minimized.

In our primal problem the calculated output is obtained as a result of the
integration of an ordinary differential equation, where on the left-hand side
its derivative with respect to the input €, appears. The right-hand side of
the differential equation depends on the input and output variables and on
unknown parameters. The unknown parameters appear exclusively in the so-
called material functions being a part of the right-hand side of the differential
equation. See for details Sections 2 and 5.

The parameters should belong to the set V' of feasible values of parameters,
defined in Section 5. In this part we have not made any use of the data on the
growth or nucleation volume fractions although they are available in the Fisher’s
data set.

4. Formulation of the identification problem in the case of
separated nucleation and growth porosity

Identification of parameters in the formulation stated in Section 3 suggested
that there exists an intrinsic non-uniqueness in the parameter determination.
It has led to the observation that material functions h and g in some sense
mutually compensate their impact on the identified model.

Our first trial to eliminate that phenomenon was use of ¢ = 1. We have
carried out several identification runs with g = 1 and various variants of h.

The second trial tested by us was the explicit use of the full Fisher’s data
set taking into account not only the values of the total porosity but also the
corresponding separated nucleation and the growth porosity. We have changed
accordingly the identified model to the form of two separate evolution equations
— the first one describing the nucleation of new voids and the second one describ-
ing growth of the already existing voids. Those differential evolution equations
are mutually connected by introduction of the total porosity into their right-
hand sides as follows

én = h(gp)ﬁtT(UDp)

& = ge)1 =€ —€)r(DY) 12)

This means that we keep the additivity assumption saying that total porosity
£ is the sum of the nucleation and growth effects, i.e. £ = £™ + £9. The model
represented by equations (12) is not mathematically equivalent to the model
(2). Anyhow, we believe that it is justified on the basis of the existing models
describing separately the phenomena of nucleation of new voids and growth of
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existing voids. The only difference is the replacement of the partial £ on the
right-hand sides by the total porosity.

The above presented change in the model formulation is reflected in the
mean square function (11) where instead of the sums of squares of deviations of
the measured and calculated total porosity we sum up the squares of deviations
of the measured and calculated nucleation part of porosity ™ and the squares
of deviations of the measured and calculated growth porosity £9, respectively

M M
mip |34 - & (& w)} + MG & (i)} | - (13)

Here, £ and £"(€,;, v) denote the experimental and calculated (for given para-
meters x) values of the nucleation of new voids, and €9 and £9(€,;, *) denote the
experimental and calculated values of the growth of existing voids, respectively.
The calculated values £"(€pi, ) and £9(€,;, x) are obtained by the numerical
integration of the differential evolution equations (12).

We have used the same sets of material functions as in the previous two
parts of our identification calculations.

5. Material functions

This section contains formulae of the material functions which we have used for
identification. There exist certain requirements that the shape of the material
function h has to satisfy. We started trying to follow the ideas of Chu and
Needleman (1980). So, as the first type of the function, the Gauss normal
distribution function for function h was applied

_ 2
_ ai 1l —a
h b = — —— . 14
1(6;05 ai, 01, Cl) bl o exp < 2 |: bl :| ) ( )

where a1,b1,c1 are the unknown parameters. All of these parameters have their
mechanical meaning. Namely, a; denotes the maximum value of the porosity
parameter, by is the width of the voids distribution region and c¢; represents
the value of the equivalent plastic strain €, at the moment when the porosity
parameter reaches its maximal value.

We have also used two other forms of the material functions h

hy = a1(&,)" exp(c1&p) (15)
h3 = a1[1 + tanh(blép + Cl)] . (16)

The second material function g describing the growth of microvoids must be
uniformly equal to 1 when the initial void or voids are isolated in an unbounded
matrix. It means that voids do not interact, no nucleation of new voids and
no coalescence of voids in the growth process are considered. These three phe-
nomena are closely interrelated and can occur simultaneously. In our analysis
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this function g is not necessarily constant. As a first form of the g function the
following formula (as in Perzyna and Nowak, 1987) was used

91(Ep; az, ba, c2) = azexp [by (8,)7] . (17)

Unfortunately, in this case, the mechanical interpretation of the unknown
parameters ao, by and cs is not so clear.
The identification was also carried out with five other different forms of the

material function g, namely

B = an/(@)?+ha(e) +oo (18)
I (19)
ga = 1 (20)
gs = a2 (21)
g = az+by-Ep. (22)

Tables 1a summarizes case notation for the total porosity model and Table 1b
for the separated porosity model. For instance Case A1l denotes selection of hy
and g;. This means that we apply the Gauss normal distribution function as the
nucleation material function A and exponential function as the growth material
function g. Case B1 corresponds to he and g1, and so on.

Table 1la. Summary of notations for the total porosity model

g-function
91 | 92 | 93 | 94 | 95 | Ys
hi | A1 | A2 | A3 | A4 | A5 | A6
hey | Bl | B2 | B3 | B4 | B5 | B6
hy | Cl1 | C2|C3|C4|C5|C6

The corresponding cases for the separated porosity model are denoted simi-
larly. The only difference is the addition of capital D in front of the case symbol.
Hence, for example DA1 means the use of functions h; and g;.

Table 1b. Summary of notations for the separated porosity model

g-function
g1 g2 gs 94 gs ge
hi1 | DA1 | DA2 | DA3 | DA4 | DA5 | DA6
he | DB1 | DB2 | DB3 | DB4 | DB5 | DB6
hs | DC1 | DC2 | DC3 | DC4 | DC5 | DC6

We have maintained the same order of notations in the separated and total
porosity models to simplify the comparison of identification results in both cases.
The tables of results for the total porosity model are presented in the Appendix
subsection A1 and for the separated porosity model in subsection A2.
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6. Brief description of Fisher’s data used for estimation

In J.R. Fisher’s experimental investigation two carbon steels with 0.17 (type
B) and 0.44 (type W) weight percent carbon, respectively, were used for the
quantitative studies of microvoid nucleation and growth. All testing was done
at the room temperature. Metallographic observations were made on both un-
deformed and deformed specimens using both optical and electron microscopy.
For each specimen, a series of transverse sections was prepared corresponding
to successively smaller axial distances from the minimum cross section. Each
new section was obtained by grinding to the next premarked position and thus
the previous sections were destroyed. Therefore, all data required from a given
section had to be obtained before preparation of the succeeding one. Each sec-
tion was carefully polished and etched after preliminary use of various grades
of abrasive papers. The microstructural parameters were determined in both
deformed and undeformed specimens. For the deformed specimens the areal
density of voids, 14, and the volume fraction of voids, &, were obtained from
transverse sections by standard metallographic techniques performed on scan-
ning electron micrographs taken at a magnification of 2000 times. It is observed
in Fisher’s experiment that the voids tended to have elliptical cross sections
similar to those of the particles, as might be expected since the particles were
nucleation sites for these voids.

The total volume fraction of voids, £, and the nucleation part of volume
fraction of voids, £", obtained by Fisher (1980) are plotted as the function of
equivalent plastic strain €, in Fig. 1. This measure of voids is used in our analysis
in Section 4, with separation of the nucleation part from the full measure of &.
As in Perzyna and Nowak (1987) the resulting diagrams of the nucleation part
of " and the growth part of {9 versus €, are shown also in Fig. 1.

