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Abstract: An approach to the numerically reliable synthesis
of the H∞ suboptimal state estimators for discretised continuous-
time processes is presented. The approach is based on suitable dual
J-lossless factorisations of chain-scattering representations of esti-
mated processes. It is demonstrated that for a sufficiently small
sampling period the standard forward shift operator techniques may
become ill-conditioned and numerical robustness of the design proce-
dures can be significantly improved by employing the so-called delta
operator models of the process. State-space models of all H∞ sub-
optimal estimators are obtained by considering the suitable delta-
domain algebraic Riccati equation and the corresponding generalised
eigenproblem formulation. A relative condition number of this equa-
tion is used as a measure of its numerical conditioning. Both regular
problems concerning models having no zeros on the boundary of the
delta-domain stability region and irregular (non-standard) problems
of models with such zeros are examined. For the first case, an ap-
proach based on a dual J-lossless factorisation is proposed while in
the second case an extended dual J-lossless factorisation based on
a zero compensator technique s required. Two numerical examples
are given to illustrate some properties of the considered delta-domain
approach.

Keywords: discrete-time systems, state estimation, linear fil-
ters, Riccati equation, numerical methods.

1. Introduction

The use of the so called delta (δ) operator in formulation and solving of many
discrete-time problems (control, estimation, signal processing, modelling) has a
number of advantages as opposed to the use of the conventional forward shift
operator (q). First, the δ-operator formulation has better numerical condition-
ing at higher sampling rate and is less sensitive to arithmetic round-off errors.
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Second, the δ-operator formulation allows for describing the asymptotic behav-
iour of discrete-time models of continuous-time systems as the sampling period
converges to zero (Middleton and Goodwin, 1986, 1990; Goodwin et al., 1992;
Gevers and Li, 1993; Feuer and Middleton, 1995; Li and Fan, 1997; Chen et
al., 1999; Suchomski 2001a). The main motivation of the paper is to pro-
vide a concise methodology for numerically reliable synthesis of H∞ suboptimal
state estimators for discretised continuous-time processes, especially with fast
sampling rates. There is a well known duality between the optimal control
and estimation (filtering) problems and the optimal state estimator is the cel-
ebrated Kalman filter (Green and Limebeer, 1995; Hassibi et al., 1999). The
standard H∞ estimation problem differs from the Kalman filtering approach in
two respects:

(i) unknown deterministic exogenous signals (disturbances) of finite energy
replace the white-noise processes that drive the system and corrupt the
observations,

(ii) the aim of the estimator (filter) is to ensure that the energy gain from the
disturbances to the estimation error is less than a prespecified level (given

in terms of the l
[0,∞)
2 induced norm).

Hence, the aim is to find a state (weighted) estimate of the form of a linear
function of the observations such that the ratio of the estimation error energy to
the disturbance energy is suitably bounded. Usually we have conflicting require-
ments: a small estimation gain is required for ’good attenuation’ of measurement
noises but not for ’good detection’ of the state being estimated. Some additional
knowledge (if it exists) about the measurement noise channels can be utilised
to improve the frequency shape of the estimator and make the necessary design
tradeoffs more rational and better justified. It is worth noting that the ’generic’
H∞ formulation of the design problem concerning the so-called unknown-input
observers (see, for example, Hou and Möller, 1992) can also be considered from
this viewpoint.

The first δ-domain formulation of the standard H∞ problems was presented
by Middleton and Goodwin (1990). They derived a full-information algorithm,
based on a game theory formulation of the original control design problem.
A connection between mixed structured singular value robustness theory in
the continuous-time and discrete-time areas has been derived by Collins et al.
(1997), where, in order to avoid the inherent numerical ill-conditioning resulting
from the use of the q operator, the δ-domain modelling of a discrete-time plant
has been employed. A δ-domain version of the generic H∞ discrete-time algo-
rithm of Green and Limebeer (1995) was derived by Collins and Song (1999).

In this paper, concerning the H∞ suboptimal synthesis of state estimators
for δ-operator representations of continuous-time processes, an approach based
on dual J-lossless factorisations of the δ-domain dual chain-scattering mod-
els of these processes is presented. The key role in the theory of the dual
J-lossless factorisation is played by the notion of chain-scattering representa-
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tion of a rational matrix function of a given dynamic system (Kimura, 1992b,
1995, 1997; Tsai et al., 1993). For the so-called standard H∞ problems, opti-
mal controllers are obtained via performing two coupled J-lossless factorisations
(Tsai and Postlethwaite, 1991; Tsai and Tsai, 1992, 1993; Kimura, 1997). A J-
lossless coprime factorisation approach to the standard H∞ control in δ-domain
was reported in Suchomski (2001b, 2002b) where necessary and sufficient con-
ditions for the solvability of the problem were given. The method presented in
this paper is based on a dual chain-scattering description of the process being
estimated and requires the corresponding δ-domain algebraic Riccati equation
to be solved. For a regular process having no invariant zeros on the boundary
of the δ-domain stability region the resulting generalised eigenvalue problem is
solved by using a methodology based on the standard invariant stable subspace
approach applied to a suitable extended δ-domain matrix pencil containing pa-
rameters of the state-space model of this process. Such an approach can not
be utilised for irregular processes having invariant zeros on the boundary of the
δ-domain stability region. Note that such ’non-standard’ models may appear in
many practical problems of the H∞ design (Kimura, 1984; Safonov, 1987; Sugie
and Hara, 1989; O’Young et al., 1989; Hara and Sugie, 1991; Hara et al., 1992;
Scherer, 1992a,b). For example, an extended J-lossless outer factorisation for
strictly proper transfer functions with jω-zeros has been examined in Hara and
Sugie (1991). In Hara et al. (1992), after having discussed a 1-block H∞ control
problem concerning plants with jω-axis poles and zeros, the authors derived a
necessary and sufficient condition for the H∞ model matching problem in the
transfer function and the state-space setting. In the state estimation issue, such
’unstable’ zeros can appear autonomously if some prior knowledge about the
process being estimated is present or can artificially be utilised by the designer
as a convenient tool for shaping some frequency attributes of the estimator. For
example, in diagnostic systems the step (positional) signals appearing in the
measurement noise channels can be regarded as adequate symptoms of sensor
faults (Chen and Patton, 1999). Some low frequency ’modelling’ zeros intro-
duced in a dynamic system description can facilitate design of a decoupled
residual generator.

A continuous-time technique called the ’zero cancelling compensation’ was
derived to cancel the jω-axis (including infinity) zeros (Copeland and Safonov,
1992, 1995). This approach allows for the use of the common J-lossless factori-
sation methodologies to solve the extended J-lossless factorisation problem since
the zero-compensated system can be treated as a ’standard’ regular plant. Con-
sequently, conditions for the solvability of the extended J-lossless factorisation
can be derived in terms of the zero-compensated system and the zero compen-
sator. Since the zero compensator is not unique, it follows that, in general, a
set of controllers determined by the compensator parameters can be obtained.

In this paper, an extended J-lossless factorisation for irregular generalised δ-
domain plants (processes) with invariant zeros on the boundary of the stability
region is discussed. The zero cancelling compensation technique adapted to the
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δ-domain is utilised to cancel such zeros and some additional attempt is made to
reduce the complexity of the effective estimator. It is thus observed that estima-
tors resulting from a ’directly’ employed extended dual J-lossless factorisation
methodology with a left zero compensation have non-minimal realisations with
uncontrollable modes. Therefore, any reasonable design methodology should
give solutions of the suitable low order without constructing any ’evident’ zero
compensators.

