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Abstract: A control problem over the infinite time horizon for
periodical system is considered. Our aim is to analyze a special
concept of solving problems of this type, based on the known idea
of reachable sets. We try to consider this concept in a more general
manner than it was done in earlier works and to find what is really
essential in it. The algorithm corresponding to the proposed general
description is presented.
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1. Introduction

The reachable sets concept has been introduced a few decades ago, see Bertsekas
and Rhodes (1971, 1972), Glover et al. (1971). In some papers on this subject
another terminology was used (periodically invariant, viable sets), see Blanchini
et al. (1993), Karbowski (1999). We found that there is something common
and essential in all those approaches, but it has not been explicitly and clearly
formulated. All the papers quoted are often loaded with many particular details
concerning special features of each case.

In the present paper we are going to consider the concept in as general terms
as possible. That is why we try to apply the formulations using the logical
and set-theoretical language only. This should not be strange at all, however,
realizing that this language has been accepted in mathematical sciences for
almost 200 years and that it makes possible to see clearly many apparently
different things. This will be sufficiently clear, we hope, via an example, which
we consider in the sequel. The main tasks to be achieved in this paper are the
following:

First, we formulate in Section 2 the periodic and infinite horizon control
problem. The proposed formulation comprises all the cases, to which the reach-
able sets concept can be applied. This is really a decisive and essential step
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for further considerations. Although this formulation is apparently similar to
the classical one, it is essentially different in fact, since it uses the elements of
the power set 2X of the state space as decision variables (instead of the states
themselves), see the examples in Section 3.

Secondly, we discuss the methodological constructions built within the reach-
able sets concept. The basic notions are introduced, the theorems are proposed
and demonstrated in detail in Section 3. At the same time, the respective
necessary assumptions are formulated.

Finally, the respective computational algorithm is theoretically analyzed in
Section 4. Let us underline at once the generality of the presented approach.
The formulation of control problem, of the assumptions admitted and finally of
some properties concerning the concept itself (the respective theorems), have
this general, abstract character.

2. Problem formulation

The present formulation is applicable to a large class of problems, due to the use
of an abstract scheme expressed by means of elementary logic and set theory.

What is important in the proposed formulation, it is that the problem is
periodic and infinite. Moreover, the required condition to be satisfied has the
special form, with the general quantifier ∀n at the beginning and the same
relation for each period i.e. for each n ∈ N ; where N = {0, 1, . . .} is the set of
all non-negative integers.

There are two groups of variables, having the sense of state sets and controls
in our problem. Suppose that we are given a set X, called state space and a set
M representing the control space. Let us denote by X the family of all subsets
of X : X = 2X. For a given p(x, m) being sentential function (predicate) of
two free variables and F being a mapping from X × M into X, we consider the
following infinite problem:

Find a sequence {mn}, mn ∈ M and a sequence {Xn}, Xn ∈ X, n = 0, 1, . . . ,

defined by the state equation: Xn+1 = F(Xn,mn), n = 0, 1, . . . (1)

that satisfy the condition: ∀n ∈ N : p(Xn,mn). (2)

The problem (1)-(2) will be reformulated now into a more logically concise
form. Introducing two auxiliary variables x and µ, representing an initial state
set X0 and a sequence of controls {mn} respectively, we can formulate the
problem as follows:

Find x ∈ X and µ ∈ MN that satisfy the following formula P (x, µ) :

∃{mn} ∈ MN , {Xn} ∈ X
N : [{mn} = µ] ∧ [X0 = x] ∧

[∀ n ∈ N : Xn+1 = F(Xn,mn)] ∧ [∀ n ∈ N : p(Xn,mn)]. (3)
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Note first that formula P (x, µ) can be satisfied only by x ∈ X and µ ∈ MN .
Indeed, if P (x, µ) is true, then, according to (3) there exists a set X0 ∈ X, such
that X0 = x and a sequence mn ∈ MN , such that {mn} = µ.

Taking into account this remark, our problem will be formulated shortly as
follows:

Find a pair (x, µ) that satisfies formula P (x, µ) (4)

where P (x, µ) is defined in (3). This is exactly this type of problem, to which
the reachable sets concept can be applied.

One can see that the above form follows that of Terlikowski (2002) for a
min-max optimization problem. It has been obtained in the paper quoted after
a suitable formal manipulation (see chapter “The regular concise form of the
problem”).

2.1. Transferring the classical problem into the power set of the state

space

It will be shown now how to transformulate the classical control problem, e.g.
that of keeping the state in a given set, to the form presented above.