In this work, the thorough analysis of the data set was omitted since we de-
cided to concentrate on the computational aspects of the problem of parameter
estimation. We were interested in the question of whether it is in fact the global
optimization problem. Furthermore, we wanted to obtain the decisive answer
to the question of whether the assumed model does fit at all the given data set.

7. Numerical results

In this section the results of parameter estimation are presented. It is impossible
to present all aspects of the calculations in a short paper. Therefore we restrict
the presentation of the minima found to just the three with the smallest mean
square function values.

Our aim in considering various forms of material functions was to obtain the
"best” fitting of the model to the data in the sense of finding the parameters
ensuring the smallest value of the mean square functional (11) or (13), respec-
tively. Furthermore, in all cases it is necessary to impose some bounds on the
parameters to assure their appropriate mechanical interpretation and to avoid
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Total, nucleation and growth void volume fractions, Fisher's data[13]
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Figure 1. Total void volume fraction, &, the nucleation volume void fraction, &"
(data from Fisher, 1980, for the B1 type steel) and the calculated growth volume void
fraction, £7, as a function of equivalent plastic strain, €.

overflows in calculations (specially for the g function). In our computations
we have used the following strategy — at the beginning a broad range of the
feasible parameters were assumed. Next, we have continued our calculations
taking at the subsequent steps small intervals containing the previously found
optimal values of parameters as their new feasible ranges. At each such main
step we have found several local optima. For many of them the underlying
variables were located at the range bounds. Because of that we have adopted
special strategy consisting in subsequent minimizations with restricted range
of parameters. It gave us an opportunity to better explore the whole range of
parameters we were interested in. The second and very important reason for
such strategy was the large computational effort and memory requirements for
storing many local minima and points leading towards them if we decided to run
the program assuming excessively broad range of parameters. The third and not
less important reason were numerical difficulties encountered in the integration
of the differential equation. Its right-hand side contains a singularity and is
very sensitive even with respect to relatively small changes in some parameters.
It was sometimes impossible to satisfy the accuracy requirements in the double
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precision arithmetic of the workstation.

In each case we have started our computations assuming at the beginning a
broad range of feasible parameters. For instance in Cases Al, A2 and A3 we
have taken

Al: 001 <a; < 0.05, 0.1 <b < 06, 09 << 13
1.0 <a< 1.5, 001 <by< 0.3, 001 <ec< 06

A2: 001 <a < 0.1, 01 <b < 05, 10 <e < 1.3
0.1 <ax< 0.6, 05 <by< 12 08 <e< 18

A3: 001 <a; < 0.1, 01 <b < 10, 10 <e < 13
15 <a < 3.0, 25 <by< 50

The results are presented in Appendix in subsections Al and A2, in Ta-
bles 2a, 2b—5a, 5b. Tables with suffix ”a” contain the following information
about a minimum:

e the corresponding values of parameters

e the functional values f.

Tables with suffix ”b” contain frequently used statistical information:

e residual standard deviation s, where

S (Y - )2
M

M  is the number of observations,
where: Y; are the observed values of the output,
Y; are the calculated values of the output

Y; = F(&i,x) fori=1,...,M (24)

e relative standard error sq,,

Se

ew — o 25
Sew = % (25)
where Y is the mean value of the observed output

[z

Y=>—"- (26)

M

e correlation coefficient 7y ;- between the observed and calculated output:
v) (V- 7)

M (o o)
|:Zi_1 (Yi - Y) }

(27)

Nl=

S (-
s, -7y
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where V is the mean value of the calculated output

= [sz\il i/l:|
Y=+ - 28
= (28)
e Akaike’s information criterion AIC (Séderstrom and Stoica, 1989, p. 442,
eq. 11.48; Holnicki et al., 2000, pp. 187-189)

AIC =M xInVy (&) +2*n (29)

where n denotes the number of the model parameters and Vi () is the
loss function

e final prediction error criterion (FPE) (Séderstréom and Stoica, 1989, p.
444, eq. 11.54; Holnicki at al., 2000, pp. 187-189)

1+n/M

(30)

In the cases with the prefix "D” corresponding to the model with the sep-
arated nucleation and growth porosity all statistical quantities except for the
Akaike’s and FPE information criteria are duplicated, i.e. they are given sep-
arately for the nucleation and growth values. Akaike and FPE information
criteria are calculated for the separated cases treated as total (i. e. after sum-
ming up the outputs) to make them comparable with the total cases. Those
criteria are used for discriminating between the rival nested models. Further,
we use only part of them in the analysis because only few of our models form
groups of nested models.

Tables are organized as follows. Subsection Al contain the results for the
total porosity model — in Tables 2 with variable growth material function, in
Tables 3 with constant growth material function. Similarly, in subsection A2
we present the results for the separate porosity model, again presented in two
groups — in Tables 4 with variable growth material function and in Tables 5
with constant growth material function.

7.1. Vuong test for discriminating between the rival nonnested mo-
dels

There exist several tests for discriminating between the nonnested models (for
instance: Cox test, Vuong test, Bayes factors, F test, J test, JA test) (see
Clarke, 2000; McAleer, 1995; Vuong, 1989). We have considered the use of the
Cox and Vuong Tests. The Cox test is harder to perform than the Vuong test.
It requires many extra simulations to calculate its value. Furthermore, it may
reject both of the two compared models without any decision. The Vuong test
is the easiest to perform; it is only necessary to calculate the difference in the
average log-likelihoods and calculation of the normalization. It requires neither
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simulation nor any prior information. Vuong test nether leaves us without any
answer. It allows to select the best model even from a set of bad nonnested
models.

The null hypothesis in the Vuong test is that compared models M; and
My are equivalent. The H; hypothesis states that model M; is better than
Moy, while Hs hypothesis is that model M; is worse than Ms. The actual
(approximate) test is:

LRy (03,03,
(VM) -y
LRy (0},63%))
(VM) -
LRy (0%,,03))

under H2 : W — = (33)

under H : — N(0,1) (31)

under Hj : — 400 (32)

where
LRy (01,03,) = Ly (03) — L?w(‘%) (34)
1 o- [ A 6)) Avixsi)]
Q%JE_Z In 1\Le szM _ Z 1 2 5\4 . (35)
M= | flYilZis63) 2(Yi| Z:,62,)

Here L}, (01,) is the logarithm of the likelihood function for model M, with the
parameters 6}, and L2,(62,) is the logarithm of the likelihood for model My
with the parameters éﬁ/[, respectively (for the definition of likelihood function
see e.g. Soderstrom and Stoica, 1989).

The symbol f1 (Y| X;0%,) (f2(Y:|Xy;0%,)) denotes the likelihood function
for the model M; (My) with parameters equal to 61, (62,) — the estimated
values of the unknown parameters 6.

In simple terms, if the null hypothesis is true, the average value of the log-
likelihood ratio should be zero. If the H; hypothesis is true, the average value of
the log-likelihood ratio should be significantly greater than zero. If the reverse is
true, the average value of the log-likelihood ratio should be significantly smaller
than zero. This means that the Vuong test statistic is simply the average log-
likelihood ratio suitably normalized.