The rest of the paper is organised as follows. In Section 1, some preliminary
properties of the δ-domain modelling are presented. In Section 2, fundamental
issues related to numerical conditioning of the δ-domain discrete-time Riccati
equations are given. Specifically, it is shown why the δ-domain approach to
the discrete-time Riccati equations are much superior to the standard q-domain
methods if numerical behaviour is assumed as a basis of comparison. In Sec-
tion 3, two basic problems of the H∞ optimisation are stated with respect to
scattering and dual chain-scattering models of the optimised dynamic system.
Sections 4 and 5 contain main results of the paper. In Section 4, after defining
the δ-domain dual J-lossless systems and a dual J-lossless factorisation of their
dual chain-scattering models we consider the necessary and sufficient conditions
for the solvability of the standard H∞ problem of optimisation of such systems.
Next, an extended dual J-lossless factorisation approach for systems with mod-
els having invariant zeros on the boundary of the stability region is presented.
Conditions for the existence of dual and extended dual J-lossless factorisations
are derived in terms of the suitable δ-domain algebraic Riccati equations. In
Section 5, state space formulae for all δ-domain H∞ suboptimal estimators are
presented. Two illustrative examples concerning synthesis of such estimators
are given in Section 6. The first simple example deals with a process without
zeros on the δ-domain stability circle. In the second example, the mechanism
of the extended dual J-lossless factorisation is employed to solve a problem of
H∞ suboptimal estimation for a process with such an ’unstable’ zero. Some
concluding remarks are given in Section 7.

1.1. Basic properties of the delta operator

Let q be the forward shift operator q : l2 → l2, established for a sequence
{xk}∞k=0 ∈ l2 as qxk = xk+1. The delta operator δ : l2 → l2 is defined as the
following first-order divided difference

δ =
q − 1

∆
(1)

where ∆ ∈ R is the sampling period (Middleton and Goodwin, 1990; Ninness
and Goodwin, 1991). Thus, the operators q and δ are affinely connected via
the relation q = ∆ · δ + 1. Let (q, z) and (δ, ζ) denote the pairs of discrete-
time operators q and δ, and the corresponding complex variables z and ζ. Let
D∆ = {ζ : |ζ + 1/∆| < 1/∆} be the open ∆-scaled disk. The boundary
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of the closed disk D̄∆ is denoted ∂D̄∆. A δ-domain transfer function matrix
G(ζ) = C(ζI − A)−1B + D, where A, B, C and D are properly dimensioned
real matrices of a realisation (A, B, C, D), can be written as

G(ζ) =

[

A B

C D

]

. (2)

The set of all eigenvalues λi(A), i ∈ {1, ..., n} of a matrix A ∈ Rn×n is
denoted λ(A). Matrix A is said to be δ-stable if λ(A) ⊂ D∆ while G(ζ) is
stable if all its poles belong to D∆. The homographic mapping ζ → ζ∼ =
−ζ/(1 + ∆ζ) transforms a complex number into its reflection with regard to
∂D̄∆. The conjugate system of G(ζ) is defined as G∼(ζ) = GT (−ζ/(1 + ∆ζ)).
Assuming that In + ∆A is non-singular we obtain

G∼(ζ) =

[

−IAAT −IACT

BT IA DT − ∆BT IACT

]

(3)

where IA = (In + ∆AT )−1 and In ∈ Rn×n denotes the identity matrix. The
Hermitian conjugate of G(ζ) is defined as G∗(ζ) = GT (ζ̄). Hence, for ζ ∈ ∂D̄∆

G∗(ζ) = G∼(ζ) holds.

1.2. Delta-domain modelling

Consider a linear continuous-time (ρ = d/dt) state-space model

{

ρx(t) = Aρx(t) + Bρu(t)
y(t) = Cρx(t) + Dρu(t)

(4)

where x(t) is the state vector, u(t) is the input and y(t) denotes the output. If
u(t) is piece-wise constant and right-continuous the following δ-operator state-
space model can be derived (Middleton and Goodwin, 1990; Ninness and Good-
win, 1991; Premaratne et al., 1994; Neuman, 1993)

{

δxk = Aδxk + Bδuk

yk = Cδxk + Dδuk
(5)

where xk = x(k∆), uk = u(k∆), yk = y(k∆), and

Aδ = Γ∆Aρ/∆, Bδ = Γ∆Bρ/∆, Cδ = Cρ, Dδ = Dρ, Γ∆ =

∫ ∆

0

eτAρdτ. (6)

The q-domain model takes the form of (Aq, Bq, Cq, Dq) with

Aq = In + ∆Aδ, Bq = ∆Bδ, Cq = Cδ, Dq = Dδ. (7)
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Hence, if ∆ → 0 , then (Aδ → Aρ, Bδ → Bρ) while (Aq → In, Bq → 0). Let

SG(ζ) =

[

A − ζIn B
C D

]

(8)

denote the system matrix associated with G(ζ). The normal rank of SG(ζ),
denoted normrank (SG(ζ)), is the maximally possible rank of SG(ζ) for at least
one ζ ∈ C. A complex ζ0 ∈ C is called an invariant zero of G(ζ) if it satisfies
rank (SG(ζ0)) < normrank SG(ζ) (see Lemma 10 given in Appendix 2).

2. Discrete-time Riccati equations

Consider the discrete-time Riccati equation

PT
q XqPq − Xq+

−(PT
q XqQq + Sq)(Tq + QT

q XqQq)
−1(PT

q XqQq + Sq)
T + Rq

= 0n×n (9)

where Pq, Rq = RT
q ∈ Rn×n, Qq, Sq ∈ Rn×m and Tq = T T

q ∈ Rm×m. Assuming
that

Pq = In + ∆P, Qq = Q, Rq = ∆2R, Sq = ∆S, Tq = T (10)

where P ∈ Rn×n, R = RT ∈ Rn×n, Q, S,∈ Rn×m and T = T T ∈ Rm×m we get
the corresponding δ-domain Riccati equation (δARE)

PT X + XP + ∆PT XP+

−((In + ∆PT )XQ + S)(T + ∆QT XQ)−1((In + ∆PT )XQ + S)T + R

= 0n×n (11)

where X = Xq/∆.
Let (U, W ) denote a pair of real matrices associated with (11)

(U, W ) =









P 0n×n Q
−R −PT −S
ST QT T



 ,





In 0n×n 0n×m

0n×n In + ∆PT 0n×m

0m×n −∆QT 0m×







 (12)

The set of all matrices of the form U −λW with λ ∈ C is said to be a (2n+m)×
(2n + m) extended matrix pencil. The eigenvalues of the extended pencil are
elements of the set λ(U, W ) defined by λ(U, W ) = {z ∈ C : det(U − zW ) = 0}.
If λ ∈ λ(U, W ) and Ux = λWx with x 6= 0 then x is referred to as an eigenvector
of the extended pencil (Golub and Van Loan, 1996; Stewart, 1973, 2001).

Let X−(U, W ) of dimension n− = dim(X−(U, W )) ≤ n denote the invariant
subspace corresponding to stable eigenvalues of U − λW . Let [XT

1 XT
2 XT

3 ]T ∈



Robust synthesis of discrete-time H∞ estimators 767

R(n+n+m)×n− be a matrix of full column rank whose columns form a basis for
X−(U, W ). This means that X−(U, W ) = Im[XT

1 XT
2 XT

3 ]T and

U





X1

X2

X3



 = W





X1

X2

X3



Λ (13)

where Λ ∈ Rn−×n− is stable, λ(∆) ⊂ D∆. The domain of δRic, denoted by
dom(δRic), consists of all pairs (U, W ) such that n− = n and X1 ∈ Rn×n is
non-singular. The following lemma can be regarded as a δ-domain version of
the standard result (Van Dooren, 1981a; Arnold and Laub, 1984; Laub, 1991;
Lancaster and Rodman, 1995) that recasts the δARE of (11) as a generalised
eigenvalue problem.