A dynamic system is considered described by the following discrete time
state equation, over the infinite time horizon:

xt+1 = ft(xt, mt, zt), t = 0, 1, . . .

where xt ∈ X ⊆ R
n is the process state value at instant t; mt ∈ M ⊆ R

m - the
control value and zt ∈ Z ⊆ R

z - disturbance value within the stage t, i.e. between
time instants t and t+1. R

n, R
m, R

z are n, m, z - dimensional Euclidean spaces
respectively; ft is a function, ft : R

n × R
m × R

z → R
n; n, m, z ∈ {0, 1, . . .}, i.e.

the set of all natural numbers.
The following instantaneous constraints are imposed, noted in a unified form

as: (xt, mt, zt) ∈ Wt ⊆ X × M × Z, t = 0, 1, . . ., where Wt is a given nonempty
set, depending on t.

It is assumed that we deal with the following, periodicity relations in our
control process: ∀ t : ft = ft+T , ∀ t : Wt = Wt+T . Thus, each period consists of
T “similar” intervals called stages, numbered with indices i = 0, . . . , T−1. The
idea is to transfer the problem from the state space X into the space of state
sets, 2X.

We use the following notation and definitions: M = {(R0, . . . , RT−1) : ∀i =
0, 1, . . . , T−1 Ri ∈ MX} is the set of all T -element sequences of control laws.
We denote by {Ki}T

0 the sequence of T + 1 mappings Ki : 2X × M → 2X :
K0(X, m) = X; Ki+1(X, m) = {y : ∃x, z : [x ∈ Ki(X, m) ∧ (x, Ri(x), z) ∈
Wi ∧ y = fi(x, Ri(x), z)]}, i = 0, 1, . . . , T − 1.

The mapping Ki+1, i = 0, . . . , T − 1 determines the set of states reached
by the system at the end of i-th stage, given a set X of initial states (at the
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beginning of the first period, i.e. at time instant 0), and a sequence of control
rules m = (R0, . . . , RT−1) within this period, provided that every disturbance
value is such that constraints are satisfied. The last mapping, corresponding to
the T -th stage, is denoted by F : F (X, m) = KT (X, m) and it determines the
set of all states reached by the system at the end of the first period, for any
initial state x0 ∈ X and the control m.

Next, the sequence of T relations Pi ⊆ 2X ×M, i = 0, 1, . . . , T − 1, is defined
as follows: Pi(X, m) ≡ {∀x ∈ Ki(X, m) ∃z (x, Ri(x), z) ∈ Wi}. Note that
the condition in this formula expresses the requirement for the pair (x, Ri(x))
to belong to the projection of the set Wi on the product of state and control
spaces R

n ×R
m. As it is seen, Pi(X, m) signifies that for the control m and for

any state reached at the beginning of the i-th stage - all the constraints imposed
for i-th stage are satisfied. One may say that every relation Pi, i = 0, . . . , T −1,
describes those constraints, which concern only the i-th stage of the first period,

Finally, we define the relation P as the conjunction of all relations from the
sequence {Pi}

T−1
0 :

P(X, m) ≡ {X ⊆ X ∧ m ∈ M ∧ [ ∀ i = 0, . . . , T − 1 : Pi(X, m)}.

Note that, due to periodicity of the control process, P describes those con-
straints that concern the stages t = nT, nT + 1 . . . , (n + 1)T − 1, for any
n = 0, 1, . . . , that is, for any period of the infinite control process. Finally,
with the aid of this notation and due to the periodicity of control process, we
may note informally the problem as the infinite conjunction:

P (X0, m0) ∧ P (X1, m1) ∧ · · · ∧ P (Xn, mn) ∧ . . .

In this conjunction, mn is a finite T -element sequence of control laws in the n-th
period, that is mn = (RnT , . . . , R(n+1)T−1), and the state sets Xn (determining
the states at the beginning of n-th period) are defined recursively: Xn+1 =
F (Xn, mn), n = 0, 1, . . . , with a given initial condition.

Our problem can be therefore be noted in the following concise regular form:

Find an initial state set X0 ⊆ X and a sequence {mn},

with mn ∈ M, n = 0, 1, . . . , such that ∀n ∈ N : P(Xn, mn)

subject to: X0 = X0, Xn+1 = F (Xn, mn), n = 0, 1, . . . .

3. The basic notions and theorems in reachable sets

concept

The idea of reachable sets has been applied to solve e.g. the min-max opti-
mization problem for linear system case in Glover et al. (1971), Blanchini et al.
(1993). The present analysis, although applicable to an essentially larger class
of problems, needs, however, some additional assumptions. They are in any way
easily satisfied in the classical case of a problem described through a recursive
state transformation, as considered in all earlier works.
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The following two abstract and general conditions concern the set-algebraic
properties of p and function F:

∀X, X ′ ∈ X ∀m ∈ M : {( (p(X,m) ∧ X ′ ⊆ X) → p(X ′,m) ) ∧ p(∅,m) )}
(A)

∀X, X ′ ∈ X ∀m ∈ M : {(X ′ ⊆ X → F(X ′,m) ⊆ F(X,m)) ∧ (F(∅,m) = ∅)}
(B)

The symbol α → β means here and thereafter the implication and α ≡ β the
equivalence, if α and β are sentential expressions.