Our models have different number of parameters. Therefore, following Clarke
(2001) we have adjusted the log likelihood ratio statistic

LR (0},,0%,) = LR (0},,62,) — [(%) In(nl) — (%) ln(n2)] (36)

where nl and n2 are the numbers of parameters in models 1 and 2, respectively.
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This adjusted value has been used to calculate Vuong test results collected
in Tables 6, 7 and 8. Table 6 contains the results of the mutual comparison
of models A1, A2, A3, A6, B1, B2, B3, B6, C1, C2, C3, C6 and Table 7 — of
models DA1, DA2, DA3, DA6, DB1, DB2, DB3, DB6, DC1, DC2, DC3, DC6.
Models represented in Table 8 were selected according to the following rules:

e select on the basis of the Akaike or FPE information criteria (Tables 2b,
3b, 4b and 5b) the best model from any group with g = 1, g being the
estimated constant and g linear and one particular form of the h function,
for instance A4, A5 and A6

e select using the Vuong criterion (Tables 6 and 7) the best representative
of any group with one h formula and all other forms of ¢ including linear
g (for instance, the first group consists of Al, A2, A3 and A6)

e Models selected in two previous steps are compared via the Vuong test
(the results of the pairwise comparison are collected in Table 8).

8. Analysis of the identification results

We have carried out four separate variants of numerical experiment. The first
one concerned the case of the total porosity model and variable shape of both
material functions. The results are collected in Tables 2a and 2b. In the second
case we have assumed constant growth material function g (we have tested
two variants — the first one with ¢ = 1 and the second one with an estimated
value of that constant). Those results may be found in Tables 3a and 3b,
respectively. Similar two cases have been used for the model with separate
porosity. The results for varying shape of g are presented in Tables 4a and 4b
and the corresponding results for constant g in Tables ba and 5b. We have
used various forms of material functions. Therefore the above mentioned cases
contain many subcases. We have found many local minima in all subcases. Their
presentation in Tables 2a—5a is restricted to the best three of them, ordered with
respect to the fitting error values in the increasing order. Tables 2b—5b contain
the corresponding statistical indicators. The results presented in tables show the
variety of possible solutions to the minimization of the mean squares function
if the parameters appear in the model nonlinearly. It seems that the presented
numerical results justify the hypothesis that many local minima exist in the
considered problem. Many of the local minima found are acceptable also from
the statistical point of view.

The values of ryy close to 1 show a good correlation between the calculated
and measured output.

Tables 2a and 2b contain the computational and statistical results for the
estimation with the varying growth function g. Fig. 2 presents the corresponding
dependence of the total porosity differences (observed minus calculated values)
on the equivalent plastic strain. The analysis of Tables 2a and 2b shows that
for the varying growth material function g the worst choice of the nucleation
material function h is the powered exponent function (15). Two other nucleation
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Figure 2. Differences between the experimental and calculated total porosity for cases
A1, B1, C1, A2, B2 and C2 versus equivalent plastic strain with varying g.

material functions — normal distribution function (14) and shifted hyperbolic
tangent function (16) are equally good. The mechanical interpretation of the
normal distribution function parameters is easier. It was frequently used in the
previous studies published in the literature. Therefore in our opinion the normal
distribution nucleation material function is a reasonable choice.

The large number of local minima found in all cases from that group led us
to the conclusion that there exists a kind of internal nonuniqueness in the total
porosity model. Due to that observation we have decided to study the total
porosity model with the constant g material function (with g = 1), i.e. the form
of the porosity model proposed by Gurson (1977).

The results accumulated in Tables 3a and 3b show that fitting error is of
the same magnitude as in the corresponding cases with varying g function. Sta-
tistical indicators are not worse than in cases with varying growth function g.
Fig. 3 presents the resulting dependence of the total porosity differences (ob-
served minus calculated values) on the equivalent plastic strain in the case of
constant g.

The results collected in Tables 3a and 3b for the constant growth function g
suggest that the estimated constant value of g is preferred as compared to the
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Figure 3. Differences between the experimental and calculated total porosity for cases
A4, B4, C4, A5, B5 and C5 versus equivalent plastic strain for constant g.

constant ¢ = 1. We can derive also the same conclusion as for the varying
growth function g — namely that the powered exponent nucleation function h is
the worst choice. The conclusions drawn on the basis of the fitting error agree
with those deduced from the Akaike and FPE test values. In group A (with h
being the Gauss function) the best one among A4, A5 and A6 is A5, in group B
— B5 and in group C — C4. For the separated case Akaike and FPE point out
that linear g (i.e. DA6, DB6 and DCG6) are the best ones in all three groups.

Vuong test (Tables 6 and 7) selects A3 (from A1-A3 and A6), B3 (from B1-
B3 and B6) and C6 (from C1-C3 and C6). The best models selected by means
of the Akaike and FPE tests for each group and those selected by means of the
Vuong test were further compared using again the Vuong test (see Table 8). The
analysis of Table 8 shows that the best choice is the shifted hyperbolic tangent
as the h function and ¢ = 1 (model C4). Similarly good results are obtained
with the Gauss normal distribution as the h function and g — an estimated
constant. The fitting error is better for model A5.

To conclude the presentation of the results for the total porosity model we
have included Figs. 4 (a - b) containing graphs of material functions h (for the
models C4 and A5) showing the dependence of their values on the equivalent
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plastic strain. Second possibility of overcoming the nonuniqueness studied by us
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Figure 4. Graphs of the material functions values for the total porosity model, a)
model A5 and b) model C4, versus the equivalent plastic strain.

was the investigation of the separated model. It was possible to pose the prob-
lem in that way because Fisher’s data contain the total and nucleation parts
of porosity separately. The total porosity models considered by us assume the
additivity of these two phenomena — growth and nucleation of voids. However,
when separate data are available, it seems to be natural to exploit them sep-
arately in the model and in the corresponding identification problem. This is
exactly what we have done in cases DA, DB and DC. We have formulated the
separate porosity model and identified its parameters. The results are collected
in Tables 4a—5b. The fitting error is in that case of magnitude 10~ and the
statistical indicators are also relatively good. It should be stressed, however,
that the fitting error in that case is the sum of deviations of two outputs —
nucleation and porosity growth.

The computations have been carried out in the similar manner as in the
total porosity model. We have started with the varying growth function g and
afterwards continued with the constant growth material function g.

The estimated results for the varying growth function are collected in Ta-
ble 4a and the corresponding statistical indicators in Table 4b. Fig. 5 presents
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the resulting dependence of the total porosity differences (observed minus cal-
culated values) with respect to the equivalent plastic strain. General conclusion
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Figure 5. Differences between the experimental and calculated separated porosity
for cases DA1, DA2, DB1, DB2, DC1 and DC2 versus equivalent plastic strain with
varying g.

is the same as for the total porosity model. The powered exponential function h
is the worst choice. The normal distribution and the shifted hyperbolic tan-
gent functions are almost equally good. Therefore we recommend the use of the
normal distribution functions since it is easier to interpret its parameters and
it is more frequently used. Furthermore, the graph of the growth function g
is approximately linear (see Figure 7). Therefore we have tried also the linear
form of g, obtaining only slightly larger fitting error.