Lemma 1 Let (U, W ) ∈ dom(δRic) and X = X2X
−1
1 . Then

(i) X is unique (that is denoted as X = δRic(U, W )) and symmetric
(X = XT ),

(ii) T + ∆QT XQ is non-singular and X satisfies the δARE of (11),
(iii) Fδ = X3X

−1
1 is unique and Fδ = −(T+∆QTXQ)−1((In+∆PT )XQ+S)T ,

(iv) Gδ = P + QFδ = X1ΛX−1
1 is stable, λ(Gδ) ⊂ D∆.

The matrix T of (12) is often diagonal or even identity, which makes T−1

trivial to determine and in such cases a reduced in-order generalised eigenvalue
problem treatment based on standard techniques for 2n×2n matrix pencils can
be utilised (Arnold and Laub, 1984; Lancaster and Rodman, 1995; Benner et
al., 1997; Ionescu et al., 1997; Suchomski, 2001c). In general, T may instead
be non-diagonal and ill-conditioned with respect to inversion, or possibly even
singular, in which case the considered technique for (2n+m)×(2n+m) extended
pencils should be used. On the other hand, the use of the notions of extended
pencils turns to be an effective and ’natural’ tool for obtaining the extended
dual J-lossless factorisations being considered in Section 4.2.

Let (U, W ) ∈ dom(δRic) and P , Q, R, S and T be subject to perturbations
εP̄ , εQ̄, εR̄, εS̄, and εT̄ , respectively. It is assumed that R̄ and T̄ are both
symmetric, and ε ∈ R. Define a directional derivative of X = δRic(U, W )

∇εX(P̄ , Q̄, R̄, S̄, T̄ |P, Q, R, S, T ) =

= lim
ε→0

X(P + εP̄ , Q + εQ̄, R + εR̄, S + εS̄, T + εT̄ ) − X(P, Q, R, S, T )

ε
.

(14)

This derivative, as an image of (P̄ , Q̄, R̄, S̄, T̄ ) in a linear and continuous map-
ping, established by the Fréchet derivative ∇X(P, Q, R, S, T ), can be regarded
as the Fréchet differential of X at (P, Q, R, S, T ). A norm of ∇X(P, Q, R, S, T ),
measures local sensitivity of X with respect to small perturbations in (P, Q, R, S,
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T ). Let

‖ ∇X(P, Q, R, S, T ) ‖=

= sup
‖ (P̄ ,Q̄,R̄,S̄,T̄ )‖6=0

‖ ∇εX(P̄ , Q̄, R̄, S̄, T̄ |P, Q, R, S, T ) ‖R

‖ (P̄ , Q̄, R̄, S̄, T̄ ) ‖D
(15)

where ‖ · ‖D and ‖ · ‖R are norms on the domain and the range space of
∇X(P, Q, R, S, T ). It is convenient to use the weighted Frobenius norm on the
domain space

‖ (P̄ , Q̄, R̄, S̄, T̄ ) ‖D=

∥

∥

∥

∥

(

P̄

‖P ‖F
,

Q̄

‖Q‖F
,

R̄

‖R‖F
,

S̄

‖S ‖F
,

T̄

‖T ‖F
,

)∥

∥

∥

∥

F

(16)

and the Frobenius norm ‖ · ‖F on the range space of ∇X(P, Q, R, S, T ), so that

‖ ∇X(P, Q, R, S, T ) ‖= sup
‖(P̄ ,Q̄,R̄,S̄,T̄ )‖6=0

1

‖ (P̄ , Q̄, R̄, S̄, T̄ ) ‖F
×

‖ ∇εX
(

‖P ‖F P̄ , ‖Q‖F Q̄, ‖R‖F R̄, ‖S ‖F S̄, ‖T ‖F T̄ , |P, Q, R, S, T
)

‖F

(17)

A relative condition number of the δARE of (11), which measures the sensitivity
of X with respect to perturbations in (P, Q, R, S, T ), can be defined in the
following way (see Suchomski, 2001c, 2002b)

κδ(P, Q, R, S, T ) =
‖ ∇X(P, Q, R, S, T ) ‖

‖X‖F

. (18)

Let ⊗ denote the Kronecker product of two matrices, vec(M) denote the
vector obtained by stacking the columns of a matrix M into one vector and ‖ · ‖s

be the spectral norm. The surveys of the Kronecker product, the vec operators,
and vec-permutation matrices can be found in Graham (1981), Henderson and
Searle (1981), Weinmann (1991), Higham (1996). Moreover, let M+ denote the
Moore-Penrose pseudo-inverse of M (Boullion and Odell, 1971; Meyer, 2000).

Lemma 2 The relative condition number κδ(P, Q, R, S, T ) of the δARE of (11),
which measures the sensitivity of X with respect to perturbations in (P, Q, R, S, T ),
takes the form

κδ(P, Q, R, S, T ) =
‖ (FP , FQ, FR, FS , FT ) ‖s

‖X‖F

. (19)
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where

FP =‖P ‖F H+
δ [In ⊗ (In + ∆GT

δ )X + ((In + ∆GT
δ )X ⊗ In)Tn,n] (20)

FQ =‖Q‖F H+
δ [FT

δ ⊗ (In + ∆GT
δ )X + ((In + ∆GT

δ )X ⊗ FT
δ )Tn,m] (21)

FR =‖R‖F H+
δ (22)

FS =‖S ‖F H+
δ [FT

δ ⊗ In + (In + FT
δ )Tn,m] (23)

FT =‖T ‖F H+
δ (FT

δ ⊗ FT
δ ) (24)

and

Hδ = GT
δ ⊗ In + In ⊗ GT

δ + ∆GT
δ ⊗ GT

δ (25)

while

Tn,m =
n

∑

i=1

m
∑

j=1

en,ie
T
m,j ⊗ em,je

T
n,i (26)

denotes a vec-permutation matrix for ek,l as the l-th unit vector in Rk .

Proof. Proof can be done similarly as in Suchomski (2001c).

Remark 1 Let λ(Gδ) = {λi}n
i=1, hence λ(Hδ) = {λi + λj + ∆λiλj}n

i,j=1. It
follows that Hδ is invertible iff Hδ is stable, i.e. X is the stabilising solution to
(11) . In this case, a certain δ-domain Lyapunov equation, which corresponds
to the definition of κδ(P, Q, R, S, T ), has a unique solution (Suchomski, 2001c,
2002c). For a non-stabilising X and Gδ having eigenvalues on ∂D̄∆ the matrix
Hδ is non-invertible and the corresponding δ-domain Lyapunov equation has a
set of non-unique solutions from which the one of the minimal norm should be
taken.

A relative condition number of the q-domain ARE of (9), denoted as κq(Pq, Qq,
Rq, Sq, Tq), can be defined in a similar manner (Suchomski, 2001c, 2002b). Us-
ing a first-order-in-∆ analysis one can easily derive the following lemma that
completely explains the superiority of δ-domain solutions to their counterparts
based on the forward-shift operator q.

Lemma 3 For a sufficiently small sampling period ∆ there is

κq(Pq, Qq, Rq, Sq, Tq) ∝
κδ(P, Q, R, S, T )

∆
. (27)

Hence, the q-domain AREs of the assumed type of parameterisation, (10), be-
come ill-conditioned as ∆ → 0 .