Condition (A) states that the relation determined in X by p(•,m), for any
fixed m ∈ M, is invariant with respect to the inclusion relation ⊆. The first
part of (B) states that F(•,m), with any fixed m ∈ M, is a mapping X → X

homomorphic for the inclusion relation ⊆ in X, i.e. the relation ⊆ between two
sets is conserved in their images by F(•,m).

The form of (A), (B) is in fact very general. We use such a form to capture
many different cases and to stress that this is the only important thing (and not
many other specific features of the state equation etc.), which is relevant from
the point of view of the considered concept of reachable sets. The general formal
language is ideal to obtain such a methodological gain. Assumptions (A) and (B)
occur to be quite naturally applicable to the optimization problem considered
in Terlikowski (1997) and Karbowski (1999). Indeed, these assumptions are
satisfied if p and F result from a usual description in the state space and p

results from a safety-type description of control variants, Terlikowski (2002).
Note that only the cases of this type are considered in the majority of works in
this field. The basic theorems characterizing a special class of solutions will be
now proved under two above assumptions.

The first theorem introduces the crucial notion of the concept: the reacha-
bility, as well as a special class of solutions called reachable stationary solutions.
By stationary solution we mean such a pair (X, {mn}), which is a solution of (3)
and, moreover, {mn} is a constant (time invariant) sequence of controls, that
is: mn = m for all n = 0, 1, . . . . This sequence will be usually noted by { ¯̄m}.

Theorem 3.1 Let the pair (X, m) satisfy the following reachability condition:

p(X, m) ∧ [F(X, m) ⊆ X ]. (5)

Then, under assumptions (A) and (B), the pair (X, { ¯̄m}) is a solution of prob-
lem (3).

Proof. Let (X, { ¯̄m}) satisfy (5). We consider the sequence {Xn}, X0 = X ,
being the solution of equation (1), for the constant sequence {mn} such that
mn = m, n = 0, 1, . . . . We will prove that (X0, { ¯̄m}) is a solution of (3).
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First, it is evident that the formula ∀n ∈ N : Xn+1 = F(Xn,mn) occurring
in (3) is satisfied by the sequences {Xn} and {mn} = { ¯̄m}. In particular, we
have: X0 = X ∈ X, m0 ∈ M and Xn ∈ X for all n = 0, 1, . . . . We will prove by
induction that ∀n ≥ 0 : Xn ⊆ X . Indeed, we have X0 = X ⊆ X and supposing
Xn ⊆ X for some n ≥ 0, we get by assumption (B): Xn+1 = F(Xn, m) ⊆
F(X, m). The latter, due to F(X, m) ⊆ X in (5), implies: Xn+1 ⊆ X . Then,
since we have p(X, m) by (5), we see that assumption (B) implies p(Xn, m).
This means that p(Xn,mn) holds for every n ≥ 0. Hence, {Xn} and {mn} =
{ ¯̄m} satisfy formula ∀n ∈ N : p(Xn,mn) in (3), so the pair (X, { ¯̄m}) satisfies
formula P (x, µ).

Definition 3.1 Any pair (X, m) satisfying (5) is called reachable pair and X

is then called reachable set. The corresponding pair (X, { ¯̄m}) is called reachable
stationary solution of problem (3).

According to Theorem 3.1, the reachability concept allows us to transfer in
a way the infinite formulation (3), as well as the infinite control sequence {mn},
into a finite form. Indeed, (3) is now replaced by a finite formula (5) and {mn}
is replaced by a finite-wise, i.e. constant, stationary sequence { ¯̄m}. In the
sequel we shall be interested mainly in reachable stationary solutions. We shall
formulate now the third assumption which, together with (A) and (B), enables
one to find effectively a solution of reachability condition (5). The following
crucial definition will be applied to the problem under consideration.

For a given set X ∈ X, let us denote by R(X) the following family of sets:

R(X) = {Y : ∃ m [p(Y,m) ∧F(Y,m) ⊆ X ] } . (6)

By virtue of assumptiona (A) and (B), the family R(X) has the following im-
portant property:

∀X, Y, Y ′ ∈ X : [(Y ∈ R(X)) ∧ (Y ′ ⊆ Y )] → [Y ′ ∈ R(X)] , (7)

which states that any subset of an element of R(X) is also an element of R(X).
Observe that the sets Y belonging to R(X) are inclusion inverse elements to
X , by mapping F. However, it is not only function F, but also formula p(x, m)
that intervenes in definition (6). Thus, we should rather say that the sets from
the family R(X) are inclusion p-inverse elements to X , by mapping F.