We have tried also to use the constant growth material function g. The re-
sults are collected in Tables 5a and 5b. Fig. 6 presents the resulting dependence
of the total porosity differences (observed minus calculated values) with respect
to the equivalent plastic strain. The fitting errors are quite small in that case.
Also correlations between the calculated and observed porosity are acceptable.
It is interesting in that case that the Vuong test prefers model DC6 (g is lin-
ear), but the material function g is almost constant, although not equal to 1.
Its value is approximately equal to 0.86. We have observed a strong tendency
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Figure 6. Differences between the experimental and calculated separated porosity
for cases DA4, DA5, DB4, DB5, DC4 and DC5 versus equivalent plastic strain with
constant g.

towards that constant value. Even in other local minima found, the estimated
constant value of g is almost equal to 0.86. Such phenomenon was not so clearly
observed in the total porosity model although the Vuong test value shows that
the model C4 is the best one and the model A5 (with A — the Gauss normal
distribution function and g — an estimated constant) is only a bit worse. The
value of the Vuong test of order 10~3 permits even to claim that C4 and A5 are
equivalent.

Figs. 7 a,b contain graphs of the material functions DA5 and DC6 showing
the dependence of their values with respect to the equivalent plastic strain.

9. Conclusions and comments

The main novelty of the paper lies in the introduction of the model with sep-
arated nucleation and growth of voids. This differentiates substantially the
current paper from its two predecessors (Nowak and Stachurski, 2001, 2002),
where we have considered exclusively the model with total porosity. In the
current investigation we have identified the material functions parameters for
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Figure 7. Graphs of the material functions values for the separated porosity model,
a) model DA5 and b) model DC6, versus the equivalent plastic strain.

both variants of the model with various forms of the material functions. Special
attention has been paid to the case with constant function g (with an estimated
constant value and its case with g = 1). The identification results were analysed
and compared. We have included also statistical tests for discrimination of the
nested models (Akaike and FPE information criteria) and the Vuong test for
nonnested models selection.

It should be stressed that in the identification process of the model with
separated porosity the minimized mean squares function (11) consists of two
summarized terms. In the first one we sum up the squares of deviations of the
measured and calculated nucleation part of porosity £ and in the second term
the squares of deviations of the measured and calculated growth porosity &9,
respectively.

The estimated material functions h (for the best models) are plotted in Fig. 4
for the total porosity model and in Fig. 7 for the separate porosity model. We
would like to stress that our material function was determined with following
important assumptions. The matrix material is plastically incompressible (p,, =
0 where p,, is matrix density) and the elastic part of a strain rate tensor is
neglected, D;; = ij. All our conclusions concern exclusively the ductile steel
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material, although qualitative conclusions may be valid also for other types of
materials.

We have found several local minima in all cases. The best fitting error for
the total porosity model is of order 10~7. However, fitting error in other cases is
only slightly larger. Of course, the corresponding material function parameters
have different values.

In all tested forms of the separated models we have also found several sets of
parameters (local minima of the mean square function) with the fitting errors
close to the best one (within the range from 107 to 107°). The parameters
are reasonable from the mechanical point of view. An interesting and open
question is which local minimum found should be selected. It seems that in
the total porosity model (when the voids nucleation and growth phenomena are
simultaneously present), the constant material function g = 1 as used by many
researchers is a reasonable choice. However, we should stress that the identifi-
cation procedure with g = ao, where parameter as was identified, has led to a
bit different value of that constant — in the total porosity model approximately
equal to 0.9 and in the separate porosity model approximately equal to 0.86. In
our opinion the value 0.86 obtained for the separate porosity model is proba-
bly closer to the real value since in this model we have exploited the available
experimental data more thoroughly.

In the separate porosity model the fitting error is of the order of 107.
However, in this case the mean squares function has a double number of the
summed components (60 versus 30 in the total porosity cases). In fact, we sum
up the fitting errors for the nucleation and growth porosity parts. Having that
in mind, we may claim that the separate porosity model is at least as good as the
best total porosity model. In our opinion it is even better to apply the separate
porosity model for voids nucleation and growth processes in the elastic—plastic
material subject to a unidirectional elongation.

Our numerical experiments suggest that the nucleation of new voids can
be modelled using the normal distribution material function. This choice was
among the best in all tested cases. We have observed equally good results
for the shifted hyperbolic tangent function. We recommend the use of the
normal distribution function because it is easier to interpret its parameters in
mechanical terms. In view of our results it is reasonable to use the porosity
model with a constant value of the growth material function ¢, though with the
constant not equal to 1. For the ductile steel this constant is probably near
0.86.

In our opinion the results obtained are very interesting. They indicate that
while modelling jointly the nucleation and growth of voids it is reasonable to use
the total porosity model with constant material function g. However, contrary
to the common practice it seems that the constant should be different from
the usually applied value 1. We suggest its identification for each particular
material.

The formulation of the minimized function is an open question. It is not clear
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whether the euclidean distance in the space of observations is the best measure.
One can use in the formula (10) the /;—norm or loc—norm or any other suitable
norm. Then the problem will be nondifferentiable and will have completely
different features but it can also be handled by our computational program after
a replacement of the local gradient minimizer by a suitable nondifferentiable
optimization method. It is the next possibility we intend to study in the future
— the use of other measures of deviations of the calculated output from the
measured one. Existence of many local minima is also expected in that case.

The work of Z. Nowak has been prepared in part within the framework of the
research project KBN 8T07A 05221.

The work of A. Stachurski has been sponsored by the Faculty of Electron-
ics and Information Technology, Warsaw University of Technology, under the
Dean’s Grant No. 50960013003.
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APPENDIX

A1l. Results for total porosity model

A.1.1 Results for total porosity model with variable growth material
function

Table 2a. Identified parameters and fitting errors for the cases A1-A3, A6,
B1-B3, B6, C1-C3, C6

h - nucleation functions with a1, by and cy;
g - growth functions with as, b2 and co