It is worth noting that the affine transformation In + ∆P of P and not scaling
of R and S turns to be the main reason for which the q-domain solution is
ill-conditioned.
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3. H
∞

optimisation in the delta-domain

Let RLp×r
∞ denote the space of proper real-rational p×r-matrix-valued functions

of ζ ∈ C which are analytical in ∂D̄∆. RHp×r
∞ is the subspace of RLp×r

∞ con-
sisting of all stable matrices. The RHp×r

∞ infinity norm is defined as ‖Φ ‖∞=
supω∈R ‖ Φ((ejω∆−1)/∆) ‖s. The set of all unitary bounded matrices in RHp×r

∞

is defined by BHp×r
∞ = {Φ ∈ RHp×r

∞ :‖ Φ ‖∞< 1}. The group of all units of
RHp×r

∞ is denoted by GHp
∞ = {Φ ∈ RHp×p

∞ : Φ−1 ∈ RHp×p
∞ }. If Φ ∈ GHp

∞, it
is said to be unimodular in RHp×p

∞ . Moreover, let Jmn ∈ R(m+n)×(m+n) be a
signature matrix defined as Jmn = Im ⊕ (−In).

3.1. The standard problem

Consider a linear finite-dimensional discrete-time generalised plant

P :





w

u



 →





z

y



 (28)

with four vector-valued input/output signals: w is the exogenous input of di-
mension r, u of dimension p is the controlling input (manipulated variable),
z of dimension m is the controlled output (objective) and y is the measured
output of dimension q. The plant can be described by its properly dimensioned
scattering matrix (Kimura, 1995, 1997)

P (ζ) =

[

Pzw(ζ) Pzu(ζ)
Pyw(ζ) Pyu(ζ)

]

. (29)

A closed-loop system LF (P, K) : w → z given in Fig. 1 can be described by a
linear fractional transformation of a filter (controller) K : y → u with respect
to the plant P (Kimura, 1995, 1997),

LF (P, K) = Pzw + PzuK(In − PyuK)−1Pyw. (30)

The standard H∞ optimisation problem is to find a causal linear K which

P

K

w

uy

z

(  )ζ

(  )ζ

Figure 1. System configuration with generalised plant
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internally stabilises the closed-loop system LF (P, K) and enforces the norm
bound ‖ LF (P, K) ‖∞< γ for a prespecified γ > 0(Francis, 1987; Doyle et al.,
1989; Green and Limebeer, 1995; Zhou et al., 1996; Kimura, 1997). Let

P (ζ) =

[

A B

C D

]

=









A Bw Bu

Cz Dzw Dzu

Cy Cyw Cyu









, A ∈ Rn×n (31)

denote a generalised plant. Consider the common conditions for the plant reg-
ularity (Stoorvogel, 1992):

(C1) (A, Bu, Cy) is stabilisable and detectable,
(C2) Dzu is injective (DT

zuDzu > 0) and Dyw surjective (DywDT
yw > 0),

(C3) rank

[

Ā(ω) Bu

Cz Dzu

]

= n + p, ∀ω ≥ 0,

(C4) rank

[

Ā(ω) Bw

Cy Dyw

]

= n + q, ∀ω ≥ 0,

where Ā(ω) = A − ∆−1(ejω∆ − 1)In,
(C5) Dyu = 0.

In the case of the dual J-lossless factorisation approach it is assumed that all
the above conditions (C1-C5) are satisfied while in the approach based on the
extended dual J-lossless factorisation the fourth condition (C4) is not valid.

3.2. H∞ synthesis with dual chain-scattering representations of the

plant

The plant P of (29) with m = p and an invertible Pzu(ζ) can be characterised
via its dual chain-scattering representation

G :





z

w



 →





u

y



 (32)

where

G(ζ) =

[

Guz(ζ) Guw(ζ)
Gyz(ζ) Gyw(ζ)

]

(33)

is called a dual chain-scattering matrix (Kimura, 1991, 1992a,b, 1995, 1997).
Consider a closed-loop system given in Fig. 2, where K : y → u being an m× q
transfer function stands for a filter. The system can be characterised as a dual
homographic transformation DHM (G, K) : w → z denoted by

DHM (G, K) = −(Guz − KGyz)
−1(Guw − KGyw) (34)
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w

uz

K (  )yG(  )

Figure 2. System configuration based on dual chain-scattering modelling

of the filter K with respect to the plant G (see Appendix 1). The standard
suboptimal H∞ problem is to find a causal K(ζ) that stabilises the closed-loop
system and enforces ‖ DHM (G, K) ‖∞< γ where γ > 0 is a prespecified design
parameter (Kimura, 1997).

4. J-lossless factorisation solutions

The key role in the theory of H∞ optimisation is played by the so called J-lossless
factorisations of transfer functions of a plant (Green, 1992; Kimura, 1995, 1997).
The following definition and lemma (Suchomski, 2002b) are analogous to those
for the continuous-time and q-domain discrete-time systems (Genin et al., 1983;
Liu and Mita, 1989; Kimura, 1992b, 1997; Tsai and Postlethwaite, 1991; Tsai
and Tsai, 1992, 1993, 1995; Tsai et al., 1993).

Definition 1

(i) A matrix G(ζ) ∈ RL
(m+q)×(m+r)
∞ is said to be dual (Jmq, Jmr)-unitary, if

G(ζ)JmrG
∼(ζ) = Jmq, ∀ζ.

(ii) A dual (Jmq, Jmr)-unitary G(ζ) is said to be dual (Jmq, Jmr)-lossless, if
G(ζ)JmrG

∗(ζ) ≥ Jmq, ∀ζ 6∈ D∆.

Lemma 4 G(ζ) ∈ RL
(m+q)×(m+r)
∞ of a realisation (A, B, C, D) is dual (Jmq, Jmr)−

unitary iff there exists X ∈ Rn×n satisfying

AX + XAT + ∆AXAT − BJmrB
T = 0n×n (35)

XCT + ∆AXCT − BJmrD
T = 0n×(m+q) (36)

DJmrD
T − ∆CXCT = Jmq. (37)

The solution X ≥ 0 iff G(ζ) is dual (Jmq, Jmr)-lossless while X > 0 iff G(ζ) is
dual (Jmq, Jmr)-lossless and (A, B) is controllable.

Note that a dual J-unitary (J-lossless) matrix has no poles on ∂D̄∆, but can be
unstable (Tsai and Tsai, 1993; Tsai and Postlethwaite, 1991; Kimura, 1997).
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4.1. The dual J-lossless approach

The definition of J-lossless factorisations in δ-domain (Suchomski 2001b, 2002b)
are basically similar to those for the continuous-time (Green, 1992; Kimura,
1995, 1997) and δ-domain discrete-time cases (Tsai et al., 1993; Kongprawech-
non and Kimura, 1996, 1998).

Definition 2 If G(ζ) ∈ RL
(m+q)×(m+r)
∞ can be represented as a product

G(ζ) = Ω(ζ)Ψ(ζ) (38)

where Ψ(ζ) ∈ RL
(m+q)×(m+r)
∞ is dual (Jmq, Jmr)-lossless and Ω(ζ) ∈ GHm+q

∞ is
unimodular, then G(ζ) is said to have a dual (Jmq, Jmr)-lossless factorisation.

Dual J-lossless factorisations, being a key of the δ-domain H∞ optimisation,
allow for a facilitation of synthesis and give an insight into cascade structural
properties of the problem. It can be shown (Suchomski, 2002b) by utilising
methodologies basically analogous to those for continuous-time (Kimura, 1997)
and q-domain discrete-time (Kongprawechnon and Kimura, 1996, 1998) that
the H∞ problem of how to ensure ‖ DHM (G, K) ‖∞< γ is solvable iff G(ζ) of
(33) with no invariant zeros and poles on ∂D̄∆ has a dual (Jmq, Jmr)-lossless
factorisation.