We shall use the following definition:

Definition 3.2 For a given family of sets E, we call largest set of E the set
max ⊆ E defined as follows:

[X = max ⊆ E] ≡ [X ∈ E ∧ (∀X ′ ∈ E : X ′ ⊆ X)]. (8)

The above formula is understood as a conditional definition of functional term
max ⊆.
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The latter notions, R(X) and max ⊆ E, appear in the following definition
of mapping D:

[Y = D(X)] ≡ [(X ∈ X) ∧ (Y = X ∩ max ⊆ R(X))]. (9)

The third assumption, stating the existence of the larges “inclusion p-inverse”
element by mapping F, is the following:

∀X ∈ X : [R(X) 6= ∅] → [∃Z : Z = max ⊆ R(X)]. (C)

Note that the family R(X) is never empty due to assumption p(∅,m) in (A) and
F(∅) = ∅ in (B). It includes at least one element, the empty set ∅. Assumption
(C) is then equivalent to: ∀X ∈ X ∃ Z : Z = max ⊆ R(X).

Hence, under (A), (B), (C), the mapping D is defined correctly and D ∈
X

X. The second, crucial theorem concerns the problem of effective solution of
reachability condition (5).

Theorem 3.2 The following potential reachability condition for a set X:

∃m : p(X,m) ∧ [F(X,m) ⊆ X ] (10)

which states that the pair (X,m) satisfies reachability condition (5) with some
m, is equivalent, under assumptions (A), (B), (C), to the equation:

X = D(X). (11)

Proof. Let us denote by W(X, Y,m) the following formula: p(Y,m)∧F(X,m) ⊆
X which occurs in definition (6) of family R(X). We have then, by this defini-
tion: R(X) = {Y : ∃m : W(X, Y,m)}. Suppose that X ′ satisfies equation (11);
then, by definition (9) of D : X ′ ∈ X and X ′ = X ′∩max ⊆ R(X ′). The second
relation means that a set Y ′ exists, namely Y ′ = max ⊆ R(X ′), such that:

Y ′ ∈ R(X ′) and X ′ = X ′ ∩ Y ′, (12)

the latter equation being equivalent to X ′ ⊆ Y ′.
We will show that (12) implies that (10) is satisfied for X ′ i.e. that: ∃m :

W(X ′, X ′,m). Indeed, according to the first part of (12), Y ′ satisfies the for-
mula ∃m : W(X ′, Y,m) with free variable Y . That is, there exists m such that
W(X ′, Y ′, m). Hence, we have: p(Y ′, m) ∧ F(Y ′, m) ⊆ X ′ and, due to the
second part of (12), X ′ ⊆ Y ′. Thus, by assumption (A) we get: p(X ′, m). On
the other hand, by (B): F(X ′, m) ⊆ F(Y ′, m), hence: F(X ′, m) ⊆ X ′.

As it is seen, the potential reachability condition is really satisfied for X ′. In-
versely, let us suppose that X ′ satisfies (10). This means that formula W(X, Y, m)
is satisfied, with some m, by the triple (X ′, X ′, m). Then, X ′ ⊆ X and, by defi-
nition of W : X ′ ∈ R(X ′). Thus, by assumption (C), X ′ ⊆ max ⊆ R(X ′). But
the latter is equivalent to X ′ = X ′ ∩max ⊆ R(X ′), that is, to equation (11).
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This theorem allows us to realize the process of searching for a solution of the
potential reachability condition (10) in a convenient, algorithmic way: namely,
by solving equation (11). Having found any set X , a solution of (11), we obtain
a reachable stationary solution of problem (3), simply by finding any m such
that the pair (X, m) satisfies reachability condition (5)(Theorem 3.1).

Let us consider some simple examples.

Example 3.1 Given the discrete time state equation: xn+1 = xn−mn(xn)+zn

with the constraints: zn ∈ Z = [ 0, 1
2 ], mn(xn) ∈ U = [ 0, 1 ], one searches for

a set X0 ⊆ R and the control rules mn(xn) : R → R such that the condition:
xn ∈ X̄ = [0, 1] be satisfied for all n = 0, 1, . . ..

(1) According to the Bertsekas’ procedure aimed at keeping the state within
a given set X , we construct backward in time the sequence {X−i} of states:

X−0 = X, X−i−1 = X ∩ {x : ∃u ∈ U ∀z ∈ Z (x − u + z) ∈ X−i}. (E1)

Then we take the intersection of all sets X−i, ∩{X−i : i = 0, 1, . . . } as the sought
state set X0. In our problem we put X = X̄ and, after respective calculations,
we get immediately that

X̄ ∩ {x : ∃u ∈ U ∀z ∈ Z (x − u + z) ∈ X̄} (E2)

is the sought solution X0 for our problem. Moreover, for every interval X =
[Xmin, Xmax] ⊆ X̄ such that |X | = Xmax − Xmin ≥ |Z| = 1

2 , we get a solution
X0 = X as well, just by substituting X̄ with X in (E2). The set defined in
(E2) is the largest of all those solutions X0. The formula from (E2): ∀z ∈
Z (x − mn(x) + z) ∈ X determines every admissible control law mn, for any
interval X mentioned above.