Case ay by c1 ag by co
1 2.081212e-2  3.203613e-1 1.142677 1.048110 1.540339e-1  5.887020e-1  1.700284e-7
2 Al 2.459752e-2  3.417624e-1 1.193470 1.100321 6.501482e-2  1.941033e-1  1.870735e-7
3 2.073352e-2  3.246460e-1 1.146024 1.052570 1.627909e-1  1.541159e-1  2.013667e-7
4 2.819688e-2  3.290185e-1 1.187475 5.039920e-1 1.021578 1.688143 1.893821e-7
5 A2 2.794326e-2  3.427333e-1 1.193001 5.362410e-1 1.092745 1.430616 1.984865e-7
6 3.177080e-2  3.360531e-1 1.216207 4.689406e-1 1.144043 1.563800 2.007179e-7
7 2.412438e-2  3.145564e-1 1.148306 2.461575 3.356563 1.662608e-7
8 A3 2.687249e-2  3.690178e-1 1.200510 2.393928 3.208201 4.727793e-7
9 3.609856e-2  3.933141e-1 1.275095 2.547901 3.755815 1.028279e-6
10 2.563980e-2  3.317624e-1 1.178424 7.627987e-1  3.095568e-1 1.695705e-7
11 A6 1.862920e-2  2.969529e-1 1.091176 7.654488e-1  4.380955e-1 2.032952e-7
12 1.286682e-2  2.446338e-1 1.003067 8.499793e-1  4.991069e-1 2.139974e-7
13 1.548730e-2 1.829196 5.966584e-1  8.201838e-1  7.157868e-2 2.912159e-1 1.007905e-6
14 B1 1.642854e-2 1.897919 6.861903e-1  6.229555e-1 1.044736e-1  3.917156e-1 1.164333e-6
15 1.294056e-2 1.607321 6.287958e-1  9.292985e-1 1.462683e-1  2.302958e-1 1.471906e-6
16 1.634198e-2 1.747208 6.708150e-1  3.888362e-1  8.832497e-1 1.310916 1.390740e-6
17 B2 1.698248e-2 1.715469 6.782495e-1  3.606531le-1  7.974402e-1 1.143107 2.038704e-6
18 1.431830e-2 1.570579 7.059013e-1  4.823660e-1  7.234962e-1 1.288154 2.177861e-6
19 1.584352e-2 1.903237 8.008182e-1 2.024103 4.653833 9.331585e-7
20 B3 1.381212e-2 1.690606 8.287273e-1 2.167394 4.049697 1.225122e-6
21 1.425329e-2 1.933893 8.256529e-1 2.266634 4.265744 2.052942e-6
22 1.479078e-2 1.666422 7.552346e-1  5.761520e-1 1.418413e-1 1.535279e-6
23 B6 1.505820e-2 1.575890 6.345494e-1  4.726391e-1  3.762108e-1 1.588777e-6
24 1.300701e-2 1.504593 7.394732e-1  4.973083e-1  4.156869e-1 1.954040e-6
25 2.455850e-2 2.586369 -2.422738 8.068700e-1  1.790121e-1  2.790432e-1  2.300857e-7
26 C1 2.682353e-2 2.564554 -2.452859 7.687302e-1  1.746709e-1  1.753534e-1  2.645276e-7
27 2.934788e-2 2.423116 -2.400235 7.755841e-1  1.312077e-1  2.18702le-1  2.910709e-7
28 2.858736e-2 2.722919 -2.550194 4.112641e-1  8.034553e-1 1.506650 1.887593e-7
29 Cc2 2.461063e-2 2.757709 -2.492385 4.711461e-1  6.901616e-1 1.561727 2.070639e-7
30 2.621142e-2 2.710815 -2.496059 4.430647e-1  8.500000e-1 1.574596 2.211636e-7
31 3.995557e-2 2.536548 -2.595604 1.795428 4.213291 2.207438e-7
32 C3 3.997300e-2 2.646143 -2.670479 1.517623 3.966418 2.565705e-7
33 3.724288e-2 2.823082 -2.764387 1.419700 3.752633 3.545108e-7
34 2.980778e-2 2.684975 -2.562633 5.488091e-1  2.078393e-1 1.977660e-7
35 Cc6 2.846895e-2 2.812794 -2.622759 4.963934e-1  2.529827e-1 1.984614e-7
36 2.912654e-2 2.806816 -2.626160 4.518431e-1  2.739501e-1 2.009751e-7
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Table 2b. Statistical results for the cases A1-A3, A6, B1-B3, B6, C1-C3, C6

s — standard deviation, s.w — relative standard error, ry ¢

correlation

coefficient, Akaike — AIC information-criterion, F'PFE — Final Prediction Error

information criterion

Case Se Sow o Akaike FPE

T 5.6676156-9  6.572061e-3 _ 9.009637e-1 _ -5.776599e+2  8.117485¢-9
2 Al 6.235784e-9  6.884115¢-3  9.999638e-1  -5.746983e+2  8.931251e-9
3 6.712223e-9  7.138756e-3  9.999649e-1  -5.724159e+2  9.613636¢-9
1 6.312736e-9  6.935533e-3  9.099592e-1  -5.743181e+2  9.041468¢-9
5 A2 6.616216e-9  7.087291e-3  9.999649e-1  -5.728625e+2  9.476130e-9
6 6.690596e-9  7.147402e-3  9.999548e-1  -5.725159e+2  9.582661e-9
7 5.542027¢-9 _ 6.5026756-3 _ 9.009630e-1 __ -5.803546e+2  7.426041¢-9
8 A3 1.575931e-8 1.092479e-2  9.999182e-1  -5.479574e+2  2.111669e-8
9 3.427596¢-8 1.597171e-2  9.999392e-1  -5.238699e+2  4.592809e-8
10 5.6523506-9  6.5647846-3  9.009631e-1 _ -5.797435e+2  7.573868¢-9
11 A6 6.776505e-9  7.175781e-3  9.999612e-1  -5.741204e+2  9.080183¢-9
12 7.133247¢-9  7.384449e-3  9.99952le-1  -5.725300e+2  9.558197¢-9
13 3.350683¢-8 1.595189e-2  9.998283e-1  -5.224903e+2  4.811934e-8
14 B1 3.881109¢-8 1.699830e-2  9.998880e-1  -5.180178e+2  5.558751e-8
15 4.906353e-8 1.923160e-2  9.997048e-1  -5.10751le4+2  7.027164e-8
16 1.6357996-8 1.860863e-2  9.0082556-1  -5.125095e+2 6.

17 B2 6.795680e-8  2.240796e-2  9.998653e-1  -5.006527e+2 9.

18 7.259538e-8  2.318532e-2  9.997187e-1  -4.986058e+2 1.

19 3.110528¢-8 1.532762e-2  9.998493e-1  -5.268790e+2  4.167954¢-8
20 B3 4.083740e-8 1.757314e-2  9.997854e-1  -5.184402e+2  5.472009e-8
21 6.843140e-8  2.293090e-2  9.995485e-1  -5.024369e+2  9.169468¢-8
22 5.1175966-8 T.051984e-2  9.998754e-1  -5.114444e+2  6.857326e-8
23 B6 5.295923e-8 1.991955e-2  9.997619e-1  -5.103825e+2  7.096274e-8
24 6.513467¢-8  2.216006e-2  9.995955e-1  -5.039676e+2  8.727722e-8
25 7.6695246-9  7.641082 9.0995256-1  -5.682828¢+2 1.008474¢-8
26 c1 8.817585¢-9  8.173929e-3  9.999543e-1  -5.639585e+2 1.262906e-8
27 9.702364e-9  8.609684e-3  9.999510e-1  -5.609943e+2 1.389629¢-8
28 6.291075e-9  6.924098e-3 _ 9.099600e-1  -5.744202e+2  9.011734e-9
29 c2 6.902130e-9  7.247827e-3  9.999590e-1  -5.715510e+2  9.885631e-9
30 7.372120e-9  7.483696e-3  9.99956le-1  -5.695089e42 1.055878e-8
31 7.3581266-9  7.4897666-3  9.009517e-1 _ -5.715678e+2  9.859525¢-9
32 c3 8.552350e-9  8.079605 9.999423e-1  -5.669053e+2 1.145972¢-8
33 1.181703e-8  9.511706e-3  9.999218e-1  -5.568819e+2 1.583423e-8
34 6.592200e-9  7.091104e-3 _ 9.099561e-1 _ -5.749752e+2  8.833221¢-9
35 Cc6 6.615379¢-9  7.105462 9.999555e-1  -5.748664e+2  8.864281e-9
36 6.699170e-9  7.149989e-3  9.999549e-1  -5.744762e+2  8.976555¢-9