Theorem 1 Let (A, B, C, D) be a minimal realisation of G(ζ) ∈ RL
(m+q)×(m+r)
∞

with no zeros on ∂D̄∆. A dual (Jmq, Jmr)−lossless factorisation G(ζ) = Ω(ζ)Ψ(ζ)
exists iff the following conditions hold:

(i) (Ux, Wx) ∈ dom(δRic) and X = δRic(Ux, Wx) ≥ 0, where
Px = AT , Qx = CT , Rx = −BJmrB

T ,

Sx = −BJmrD
T , Tx = −DJmrD

T ; (39)
(ii) (Ux̄, Wx̄) ∈ dom(δRic) and X̄ = δRic(Ux̄, Wx̄) ≥ 0, where

Px̄ = A, Qx̄ = B, Rx̄ = 0n×n, Sx̄ = 0n×(m+r), Tx̄ = Jmr; (40)
(iii) ‖XX̄ ‖s< 1;
(iv) there exists a non-singular Mx ∈ R(m+q)×(m+q) such that

Mx(Tx + ∆QT
x XQx)MT

x = −Jmq. (41)

The unimodular factor Ω(ζ) ∈ GHm+q
∞ is given by

Ω(ζ) =

[

A + BFx̄ (In − XX̄)−1Hx

−Cx̄ Im+q

]

N−1
xx̄ (42)

where

Hx = −((In + ∆PT
x )XQx + Sx)(Tx + ∆QT

x XQx)−1 (43)
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Fx̄ = −(Tx̄ + ∆QT
x̄ X̄Qx̄)−1((In + ∆PT

x̄ )X̄Qx̄)T (44)

Cx̄ = C + DFx̄ (45)

while Nxx̄ ∈ R(m+q)×(m+q) is a non-singular matrix satisfying

Nxx̄(D(Tx̄ + ∆QT
x̄ X̄Qx̄)−1DT − ∆Cx̄(In −XX̄)−1XCT

x̄ )NT
xx̄ = Jmq. (46)

Let Gγ(ζ) denote the plant model scaled with γ and assume that Gγ(ζ) has
a dual (Jmq, Jmr)-lossless factorisation Gγ(ζ) = Ω(ζ)Ψ(ζ). The set of filters
K(ζ) ∈ RHm×q

∞ , for which ‖DHM (Gγ , K)‖∞< 1 holds, is parameterised with
an arbitrary transfer matrix Φ(ζ) ∈ BHm×q

∞

K = DHM (Ω−1, Φ). (47)

The representation Gγ(ζ) = Ω(ζ)Ψ(ζ) implies that all unstable poles and
zeros of the system Gγ(ζ) are absorbed in Ψ(ζ). Therefore, the H∞ filter K(ζ)
cancels out all the stable poles and zeros of Gγ(ζ) and takes care of only the
unstable poles and zeros from the power point of view (Kimura, 1997).

Remark 2 From Lemma 1 it follows that Hx ∈ Rn×(m+q) and Fx̄ ∈ R(m+r)×n

are such that A + HxC and A + BFx̄ are stable.

Remark 3 Let Xq and X̄q denote solutions obtained via employing the q-domain
representations of the corresponding discrete-time algebraic Riccati equations.
Hence X = Xq/∆ and X̄ = ∆X̄q.

Remark 4 For a stable A the zero solution X̄ = 0n×n satisfies the second
Riccati equation. As a consequence, we have Fx̄ = 0(m+r)×n, Cx̄ = C, and
Nxx̄ = M . It simplifies the realisation of Ω(ζ) and its inversion required in (47)

Ω(ζ) =

[

A Hx

−C Im+q

]

M−1
x (48)

Ω(ζ)−1 = Mx

[

A + HxC Hx

C Im+q

]

(49)

As a consequence, we obtain the following form of the dual (Jmq, Jmr)-lossless

factor Ψ(ζ) ∈ RH
(m+q)×(m+r)
∞ of G(ζ) (note that Ψ(ζ) is stable)

Ψ(ζ) = Mx

[

A + HxC B + HxD

C D

]

. (50)

Since

SΨ(ζ) =

[

In 0n×(m+q)

0(m+q)×n Mx

] [

In Hx

0(m+q)×n I(m+q)

]

SG(ζ), (51)



Robust synthesis of discrete-time H∞ estimators 775

zeros of Ψ(ζ) are equal to those of G(ζ). In particular, all ’unstable’ zeros of
G(ζ) (i.e. zeros located outside D̄∆) are absorbed in Ψ(ζ). From Lemma 12
given in Appendix 3 it follows that if ζ0 ∈ D∆ is a ’stable’ zero of G(ζ), then
ζ0 ∈ λ(A + HxC). Consequently, in such a case, (50) is only a non-minimal
realisation of Ψ(ζ).

4.2. The extended dual J-lossless approach

A necessary condition for the existence of the stabilising solution X of Theo-
rem 1 is that G(ζ) has no zeros on ∂D̄∆. Let us discuss the case in which this
assumption about the generalised plant does not hold. The following definition
of the so-called extended dual J-lossless factorisation is basically analogous to
those for continuous-time (Hara et al., 1992) and q-domain discrete-time cases
(Hung and Chu, 1995).

Definition 3 If G(ζ) ∈ RL
(m+q)×(m+r)
∞ is represented as a product G(ζ) =

Ω(ζ)Ψ(ζ) where Ψ(ζ) ∈ RL
(m+q)×(m+r)
∞ is dual (Jmq, Jmr)-lossless and Ω(ζ) ∈

RH
(m+q)×(m+q)
∞ does not have any zeros outside D̄∆, then G(ζ) is said to have

an extended dual (Jmq, Jmr)-lossless factorisation.

Let G(ζ) ∈ RL
(m+q)×(m+r)
∞ have nz invariant zeros on ∂D̄∆. An extended

dual (Jmq, Jmr)-lossless factorisation of G(ζ) (if it exists) can be obtained by
using a technique similar to that called ’zero compensation’ (Copeland and
Safonov, 1992a,b, 1995). Suppose that a left zero compensator U(ζ) of a minimal

realisation of dimension nz exists, for which U(ζ)−1 ∈ RH
(m+q)×(m+q)
∞ and

G̃(ζ) = U(ζ)G(ζ) ∈ RL(m+q)×(m+r)
∞ (52)

with no zeros on ∂D̄∆ has a dual (Jmq, Jmr)-lossless factorisation G̃(ζ) =

Ω̃(ζ)Ψ(ζ) where Ω̃(ζ) = GHm+q
∞ . It follows that G(ζ) = U(ζ)−1G̃(ζ) = Ω(ζ)Ψ(ζ)

with

Ω(ζ) = U(ζ)−1Ω̃(ζ) ∈ RH(m+q)×(m+q)
∞ (53)

can stand for an extended dual (Jmq, Jmr)-lossless factorisation of G(ζ). On
account of the above, we can see that all poles of U(ζ) are on ∂D̄∆ and all zeros
are in D∆. Moreover, Ω(ζ) can be represented by a realisation of dimension
of n + nz. Seeking for a minimal realisation of dimension of n, we can observe
that the unimodularity of Ω̃(ζ) implies that the only way that allows for such a
simplification of Ω(ζ) is a stable pole-zero cancellation between poles of U(ζ)−1

and zeros of Ω̃(ζ).
The set of all filters K(ζ) satisfying ‖ DHM (GγK) ‖ ∞ < 1 is given

by (47), where Φ(ζ) ∈ BHm×q
∞ is a parameter such that K(ζ) ∈ RHm×q

∞ .
Clearly, in a rational method for synthesis of K(ζ) a minimal realisation of
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Ω(ζ)−1 = Ω̃(ζ)−1U(ζ) should be derived without the necessity of obtaining a
left zero compensator.