(2) One can also use the approach of the present paper. First, we should
reformulate the problem so as to express it in the space 2R of the state sets.
We get the formulation (3) with M = RR and

p(X, m) ≡
[

(X ⊆ X̄ ∧m ∈ UR)
]

;
F(X,m) = {(x − u + z) : x ∈ X, z ∈ Z, u = m(x)}, (E3)

with m a function on the state set X , m ∈ M. Note that M represents the set
of all control rules.

As far as reachable solutions are concerned (see Definition 1), we must,
according to Theorem 3.2, analyse the family R(X), see (6). In the present case
we get:

R(X) = {Y : ∃m Y ⊆ X̄ ∧ m ∈ UR ∧ F(Y,m) ⊆ X}

so, using (E3) we obtain:
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– for every interval X = [Xmin, Xmax] ⊆ X̄ such that |X | = Xmax −Xmin ≥
|Z| = 1

2 , R(X) is the family of all subsets of X , (E4)

– R(X) = {∅} for X not satisfying the above condition.

Thus, max ⊆ R(X) = X and hence, (see 9), D(X) = X for any interval X

satisfying (E4), what means, Theorem 3.2, that every such X is a reachable set.
By Theorem 3.1 any set X0 = X is therefore a solution of our problem with
stationary, i.e. constant with respect to time control rule.

It is now worth considering the important question of generality of the pre-
sented reachability approach. The next theorem answers partially this question.

Theorem 3.3 If there exists the largest set X∗ of the family of all X such that
(X, m) is a solution of problem (3), that is:

X∗ = max ⊆ {X : ∃µ P (X, µ)}, (13)

then, under assumptions (A), (B), (C), the set X∗ is (the largest) reachable set.
Thus, due to Theorem 3.2:

X∗ = max ⊆ {X : X = D(X)}. (14)

Proof. One easily proves by induction, using the regular properties of formula
P (x, µ) and applying a respective transnumeration of sequences, that if a pair
(X, {mn}) is a solution of problem (3), then the “shifted” pair (F(X,m0), {m′

n})
is also a solution of this problem. Here m0 is the first element of {mn} and
{m′

n} is such a sequence that m′

n = mn+1 for every n = 0, 1, . . . . Let the
pair (X∗, {mn}), where X∗ is defined by (13), satisfy formula P (x, µ) and let
m0 be the first element of the sequence {mn}. We shall prove that the pair
(X∗,m0) satisfies reachability condition (9).

It follows from the above that F(X∗,m0) satisfies the condition: ∃µ P (X, µ),
occurring in (13). Therefore, since X∗ is the largest of all sets satisfying this con-
dition, there must be: F(X∗,m0) ⊆ X∗. Evidently, we have also: p(X∗,m0).
Thus, the reachability condition (9) is really satisfied by (X∗,m0).

Then, we conclude from Theorem 3.2 that X∗ satisfies equation (11), that
is: X∗ = D(X∗). Consider now any X ′ satisfying equation (11). By Theorem
3.2, X ′ satisfies the potential reachability condition (10), that is the pair (X ′, m)
satisfies reachability condition (5) for some m. Therefore, it follows from The-
orem 3.1 that (X ′, { ¯̄m}) is a solution of problem (3); hence, X ′ must be, by
definition (13), included in X∗. This means, together with X∗ = D(X∗), that
X∗ is the largest set satisfying (11). Thus (14) holds.

Theorem 3.3 (together with 3.1 and 3.2) justify, in a sense, the presented
approach. It is clear that if we confine ourselves to reachable stationary solutions
only, this is not an essential restriction. It suffices that the largest set existed,
(13), for which the original problem (3) has a solution.
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The Theorems 3.1 and 3.3 are close to the results obtained in Blanchini et
al. (1993), and in Karbowski (1999). In both papers considerations focused on
particular cases only. In the first one it was a linear problem, while in Karbowski
(1999) a min-max multiobjective problem was considered. A general approach
similar to that presented here has been discussed in Terlikowski (1997), but in
a very concise form, without some details and proofs.

Let us consider another example.

Example 3.2 In order to show the capacities of our approach, we consider a
very simple case of an infinite process that does not use at all any control.
Namely, we take the process:

Xi+1 = F(Xi), i = 0, 1, . . . (E5)

of subsequent self transformations of sets Xi ∈ X = 2R being subsets of the real
numbers space R.