A.1.2 Results for total porosity model with constant growth material
function

Table 3a. Identified parameters and fitting errors for the cases A4, A5, B4, B5,

C4,

Ch

h - nucleation functions with a1, by and cy;

g - constant growth function with as = 1 and ag estimated

Case ay by cq ag f
1 3.505692e-2 3.666815e-1 1.282348 1.0 1.983268e-7
2 A4 3.065935e-2 3.348365e-1 1.227703 1.0 2.887013e-7
3 3.100329e-2 3.470957e-1 1.232653 1.0 4.546674e-7
4 2.657334e-2 3.473849e-1 1.214838 1.142003 1.788396e-7
5 A5 2.447573e-2 3.233043e-1 1.178914 1.134999 2.451784e-7
6 3.740360e-2 3.533577e-1 1.278640 9.023870e-1 2.818601e-7
7 1.226463e-2 1.502548 7.367378e-1 1.0 1.360788e-6
8 B4 1.248952e-2 1.485976 7.146476e-1 1.0 1.442864e-6
9 1.277779e-2 1.465261 6.870349e-1 1.0 1.612120e-6
10 1.329750e-2 1.628454 7.325886e-1 9.028104e-1 1.162902e-6
11 B5 1.358028e-2 1.577733 6.369864e-1 9.849008e-1 1.364839e-6
12 1.327030e-2 1.430378 6.405346e-1 1.002564 2.077057e-6
13 2.261183e-2 2.727299 -2.484556 1.0 1.974333e-7
14 C4 2.296294e-2 2.671381 -2.452580 1.0 2.105957e-7
15 2.265837e-2 2.685177 -2.450903 1.0 2.123488e-7
16 2.424185e-2 2.816120 -2.586525 9.380108e-1 1.913195e-7
17 C5 2.255315e-2 2.781891 -2.528091 9.999952e-1 1.975519e-7
18 2.868764e-2 2.618190 -2.527397 8.544051e-1 2.025599e-7
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Table 3b. Statistical results for the cases A4, A5, B4, B5, C4, C5

Sew — standard deviation, se,, — relative standard error, ryy — correlation
coefficient, Akaike — AIC information-criterion, F'PFE — Final Prediction Error
information criterion

Case Se Sew vy Akaike FPE
1 6.610892e-9 7.091231e-3 9.999589e-1 -5.788874e+2 7.768561e-9
2 A4 9.623375e-9 8.571815e-3 9.999349e-1 -5.672477e+2 1.130858e-8
3 1.515558e-8 1.071005e-2 9.999251e-1 -5.531683e+-2 1.780955e-8
4 5.961321e-9 6.740050e-3 9.999619e-1 -5.800937e+2 7.478358e-9
5 A5 8.172614e-9 7.880864e-3 9.999507e-1 -5.703133e+2 1.025238e-8
6 9.395336e-9 8.464723e-3 9.999369e-1 -5.659911e+2 1.178626e-8
7 4.535961e-8 1.840385e-2 9.998250e-1 -5.191844e+2 5.330276e-8
8 B4 4.809546e-8 1.893327e-2 9.998404e-1 -5.173689e+2 5.651771e-8
9 5.373734e-8 1.998720e-2 9.998534e-1 -5.139304e+2 6.314756e-8
10 3.876339e-8 1.707357e-2 9.998541e-1 -5.220560e+2 4.862792e-8
11 B5 4.549464e-8 1.852984e-2 9.998501e-1 -5.170923e+2 5.707212e-8
12 6.923523e-8 2.261579e-2 9.998598e-1 -5.040749e+-2 8.685424e-8
13 6.581110e-9 7.078005e-3 9.999598e-1 -5.790274e+2 7.733562e-9
14 C4 7.019856e-9 7.305773e-3 9.999585e-1 -5.770267e+2 8.249140e-9
15 7.078294e-9 7.333948e-3 9.999618e-1 -5.767697e+2 8.317810e-9
16 6.377318e-9 6.975820e-3 9.999572e-1 -5.780026e+2 8.000218e-9
17 C5 6.585065e-9 7.087626 9.999560e-1 -5.770088e+2 8.260832e-9
18 6.751998e-9 7.173355e-3 9.999565e-1 -5.762327e+2 8.470247e-9

A2. Results for separated porosity model

A.2.1 Results for separated porosity model with variable growth ma-
terial function
Table 4a. Identified parameters and fitting errors for the cases DA1-DA3, DAG,
DB1-DB3, DB6, DC1-DC3, DC6

h - nucleation functions with a1, b; and ¢1; g - growth functions with as, by
and cg

Case a1 3 3 as bs o 7
1 3.103310e-2  3.242098e-1 _ 1.203502  8.211754e-1 4.360255e-2 2.116276e-2  3.841660e-6
2 | DAL | 3.940200e-2  3.785443e-1  1.289261  8.244186e-1 3.537160e-2  2.999628e-2  4.199059e-6
3 2.661606e-2  2.814220e-1  1.134062  8.396822e-1 _ 3.000000e-2 _ 3.000000e-2 _ 4.568165e-6
1 3.1558406-2  3.208090e-1  1.198069  4.405204e-1  0.944665¢-1  1.597589  2.0708046-6
5 | DA2 | 3.649293e-2 3.583740e-1  1.257668  4.431633e-1  1.066636 1.629625  2.082412¢-6
6 2.775885e-2  2.889782e-1  1.152616  4.461573e-1 _ 9.958635e-1 __ 1.690207  2.327651e-6
7 2.0693566-2  3.108410e-1 _ 1.176169 T.811850 3.136222 1.997173e-6
8 | DA3 | 2.694745e-2  2.877444e-1  1.139520 1.700000 3.008815 2.401137e-6
9 2.968985e-2  3.062490e-1  1.179788 1.866987 3.127403 3.184075¢-6
10 3.444911c-2  3.655617e-1  1.230726  4.900660e-1 _ 3.500000e-1 2.093737¢-6
11 | DA6 | 2.827350e-2  3.160254e-1  1.152316  6.263487e-1  2.245795e-1 4.350573e-6
12 3.122510e-2  3.359280e-1  1.187583  6.013909e-1  2.182728e-1 4.465394e-6
3 1.2046006-2  1.666148  8.6756806-1 4.6412496-1 6.000000e-1 __ 1.241786 _ 6.006870¢-6
14 | DB1 | 1.374453e-2  1.836789  7.450208e-1 4.951666e-1 5.437866e-1  1.370951  6.564357c-6
15 1.367317e-2  1.857122  7.407808e-1 _ 4.815617e-1 _ 5.631233e-1 _ 1.426247 _ 7.145012¢-6
16 1.305251e-2  1.607246  7.850468e-1 4.801317e-1  6.762717e-1 _ 1.312784 _ 5.0211976-6
17 | DB2 | 1.455673e-2  1.600000  7.178922e-1 4.666197e-1  6.000020e-1  1.400000  9.369885e-6
18 1.463789e-2  1.668226  7.365019e-1  4.720533e-1  8.86811le-1  1.201674  1.389573e-5
9 1.3661126-2  1.355215  7.220494e-1 __ 1.096486 2.337699 3.758503¢-6
20 | DB3 | 1.822056e-2  1.364295  4.229292e-1  8.229014e-1  2.028777 5.618874c-6
21 1.682495e-2  8.920310e-1  4.481801e-1  9.370562e-1 _ 2.158984 1.442486e-5
22 1.646760e-2  1.694600  5.802566e-1  6.141200e-1  2.284382e-1 7.0682440-6
23 | DB6 | 1.264456e-2  1.574237  8.485074e-1  6.363586e-1  2.469675e-1 1.024005e-5
24 1.440977e-2  1.759612  6.946855e-1 _ 6.378839¢-1 _ 2.863493e-1 1.334606e-5
25 2.240478e-2  3.419590 T2.025411  8.323893e-1  2.908707e-2  5.312087e-3 4.821597e-6
26 | DC1 | 2.021143e-2  3.465655 -2.831718  8.166507e-1  3.000000e-2  1.274750e-2  4.869587e-6
27 1.837445e-2  3.599977 -2.795133  8.145526e-1 _ 3.000000e-2 _ 1.490670e-2 _ 7.197831e-6
28 2.3537126-2  2.837932 T2.510167  4.472050e-1  8.1082460-1  1.813760  2.373988¢-6
29 | DC2 | 2.393865e-2  2.787815 -2.486816  4.484930c-1 8.125782e-1  1.791143  2.393461e-6
30 2.255554e-2  2.932520 -2.539504  4.443233c-1  8.177483c-1  1.842203  2.401889¢-6
31 2.404208e-2  2.625617 T2.390641 1.725646 3.042239 2.208089¢-6
32 | DC3 | 2.440615e-2  2.633202 -2.369997 1.736362 3.077865 2.297790e-6
33 2.520594e-2  2.497748 -2.290814 1.708019 3.038395 2.314303e-6
34 2.3800136-2  2.751064 T2.449080  3.761209e-1 4.731461e-1 3.0834700-6
35 | DC6 | 2.511742e-2  2.578891 -2.359027  4.499963e-1  4.090538e-1 2.456897e-6
36 2.569011e-2  2.580750 -2.377105 _ 4.500000e-1  4.036821e-1 2.537421e-6
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Table 4b. Statistical results for the cases DA1-DA3, DA6, DB1-DB3, DB6,
DC1-DC3, DC6