Assume that G(ζ) ∈ RL
(m+q)×(m+r)
∞ of a minimal realisation (A, B, C, D)

has nz invariant zeros on the boundary ∂D̄∆. According to (39) the following
transposed system should be considered

GT (ζ) =

[

AT CT

BT DT

]

∈ RL(m+r)×(m+q)
∞ (54)

For the corresponding system matrix SGT (ζ) we can find a generalised (upper)
real Schur QZ-transformation (Emami-Naeini and Van Dooren, 1982; Golub
and Van Loan, 1996; Stewart, 2001) with orthogonal (unitary) matrices Qz ∈
R(n+m+r)×(n+m+r) and Zz ∈ R(n+m+q)×(n+m+q) such that

QT
z SGT (ζ)Zz =

[

Sz − ζTz ∗
0(n+m+r−nz)×nz

∗

]

(55)

where Sz − ζTz with Sz, Tz ∈ Rnz×nz is a regular pencil containing all the ele-
mentary divisors associated with the ∂D̄∆ zeros of G(ζ). Therefore, λ(SzTz) =
λ(T−1

z Sz) ⊂ ∂D̄∆. Let Qz and Zz be partitioned in conformity with SGT (ζ)

Ωz =

[

Ω11 Ω12

Ω21 Ω22

]

n

m+r
and Zz =

[

Z11 Z12

Z21 Z22

]

n

m+q

nz n+m+r−nz nz n+m+q−nz

(56)

From (55) it follows that Q11 = Z11T
−1
z and Q21 = 0(m+r)×nz

which gives
[

AT CT

BT DT

] [

Z11

Z21

]

=

[

In 0n×(m+q)

0(m+r)×n 0(m+r)×(m+q)

] [

Z11

Z21

]

T−1
z Sz. (57)

Orthogonality of Qz implies QT
11Q11 = Inz

and QT
11Q12 = 0nz×(n+m+r−nz).

Formula (57) gives

AT Z11 + CT Z21 = Z11T
−1
z Sz (58)

BT Z11 + DT Z21 = 0(m+r)×nz
. (59)

Hence, considering (12) and (39) yields

PxZ11 + QxZ21 = Q11Sz (60)

RxZ11 + SxZ21 = 0n×nz
(61)

ST
x Z11 + TxZ21 = 0(m+q)×nz

. (62)

This clearly shows that matrices Z11 and Z21 can be used for establishing the
following basis of an invariant subspace of the extended pencil Ux − ζWx, asso-
ciated with the eigenvalues λ(T−1

z Sz) ⊂ ∂D̄∆,

Ux





Z11

0n×nz

Z21



 = Wx





Z11

0n×nz

Z21



T−1
z Sz . (63)
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Assumption 1 Let there exist a basis [ST
1 ST

2 ST
3 ]T ∈ R(n+n+(m+q))×(n−nz) of

a stable invariant subspace of the extended pencil Ux − ζWx

Ux





S1

S2

S3



 = Wx





S1

S2

S3



Σ11 (64)

where Σ11 ∈ R(n−nz)×(n−nz) and λ(Σ11) ⊂ D∆, such that
(A1) [S1 Z11] ∈ Rn×n is non-singular,
(A2) X = [S2 0n×nz

][S1 Z11]
−1 ∈ Rn×n is positive semidefinite, X ≥ 0,

(A3) a non-singular Mx ∈ R(m+q)×(m+q) can be find such that (41) is satisfied.

From (12) and (64) it follows that

PxS1 + QxS3 = S1Σ11 (65)

−RxS1 − PT
x S2 − SxS3 = S2Σ11 + ∆PT

x S2Σ11 (66)

ST
x S1 + QT

x S2 + TxS3 = −∆QT
x S2Σ11 (67)

Using (60)-(62) together with (66) and (67) we obtain

(T−1
z Sz)

T (ZT
11S2)(In−nz

+ ∆Σ11) + (ZT
11S2)Σ11 = 0nz×(n−nz) (68)

which can be interpreted as a δ-domain Sylvester equation with respect to ZT
11S2.

Since λ(T−1
z Sz)∩λ(Σ11) = ∅, we conclude that this equation has the unique zero

’solution’ ZT
11S2 = 0nz×(n−nz). Note that from the assumed minimality of the

realisation (A, B, C, D) it follows that the pair (T−1
z Sz , Z21) is observable. For

this reason, eigenvalues of Σ22 = T−1
z Sz − T−1

z K̃Z21 ∈ Rnz×nz can be placed
arbitrarily by a suitable tuning of an auxiliary matrix K̃ ∈ Rnz×(m+q). Let
K̃ be chosen in a manner such that Σ22 is stable, λ(Σ22) ⊂ D∆. By defining
Σ21 = −T−1

z K̃S3 ∈ Rnz×(n−nz) and taking into account (60)-(62) and (65)-(67)
we can observe that

Ũx





S1 Z11

S2 0n×nz

S3 Z21



 = W̃x





S1 Z11

S2 0n×nz

S3 Z21





[

Σ11 0(n−nz)×nz

Σ21 Σ22

]

(69)

where a pair (Ũx, W̃x) is obtained from (Ux, Wx) of (39) after replacing Qx by
Q̃x = Qx − Q11K̃. It follows that (Ũx, W̃x) ∈ dom(δRic) and for X given in
(A2) we have X = δRic(Ũx, W̃x). Note that X does not depend on K̃.

Lemma 5 Let G(ζ) ∈ RL
(m+q)×(m+r)
∞ has nz zeros on ∂D̄∆. The system

G̃(ζ) =

[

A B

C − K̃T QT
11 D

]

∈ RL(m+q)×(m+r)
∞ , (70)
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in which K̃ ∈ Rnz×(m+q) stabilises Σ22 = T−1
z Sz−T−1

z K̃Z21, can be represented
as G̃(ζ) = U(ζ)G(ζ), where

U(ζ) =

[

ST
z T−T

z ZT
21

K̃T T−T
z Im+q

]

(71)

is a left zero compensator and U(ζ)−1 ∈ RH
(m+q)×(m+q)
∞ .

Proof. Using previously defined Qz and Zz of (56), together with (58) and (59)
we obtain

ZT
z SG̃(ζ)Qz =

[

(ST
z − ZT

21K̃
T ) − ζT T

z 0nz×(n+m+r−nz)

∗ ∗

]

. (72)

Since λ(ST
z − ZT

21K̃
T , T T

z ) = λ(Σ22) ⊂ D∆ we can conclude that G̃(ζ) has
nz stable zeros. A left zero compensator U(ζ) must have nz poles on ∂D̄∆.
Assuming

U(ζ) =

[

ST
z T−T

z Bu

K̃T T−T
z Im+q

]

(73)

where Bu ∈ Rnz×(m+q) gives

U(ζ)G(ζ) =









ST
z T−T

z BuC BuD

0n×nz
A B

K̃T T−T
z C D









(74)

It suffices to show that the modes of (74) that correspond to ST
z T−T

z are uncon-

trollable and U(ζ)−1 ∈ RH
(m+q)×(m+q)
∞ . From (59) we have that for Bu = ZT

21

there is
[

Inz
ZT

11

0n×nz
In

] [

BuD
B

]

=

[

0nz×(m+r)

B

]

. (75)

From this we can conclude that

[

Inz
ZT

11

0n×nz
In

]

can be used as a suitable simi-

larity matrix (see (58)),

[

Inz
ZT

11

0n×nz
In

] [

ST
z T−T

z ZT
21C

0n×nz
A

] [

Inz
−ZT

11

0n×nz
In

]

=

[

ST
z T−T

z 0nz×n

0n×nz
A

]

(76)

[

K̃T T−T
z C

]

[

Inz
−ZT

11

0n×nz
In

]

=
[

K̃T T−T
z C − K̃T T−T

z ZT
11

]

. (77)
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Hence

G̃(ζ) = U(ζ)G(ζ) =

[

A B

C̃ D

]

(78)

where C̃ = C − K̃T QT
11. It is obvious that (Ũx, W̃x) corresponds to G̃(ζ).