The formula p has the form: p(X) ≡ (X ⊆ [0, 1]), for any X ⊆ R. Consider-
ing the problem (3) in this case, we can not apply the classical idea of recursive
state sets since we do not consider a transformation of state values, but of their
sets as a whole. We shall apply the general approach developed in Section 3
(Theorems 3.1 and 3.2).

Denote C = [cmin, cmax] = [14 , 3
4 ] and aX = inf(X), bX = sup(X) for any

X ⊆ R. Let the function F : 2R → 2R be defined as follows: F(∅) = ∅ and for
any

X ⊆ C : F(X) = [aX +
1

4
(bX − aX), bX −

1

4
(bX − aX)]; (E6)

having represented any X ⊆ R as the sum X = Xinf ∪ X̄ ∪ Xsup where Xinf =
X ∩ (−∞, cmin), Xsup = X ∩ (cmax, +∞) and X̄ ⊆ C, we let:

F(X) = Finf(Xinf) ∪ F(X̄) ∪ Fsup(Xsup) (E7)

and

Finf(Xinf) = [aX −
1

4
(bX − aX), bX +

1

4
(cmin − bX)], (E8)

Fsup(Xsup) = [aX −
1

4
(aX − cmax), bX +

1

4
(bX − aX)], (E9)

where aX , bX denote infimum/supremum of respective sets: Xinf in (E8), Xsup

in (E9).
As it can be seen, the consecutive sets Xi are contracted or expanded ac-

cording to the state equation (E5), during the infinite process. The obtained
problem, which consists in satisfying the constraints p(Xn) on the infinite time
horizon, can be considered as a particular case of (3), where e.g. the set M is a
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singleton. Observe that we have no possibility of applying directly the classical
Bertsekas’ approach here, since the subsequent state sets Xi are not transformed
according to any state equation of the form xi+1 = fi(xi, mi, zi).

To find and discuss the solution, we first verify by a simple calculation that
assumptions (A), (B), (C) are satisfied. Then we observe what follows:

1. For any X ⊆ C the set X belongs itself to the family R(X) = {Y :
F(Y ) ⊆ X}, due to definition (E6) of F. Moreover, X is the largest set of
this family: X = max ⊆ R(X).
Therefore, see (9): D(X) = X∩max ⊆ R(X) = X . This means, according
to Theorem 3.2, that any set X ⊆ C is a reachable set. Due to Theorem
3.1, it is then a solution of our problem. It is easy to verify that C is the
largest of those reachable solutions.

2. For X 6⊂ C the situation is different. We may limit the analysis to the
case X ⊆ [0, 1] taking into account the condition p(X) that should be
satisfied by X0 = X , see (3). For example, there is no any nonempty set
X ⊆ [0, cmin), which would be reachable, since any (and so, the largest)
Y ∈ R(X) must be strictly included in X . This follows from the expansion
property of F , see (E8). In consequence, the reachability condition X =
D(X) is never satisfied in such a case. The same concerns X(cmax, 1] and,
more generally, any X 6⊂ C.

Finally, X is a reachable solution if and only if X ⊆ C. After all, it can be
easily verified by (E7)-(E9) that every solution must satisfy condition X ⊆ C.
Due to Theorem 3.3 the set X∗ being the largest of all solutions, is a reachable
solution, what has been else stated above in 1.

Note that we deal in the above example with a specific (not general) case
when the set of all solutions of problem (3) is identical with the set of reachable
solutions.

4. Algorithm for finding a reachable solution

Three theorems given in Section 3 constitute a sufficient background for finding
a solution of problem (3) in an effective algorithmic way. The corresponding
algorithm seeks a reachable set of initial states by finding a fixed point of mapping
D, i.e. such a set X that D(X) = X , see Theorem 3.2.

A sequence {X̄k} of state sets is determined as follows: for a chosen X̄0 ∈ X

treated as the starting set, one calculates the sequence of sets {X̄k}:

X̄k+1 = D(X̄k), k = 0, 1, . . . , (15)

where D(X) = X ∩ max ⊆ R(X).
The algorithm terminates the iteration (15) at some step ̟. The set X̟̄,

denoted by X̃, is the final result of the algorithm. We would like X̃ to be
a good approximation of a fixed point of D. The controls m corresponding to
each set X̄k, such as to satisfy the reachability condition (5), are also determined
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when calculating D(X̄k). In particular, at the final step of the algorithm one
determines m such that the pair (X̃, m) satisfies the condition:

p(X̃, m) ∧ [F(X̃, m) ⊆ X̃]. (16)

The main question to be considered concerns the relationship between the
sequence {X̄k} and the fixed points of D. The respective convergence conditions
for the sequence {X̄k} in the space 2X have then to be fulfilled, so that the set
X̃ be a good approximation of such a fixed point, in an appropriately chosen
topology. However, questions of algorithm convergence are not strictly analyzed
in this paper.