Se — standard deviation, Sew

relative standard error, ry ¢

correlation

coefficient, Akaike — AIC information-criterion, F'PFE — Final Prediction Error

information criterion

Case se Sew 7‘;}-/ v _ Akaike FPE
1 6.773144¢-8 2.251308e-2 9.994715e-1 9.975533e-1 ~2.810114e+2 1.834083e-7
2 DA1 6.199115e-8 2.147680e-2 9.993504e-1 9.974684e-1 -4.782538e+2 2.004712e-7
3 1.530716e-7 3.361685¢e-2 9.990989e-1 9.974839e-1 -4.756420e+2 2.180930e-7
P T.752051e-8 T.151224e-2 9.994681e-1 9.987239e-1 =5.001684e+2 9.886419¢-8
5 DA2 8.428658¢-9 7.992340e-3  9.994115e-1 9.987560e-1 -4.999951e42 9.941838e-8
6 3.202048e-8 1.562876e-2 9.993415e-1 9.986667e-1 -4.965438e42 1.111266e-7
7 1.814121e-8 1.173516e-2 9.993883e-1 9.088125e-1 ©5.032907e+2 8.9203766-8
8 DA3 3.571030e-8 1.644889¢-2 9.991153e-1 9.987866e-1 -4.975802e+2 1.072468e-7
9 3.651514e-8 1.658546e-2 9.994592e-1 9.988546e-1 -4.888314e+2 1.422167e-7
10 6.777280e-8 2.247722¢-2 9.991662e-1 9.9856576-1 ~1.907422¢+2 1.337153e-7
11 DA6 1.450751e-7 3.269728e-2 9.987552e-1 9.981166e-1 -4.791549e+2 1.943184e-7
12 1.307326e-7 3.130020e-2 9.991036e-1 9.981270e-1 -4.783473e42 1.994469e-7
13 1.910287e-7 3.8654260-2 9.968055e-1 9.990361e-1 ~4.782460e+2 2.005215e-7
14 DB1 2.284232e-7  4.210737e-2 9.965694e-1 9.989954e-1 -4.653922e42 3.035540e-7
15 2.684991e-7  4.619388e-2 9.964881e-1 9.989069e-1 -4.636360e42 3.212476e-7
16 6.345589¢-8 2.202819¢-2 9.974643e-1 9.989721e-1 ~4.790054e+2 1.956688e-7
17 DB2 9.466250e-8 2.634673e-2 9.977433e-1 9.988880e-1 -4.785560e+2 1.985259¢-7
18 5.411387e-7 6.141882e-2 9.973998e-1 9.989997e-1 -4.779959e+2 2.021457e-7
19 8.302645¢-8 2.496954¢-2 9.982617e-1 9.991741e-1 ~1.836898¢+2 1.678736e-7
20 DB3 1.355069e-7 3.154724e-2 9.982417e-1 9.990667e-1 -4.712244e42 2.509671e-7
21 4.169980e-7 5.424328e-2 9.963769e-1 9.991936e-1 -4.419969e42 6.442866¢-7
22 2.034398¢-7 3.8105066-2 9.978735e-1 9.085452¢-1 ~4.698043¢+2 2.627311e-7
23 DB6 4.001961e-7 5.312854e-2 9.973064e-1 9.987443e-1 -4.685968e+2 2.731668e-7
24 3.979330e-7 5.327714e-2 9.971999e-1 9.988763e-1 -4.611602e+2 3.472251e-7
25 7.346401c-8 2.3288586-2 9.993160e-1 9.977041e-1 ~1.660641e+2 2.970453e-7
26 DC1 1.348016e-7 3.167064e-2 9.991350e-1 9.972233e-1 -4.607382e+2 3.527251e-7
27 3.011816e-7 4.687435e-2 9.983323e-1 9.967676e-1 -4.603084e+2 3.576495¢-7
28 9.990034¢-9 8.688577e-3 _ 9.092638e-1 9.987277e-1 ~1.958330e+2 T.137040e-7
29 DC2 9.153054e-9 8.319827e-3  9.992428e-1 9.987421e-1 -4.949280e+4-2 1.170722e-7
30 1.689490e-8 1.127949e-2 9.992833e-1 9.986803e-1 -4.947121e42 1.178906e-7
31 1.231604e-8 0.643120e-3  9.991832e-1 9.089491e-1 ©4.992190e+2 1.017245e-7
32 DC3 1.384308e-8 1.022074e-2 9.992125e-1 9.989107e-1 -4.959169e+2 1.131582e-7
33 1.667318e-8 1.121376e-2 9.991611e-1 9.989316e-1 -4.945946e+2 1.180895e-7
34 8.051829¢-9 7.820902e-3  9.992443e-1 9.9889066-1 ~1.998355e+2 9.972152¢-8
35 DC6 1.865774e-8 1.182892e-2 9.991700e-1 9.988511e-1 -4.953665e+2 1.151853e-7
36 2.569036¢-8 1.386047e-2 9.991398e-1 9.988576e-1 -4.924173e42 1.266818e-7

A.2.2 Results for separated porosity model with constant growth ma-
terial function