Moreover, from

U(ζ)−1 =

[

ST
z T−T

z − ZT
21K̃

T T−T
z ZT

21

−K̃T T−T
z Im+q

]

=

[

ΣT
22 ZT

21

−K̃T T−T
z Im+q

]

(79)

it follows that U(ζ)−1 is stable and U(ζ) does not introduce any zeros on ∂D̄∆.

Assume that Theorem 1 applied to the transfer matrix G̃(ζ) of (78) yields
X̃, X̄ , M̃x H̃x and Ñxx̄ (note that X̄ does not depend on K̃ ). Clearly, X̃ = X .
From (A2) it follows that XZ11 = 0n×nz

. Consequently, we have Q̃T
x X = QT

x X
and Q̃T

x XQ̃x = QT
x XQx. Hence M̃x = Mx and H̃x = Hx. Since C̃x̄ = C̃ +

DFx̄ = Cx̄ − K̃T QT
11, which implies C̃x̄X = Cx̄X . Taking into account the

fact that (In − XX̄)−1X = X(In − X̄X)−1 we conclude that Ñxx̄ = Nxx̄. It
remains to prove that Ω(ζ) = U(ζ)−1Ω̃(ζ) having nz zeros on ∂D̄∆ can be
derived without obtaining a left zero compensator.

Lemma 6 The factor Ω(ζ) ∈ RH
(m+q)×(m+q)
∞ of the extended dual (Jmq, Jmr)

-lossless factorisation G(ζ) = Ω(ζ)Ψ(ζ) of G(ζ) ∈ RL
(m+q)×(m+r)
∞ with nz zeros

on ∂D̄∆ takes (if it exists) the form of (42).

Proof. Theorem 1 yields

Ω̃(ζ) =

[

A + BFx̄ (In − XX̄)−1Hx

−Cx̄ + K̃T QT
11 Im+q

]

N−1
xx̄ . (80)

By virtue of (79), we have

U(ζ)−1Ω̃(ζ) =









ΣT
22 −ZT

21(Cx̄ − K̃T QT
11) ZT

21

0nz×n A + BFx̄ (In − XX̄)−1Hx

−K̃T T−T
z −Cx̄ + K̃T QT

11 Im+q









N−1
xx̄ .

(81)

Using similarity transformation with matrix

[

Inz
−ZT

11

0n×nz
In

]

and taking into

account (58) and (59) we get
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U(ζ)−1Ω̃(ζ) =









ΣT
22 0nz×n ZT

21 − ZT
11(In − XX̄)−1Hx

0n×nz
A + BFx̄ (In − XX̄)−1Hx

−K̃T T−T
z −Cx̄ Im+q









N−1
xx̄ .

(82)

On the other hand, the use of Lemma 1 shows that Hx of (43) can be represented
as

Hx = [S1 Z11]
−T [S3 Z21]

T . (83)

This clearly forces (In − XX̄)−1Hx = [S1 − X̄S2 Z11]
−T [S3 Z21]

T and con-
sequently ZT

11(In − XX̄)−1Hx = ZT
21. The above implies that the stable modes

of U(ζ)−1Ω̃(ζ) associated with Σ22 are uncontrollable,

Ω(ζ) = U(ζ)−1Ω̃(ζ) =

[

A + BFx̄ (In − XX̄)−1Hx

−Cx̄ Im+q

]

N−1
xx̄ . (84)

which finishes the proof.

Consequently, the following theorem, being the main result of this section,
can be stated.

Theorem 2 Let (A, B, C, D) be a minimal realisation of the transfer matrix

G(ζ) ∈ RL
(m+q)×(m+r)
∞ having nz zeros on ∂D̄∆. Let [ST

1 ST
2 ST

3 ] ∈
R(n+n+(m+q))×(n−nz) denote a basis of a stable invariant (n−nz)−dimensional
subspace of the extended pencil Ux − ζWx of (39). G(ζ) has an extended dual
(Jmq, Jmr)-lossless factorisation G(ζ) = Ω(ζ)Ψ(ζ) iff the following conditions
hold:

(i) [S1 Z11] ∈ Rn×n is non-singular and X = [S2 0n×nz
][S1 Z11]

−1 ≥
0 , X ∈ Rn×n;

(ii) (Ux̄, Wx̄) ∈ dom(δRic) and X̄ = δRic(Ux̄, Wx̄) ≥ 0 for (Ux̄, Wx̄) defined
by (40);

(iii) ‖ XX̄ ‖s< 1;
(iv) there exists a non-singular Mx ∈ R(m+q)×(m+q) satisfying (41).

Remark 5 By virtue of Theorem 1, λ(A + HxC̃) = λ(Σ11) ∪ (Σ22) ⊂ D∆. On
the other hand, X of Theorem 2 is not a stabilising solution to the δ-domain
Riccati equation corresponding to (Ux, Wx). Since Ω(ζ) has nz zeros on ∂D̄∆,
the matrix A + BFx̄ + (In − XX̄)−1XxCx̄ is not stable: λ(T−1

z Sz) ⊂ λ(A +
BFx̄ + (In − XX̄)−1HxCx̄).
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Remark 6 For a stable A we observe that A + HxC is unstable and zeros of
Ω(ζ) are equal to λ(A + HxC) = λ(Σ11) ∪ λ(T−1

z Sz). Note, however, that Ψ(ζ)
is stable since its realisation of (50) is not minimal because of the pole-zero
cancellations on ∂D̄∆. Hence, if G(ζ) has no ’stable’ zeros, then poles of Ψ(ζ)
are equal to λ(Σ11) ⊂ D∆ and zeros of Ψ(ζ) are equal to those zeroes of G(ζ),
which are located outside ∂D̄∆ (see Remark 4).

5. Delta-domain H
∞
-suboptimal estimation

This section demonstrates the use of the offered methodology for solving the
H∞ estimation problem. Consider a linear discrete-time model of a plant (Fig.
3) with three vector-valued input/output signals: w1 and w2 are the exogenous
inputs (disturbances) of dimensions r1 and r2, respectively, and y is the mea-
sured output of dimension q (Suchomski, 2002a). Let x denote the observed

K(  )
y

_

w 2

L

xw1

zv

u=v

Plant

I(           )n
_ 1_

B1A1 C1

I(           )n A
_ 1

B
_

2C2 +D22

d

2

1

Figure 3. Formulation of the estimation problem

state vector of dimension n1 and a reference signal v = Lx of dimension m
be a weighted state vector, where L ∈ Rm×n1 stands for a weighting matrix.
The measurement noise channel w2 → d is represented by the transfer matrix
C2(ζIn2

− A2)
−1B2 + D2. An approximate weighted state vector v̂ is gener-

ated by employing the filter (estimator) described by the transfer matrix K(ζ).
By defining a residue z = v − v̂ as the controlled output (objective) we can
easily obtain the corresponding generalised plant of the previously considered
structure (Fig. 2) with an extended state vector of dimension n = n1 + n2 and
suitably defined signals u = v̂ and w = [wT

1 wT
2 ]T ∈ Rr with r = r1 + r2. It

is easily seen that we are really faced with two conflicting requirements: small
‖ K(ζ) ‖∞ yields good attenuation of the measurement noises but may degrade
some ’state detection’ abilities of the estimator. The corresponding scaled dual
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chain-scattering representation takes the form

G(ζ) =

[

A B

C D

]

=









A1 0n1×n2

0n2×n1
A2

0n×m

[

B1 0n1×r2

0n2×r1
B2

]

L 0m×n2

C1 C2

−γIm 0m×r

0q×m

[

0q×r1
D2

]









.