The concept makes use of the contraction mapping idea. The following,
obvious contraction property: ∀X ∈ X : D(X) ⊆ X , that follows from the
definition (9) of D, is crucial there. Thereby, the sequence {X̄k}, (15), is a
descending one: X̄k+1 ⊆ X̄k, k = 0, 1, . . . .

This fact suggests the following idea for our consideration. We consider the
set ¯̄X(X̄0), being the product of all sets X̄k:

¯̄X(X̄0) = ∩{X̄k : k = 0,1, . . . } (17)

as a theoretical representation of X̃. Hence, instead of considering an unknown
set X̃ and another unknown reachable set X being a fixed point of D, one con-
siders the set ¯̄X(X̄0), well defined by the algorithm. Instead of considering the
convergence of {X̄k} to one of those unknown sets, we consider its convergence

to ¯̄X(X̄0). But a new question, that of the reachability of ¯̄X(X̄0), arises.
Let us assume that the following supposition holds:

¯̄X(X̄0) = D( ¯̄X(X̄0)), (18)

which states that ¯̄X(X̄0) is a fixed point of mapping D.
However, this crucial supposition is not provable under the assumptions

(A), (B), (C) only. Some continuity type assumptions are now also needed. We
propose the following abstract form of a new assumption, expressed similarly to
(C), in terms of the mapping R, see (6).

Suppose that ¯̄X0 ∈ X is such that the sequence {X̄k}, X̄k+1 = D(X̄k),
k = 0, 1, . . . satisfies the following relation:

∩{R(X̄k) : X̄k ∈ {X̄k}} ⊆ R(∩{X̄k : X̄k ∈ {X̄k}}). (D)

This assumption has the form of a certain continuity definition. Indeed, the
inverse inclusion ⊇ in (D) holds, under (A), (B), (C), simply by logical rules of
transposition of quantifiers ∀ and ∃. Thus, relationship (D) is equivalent to the
following:

∩{R(X̄k) : X̄k ∈ {X̄k}} = R(∩{X̄k : X̄k ∈ {X̄k}}). (19)
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As it is shown in Terlikowski (2002) for the min-max optimization problem,
some standard topological assumptions are sufficient for (D).

The following two theorems present the basic relations existing between the
reachable sets and the algorithmically defined set ¯̄X(X̄0).

Theorem 4.1 Suppose that assumptions (A), (B) and (C) are satisfied. Then,

for any set X̄0 satisfying assumption (D), the set ¯̄X(X̄0) verifies equation (18),

i.e.: ¯̄X(X̄0) = D( ¯̄X(X̄0)).

Proof. Using notation X̄ = ¯̄X(X̄0) and Xk = X̄k, we have evidently: D(X̄) ⊆
X̄. To prove that also X̄ ⊆ D(X̄), it suffices to show that X̄ ∈ R(X̄). In fact,
X̄ ⊆ Xk, k = 1, 2, . . ., thus, by (15): X̄ ⊆ D(Xk), k = 0, 1, . . . . Then, by (5)
we obtain: X̄ ⊆ max ⊆ R(Xk) and hence, by property (7) we get: X̄ ∈ R(Xk)
for any k = 0, 1, . . . . Thus X̄ ∈ ∩{R(Xk) : k = 0, 1, . . . }. Therefore, by
assumption (D): X̄ ∈ R(∩{Xk : k = 0, 1, . . .}) = R(X̄). This means that
X̄ ⊆ (X̄ ∩ max ⊆ R(X̄)) = D(X̄).

Thus, under assumptions (A)-(D), the theoretical representation ¯̄X(X̄0) of
the algorithm result X̃ is the sought reachable set.

Of course, an appropriate topology in X should be still selected, such that the
sequence {X̄k} converges to its product ¯̄X(X̄0). The set X̃ = X̟̄ will be then

an approximation of ¯̄X(X̄0), that is: X̃ ≈ ¯̄X(X̄0), in this topology. Finally,
X̃ will provide, with the respective control m, compare (16), an approximate
solution to problem (3).

Let us underline that the above algorithm starts with any set X̄0 ∈ X sat-
isfying (D) and, of course, iteration (15) may lead to the empty set ¯̄X(X̄0) for
some X̄0. We shall now briefly consider the case of the largest reachable sets in
relation to ¯̄X(X̄0).

Theorem 4.2 Let (A), (B), (C) be satisfied and let X̄0 be any subset of the
state space, X̄0 ∈ X. Then, for any reachable set X included in X̄0 the set X is
included in ¯̄X(X̄0). If, moreover, (D) holds for X̄0, then ¯̄X(X̄0) is the largest
reachable set included in X̄0.