Table 5a. Identified parameters and fitting errors for the cases DA4, DA5, DB4,
DB5, DC4, DC5

h - nucleation functions with a1, by and cq;

g - constant growth functions with as = 1 or ay estimated

Case ay by c1 ag f
1 2.455560e-2 2.316203e-1 1.133291 1.0 2.293625e-5
2 DA4 2.739850e-2 2.558546e-1 1.169457 1.0 2.300003e-5
3 2.802419e-2 2.644367e-1 1.177598 1.0 2.323063e-5
4 3.323955e-2 3.335458e-1 1.219735 8.581268e-1 3.856463e-6
5 DAS5 3.571713e-2 3.489691e-1 1.249108 8.618957e-1 3.923766e-6
6 3.045864e-2 3.197908e-1 1.185261 8.586975e-1 4.103497e-6
7 1.078528e-2 1.835839 9.442151e-1 1.0 3.193146e-5
8 DB4 1.107597e-2 1.814623 9.133719e-1 1.0 3.225438e-5
9 1.147349e-2 1.763157 8.746320e-1 1.0 3.311483e-5
10 1.301742e-2 1.499424 7.834045e-1 8.523074e-1 6.787415e-6
11 DB5 1.562112e-2 1.507073 6.000000e-1 8.413622e-1 7.009588e-6
12 1.274083e-2 1.549482 8.242542e-1 8.474340e-1 7.597238e-6
13 3.365387e-2 2.600285 -2.711459 1.0 2.746905e-5
14 DC4 3.097063e-2 2.590565 -2.630441 1.0 2.788104e-5
15 3.412038e-2 2.488399 -2.623637 1.0 2.801906e-5
16 2.436594e-2 2.652102 -2.391388 8.588310e-1 4.491977e-6
17 DCs5 2.474562e-2 2.588104 -2.352037 8.574102e-1 4.561119e-6
18 2.457036e-2 2.596011 -2.351181 8.572806e-1 4.578291e-6
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Table 5b. Statistical results for the cases DA1 - DA6, DB1 - DB6, DC1 - DC6

Sse — standard deviation, Seyw

relative standard error, ry ¢

correlation

coefficient, Akaike — AIC information-criterion, F'PFE — Final Prediction Error
information criterion

Case se Sew v rI Akaike FPE
1 3.984633e-7 5.541502e-2 9.983253e-1 9.984479e-1 -4.316202e+2 8.984245e-7
2 DA4 3.646663e-7 5.286112e-2 9.983497e-1 9.985121e-1 -4.315341e+2 9.009228e-7
3 3.227289e-7 4.958931e-2 9.985297e-1 9.984854e-1 -4.312248e+2 9.099556e-7
4 5.807169e-8 2.086283e-2 9.994689e-1 9.975623e-1 -4.848922e+2 1.612619e-7
5 DAS5 4.322428e-8 1.799416e-2 9.994233e-1 9.976086e-1 -4.843558e+2 1.640762e-7
6 1.047663e-7 2.791960e-2 9.993782e-1 9.974106e-1 -4.829674e+2 1.715919e-7
7 3.445466e-7 5.036171e-2 9.952540e-1 9.984172e-1 -4.212673e+2 1.254641e-6
8 DB4 3.134510e-7 4.797997e-2 9.956229e-1 9.983613e-1 -4.206313e+2 1.280650e-6
9 3.126720e-7 4.766554e-2 9.962045e-1 9.982657e-1 -4.201004e+2 1.302771e-6
10 6.674367e-8 2.222807e-2 9.978483e-1 9.974228e-1 -4.659332e+2 2.972609e-7
11 DB5 1.408289e-7 3.198315e-2 9.982669e-1 9.971184e-1 -4.639522e+2 3.168770e-7
12 6.655629e-8 2.211882e-2 9.975321e-1 9.975790e-1 -4.441332e+2 6.005427e-7
13 3.499249e-7 5.124559e-2 9.963442e-1 9.985737e-1 -4.260972e+2 1.073632e-6
14 DC4 2.811937e-7 4.566339e-2 9.973658e-1 9.984341e-1 -4.260167e+2 1.076425e-6
15 3.069401e-7 4.786967e-2 9.966486e-1 9.985054e-1 -4.255238e+2 1.093677e-6
16 6.123366e-8 2.132040e-2 9.992148e-1 9.974423e-1 -4.808260e+2 1.838641e-7
17 DC5 6.512344e-8 2.196858e-2 9.991928e-1 9.974227e-1 -4.788617e+2 1.958915e-7
18 6.895110e-8 2.259727e-2 9.992004e-1 9.974062e-1 -4.787429e+2 1.966438e-7

A.3 Vuong test values for pairwise comparison of models

Table 6. Vuong test values for the total porosity models with varying g

Case A2 A3 A6 B1 B2 B3 B6 C1 C2 C3 C6
A1l |0.02209 -0.06799 -0.20262 0.16818 0.19988 0.15290 0.19742 0.05130 0.05499 0.03506 0.01322
A2 -0.05904 -0.04706 0.12263 0.15233 0.11057 0.14970 0.01929 -0.00057 0.00655 -0.01070
A3 0.01059 0.16068 0.19019 0.14672 0.19033 0.05715 0.06551 0.05120 0.04015
A6 0.17764 0.21069 0.16276 0.20816 0.06945 0.11982 0.06635 0.05643
B1 0.08675 -0.17144 0.06026 -0.23333 -0.17613 -0.17750 -0.18539
B2 -0.18891 -0.00407 -0.26506 -0.21470 -0.22789 -0.22978
B3 0.11309 -0.21038 -0.16030 -0.16236 -0.17001
B6 -0.24245 -0.21070 -0.21902 -0.22544
C1 -0.04325 -0.03029 -0.05706
Cc2 0.01689 -0.03954
C3 -0.06297

Table 7. Vuong test values for the separated porosity models with varying g

Case DA2 DA3 DAG6 DB1 DB2 DB3 DB6 DC1 DC2 DC3 DC6

DA1 [-0.18582 -0.31271 -0.02360 0.07962 -0.02068 0.00887 -0.05152 0.24304 -0.18009 -0.16225 -0.17434
DA2 -0.01585 0.14398 0.14240 0.08753 0.11511 0.06497 0.29182 -0.00620 -0.04172 -0.05401
DA3 0.17238 0.17369 0.08934 0.11576 0.06835 0.31907 0.00586 -0.02957 -0.04082
DA6 0.09026 -0.01514 0.02679 -0.05501 0.61881 -0.20250 -0.20906 -0.21870
DB1 -0.08425 -0.05505 -0.12895 0.07182 -0.14938 -0.18764 -0.20869
DB2 0.20323 -0.15302 0.17924 -0.11494 -0.28684 -0.31838
DB3 -0.39121 0.14292 -0.14440 -0.30659 -0.33631
DB6 0.22079 -0.08226 -0.20654 -0.24890
DC1 -0.38567 -0.34739 -0.35460
DC2 -0.05898 -0.07226
DC3 -0.09905
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Table 8. Vuong test values for the comparison of the best models from particular

groups
A5 B3 B5 C4 C6 DA3 DA6 DB3 DB6 DC6
A3 [-0.01226 0.14672 0.15430 -0.00978 0.04015 0.29499 0.30367 0.27541 0.33538 0.26055
A5 0.17767 0.18444 -0.00411 0.10737 0.35998 0.37044 0.32798 0.40128 0.31560
B3 0.05309 -0.22097 -0.17001 0.12083 0.17076 0.58960 0.48022 0.19968
B5 -0.22655 -0.17844 0.09863 0.14719 0.43496 0.42353 0.17438
C4 0.37349 0.37495 0.38504 0.47157 0.37630
Cc6 0.36509 0.37711 0.33741 0.42854 0.33383
DA3 0.17238 0.11576 0.06835 -0.04082
DA6 0.02679 -0.05501 -0.21870
DB3 -0.39121 -0.33631
DB6 -0.24890