Proof. Before proving the first asertion, let us show that: A ⊆ B → D(A) ⊆
D(B) for any A, B ∈ X (monotonicity of D).

Indeed, we have: D(A) = A∩max ⊆ R(A) and D(B) = B∩max ⊆ R(B).
First, we find that R(A) ⊆ R(B) if A ⊆ B. This follows from the definition

(6) of family R, under assumptions (A) and (B). Hence, we have max ⊆ R(A) ⊆
max ⊆ R(B), that together with A ⊆ B, implies D(A) ⊆ D(B).

It will be shown now, using the induction principle, that any X ⊆ X̄0,
satisfying reachability condition (5) is included in each set X̄k generated by
algorithm (15). Suppose that X ⊆ X̄k for some k ≥ 0. Then, by monotonicity
of D : D(X) ⊆ D(X̄k). By Theorem 3.2 we have X = D(X), if X is a
reachable set. It is then evident that X ⊆ D(X̄k) and since, by definition of
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algorithm (15), D(X̄k) = X̄k+1, there is X ⊆ X̄k+1. We have thereby proved

that ∀k ≥ 0 : X ⊆ X̄k, what means, by definition (17), that X ⊆ ¯̄X(X̄0).

Due to Theorem 4.1, ¯̄X(X̄0) is a reachable set, if (D) is satisfied with X̄0, and
if (A), (B), (C) hold. But due to the first part of this theorem, any reachable

set X ⊆ X̄0 is included in ¯̄X(X̄0). Since ¯̄X(X̄0) is one of such sets (we have
¯̄X(X̄0) ⊆ X̄0), thus ¯̄X(X̄0) is the largest reachable set included in X̄0.

Let us consider finally the set ¯̄X(X) where X denotes the whole state space.
This is, under assumptions (A), (B), (C), the largest set resulting from the algo-
rithm (15), by monotonicity of the operator D. But, as it results from Theorem
4.2, it is also the largest of all reachable sets, if X satisfies (D). Moreover, ac-
cording to Theorem 3.3, it is the largest set at all, as far as solutions of problem
(3) are concerned, if such a largest set exists.

5. Conclusions

The main tasks of this paper were twofold:

1. to develop the concept of reachable sets for a very general statement of
a class of periodic control problems defined over the infinite time horizon
(Section 3),

2. to analyze an algorithmic realization of the above general scheme (Section
4).

The formulation of periodic, infinite control problem, proposed in Section 2
is much more general than those considered in the previous works in this field.
This formalism allows us to capture a large class of control problems and, due to
its transparency and generality, to find and clearly present the basic mathemat-
ical facts concerning the reachable sets concept. This analysis, in particular the
formulation of sufficient general assumptions (A)-(D), used within the presented
five theorems, is the original contribution of the author. It is shown elsewhere,
Terlikowski (2002), that all the sufficient applicability conditions (A), (B), (C),
(D) are quite easily fulfilled for an important class of optimal min-max control
problems. We obtain then the complete solution of the problem. In particu-
lar, an effective algorithm fitting the scheme presented in Section 4 occurs to
be entirely applicable. Note that computers available today are suitable for
implementation of such an algorithm which operates on sets.

We would like to emphasize, however, that the special optimization problems
(e.g. the min-max ones) are not the main subject of the present paper. Our
attention is focused in fact on the theoretical aspects of the considered reachable
sets concept.
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from the Institute of Geophysics, Polish Academy of Sciences in Warsaw, for
their helpful cooperation and discussions.



Reachable sets concept - a general abstract analysis 817

References

Bertsekas, D. P. and Rhodes, I. B. (1971) On the min-max Reachability
of Target Sets and Target Tubes. Automatica 7.

Bertsekas, D. P. (1972) Infinite-Time Reachability of State - Space Regions
by Using Feedback Control. IEEE Transactions on Automatic Control 17

(5).
Blanchini, F. and Ukovich, W. (1993) Linear Programming Approach to

the Control of Discrete-Time Periodic Systems with Uncertain Inputs.
JOTA 78 (3).

Glover, J. D., and Schweppe, F. C. (1971) Control of Linear Dynamic Sys-
tems with Set Constrained Disturbances. IEEE Transactions on Auto-
matic Control 16.

Karbowski, A. and Soncini-Sessa, R. (1994) Design and Control of Wa-
ter Systems in Presence of Inflow Scenarios. Engineering Risk in Natural
Resources Management, NATO ASI Series, Kluwer Academic Publishers.

Karbowski, A. (1999) Optimal Infinite-Horizon Multicriteria Feedback Con-
trol of Stationary Systems with Min-max Objectives and Bounded Distur-
bances. Journal of Optimization Theory and Applications 101 (1).
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