(85)

The standard problem of the suboptimal H∞ estimation is to find a causal
and stable K(ζ) that enforces the H∞ norm bound ‖ Tzw ‖∞< γ, where Tzw :
w → z denotes the m× r transfer matrix and γ > 0 is a prespecified parameter
(Doyle et al., 1989; Zhou et al., 1996). This problem can thus be reformulated
as (Suchomski, 2002a)

findK(ζ)∈RHm×q
∞

‖ DHM (Gγ , K) ‖∞< 1. (86)

It follows from (34) that DHM (Gγ , K) is an affine function of K(ζ)

DHM (Gγ , K) =
[

γ−1L(ζIn1
− A1)

−1B1 0m×r2

]

+

−γ−1K(ζ)
[

C1(ζIn1
− A1)

−1B1 C2(ζIn2
− A2)

−1B2 + D2

]

(87)

so that we have the standard model matching problem in H∞ (Francis, 1987;
Hung, 1989; Liu and Mita, 1989; Doyle et al., 1992; Green and Limebeer, 1995;
Dullerud and Paganini, 2000).

Remark 7 From (85) it follows that condition (C1) holds iff both A1 and A2

are stable. So, in order to satisfy (C2) it should be assumed that rank(D2) = q.
Hence, for an asymptotically stable A only conditions (i) and (iv) of Theorem
1 or Theorem 2 are to be satisfied so as to establish the existence of a suitable
estimators. Note that, in general, the system considered is not stabilisable, be-
cause the output of the estimator does not affect the signal generator (Zhou et
al., 1996). Such a more general case, in which there is no requirement for the
estimator to be internally stabilising and ’we do not care what happens to the
state x, and indeed can do nothing about it, but our aim is to ensure that our
estimate of Lx is a good one’ is discussed by Green and Limebeer (1995).

Remark 8 Assume that Mx is partitioned as

Mx =

[

M11 M12

M21 M22

]

m

q

m q

(88)

Considering (41) as a simple Riccati-type equation we can seek a solution Mx

of the common symmetric structure with M12 = MT
21. On the other hand, for a
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sufficiently large γ we can try to find a different Mx of a block lower triangular
form. An easy algebra shows that in such a case, we have

M11 = L−T
11 , M12 = 0m×q, M22 = L−T

22 , M21 = −M22E
T
12M

T
11M11 (89)

where

E =

[

γ2Im − ∆L̄XL̄T −∆L̄XC̄T

−∆C̄XL̄T −D2D
T
2 − ∆C̄XC̄T

]

=

[

E11 E12

ET
12 E22

]

m

q
(90)

m q

L̄ = [L 0m×n2
] ∈ Rm×n, C̄ = [C1 C1] ∈ Rq×n (91)

and L11 ∈ Rm×m is the Cholesky factor of E11, L22 ∈ Rq×q is the Cholesky
factor of −Es

11 , while Es
11 = E22 − ET

12E
−1
11 E12 denotes the Schur complement

of E11. Hence, Mx of the assumed structure exists iff E11 > 0 and Es
11 < 0 .

We will also study the unweighted (straight) modelling of the measurement
disturbances d acting directly on the output (Fig. 3). This type of modelling
can be interpreted as a consequence of the lack of any prior knowledge about
the nature of measurement noises. The suitable scaled dual chain-scattering
representation of dimension of n = n1 has the following form, with q = r2

(Suchomski, 2002a),

Gγ(ζ) =

[

A B

C D

]

=





A1 0n1×m

[

B1 0n1×r2

]

L −γIm 0m×r

C1 0q×m

[

0q×r1
Iq

]



 . (92)

5.1. The dual J-lossless approach

To start with, consider a stable regular system Gγ(ζ) with no zeros on ∂D̄∆.
Assume that conditions (i) and (iv) specified in Theorem 1 are valid. Let
Ω(ζ)−1 ∈ GHm+q

∞ of (49) be partitioned as

Ω(ζ)−1 =

[

Ω11(ζ) Ω12(ζ)
Ω21(ζ) Ω22(ζ)

]

m

q

m q

(93)

For Mx of (88), zeroing the termination in (47), i.e. setting Φ = 0m×q, gives
the so-called central solution K(ζ) = −Ω̄11(ζ)−1Ω̄12(ζ) of the following general
form (see Appendix 1)

K(ζ) =

[

A + HqC̄ − HmM−1
11 M12C̄ HmM−1

11 M12 − Hq

L̄ + M−1
11 M12C̄ −M−1

11 M12

]

(94)
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where Hm ∈ Rn×m and Hq ∈ Rn×q are suitable submatrices of Hx

Hx =
[

Hm Hq

]

m q
(95)

Lemma 7 If a block lower triangular Mx of (88) exists (M12 = 0m×q), then the
central estimator has the simplest strictly proper form

K(ζ) =

[

A + HqC̄ −Hq

L̄ 0m×q

]

(96)

The structure of this estimator is illustrated in Fig. 4.

y

_I(          )n A
_ 1_

C

L

y

Hq

_

_

_

v

Figure 4. Central estimator

5.2. The extended dual J-lossless approach

It is assumed that for a stable Gγ(ζ) with nz invariant zeros on ∂D̄∆ the con-
ditions (i) and (iv) of Theorem 2 are fulfilled. Let us start from the following
partition

Z21 =

[

Z21

Z21

]

m

q
(97)

By virtue of (39) and (85), we have

Sx =

[

0n×m
0n1×q

B2D
T
2

]

and Tx =

[

−γ2Im 0m×q

0q×m D2D
T
2

]

. (98)

From this and (62) it is easily seen that Z̄21 = 0m×nz
. Hence, formula (83)

shows that

Hm = [S1 Z11]
−T





ST
3

[

Im

0q×m

]

0nz×m



 . (99)
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Now, consider Ω(ζ)−1 of (49) expressed in terms of the following similar model

Ω(ζ)−1 = Mx

[

[S1 Z11]
T (A + HxC)[S1 Z11]

−T [S1 Z11]
T [Hm Hq]

T

C[S1 Z11]
−T Im+q

]

. (100)

From (63), (64) , (95) and (99) it follows that

Ω(ζ)−1 = Mx









Σ11 0(n−nz)×nz
ST

3

0nz×(n−nz) T−1
z Sz

[

0nz×m ZT
21

]

C [S1 Z11]
−T

Im+q









(101)

which implies that the modes λ(T−1
z Sz) ⊂ ∂D̄∆ of

[

Ω̄11(ζ)
Ω̄21(ζ)

]

= Mx









A + HxC Hm

C

[

Im

0q×m

]









(102)

are non-controllable. Let x0 ∈ Rn denote a left eigenvector of A + HxC associ-
ated with a given ζ0 ∈ λ(T−1

z Sz). Assuming the following partition

[S1 Z11]
−1x0 =

[

x0

x0

]

n−nz

nz

(103)

and taking into account the definitional equality xT
0 (A + HxC − ζ0In) = 01×n,

we conclude that from (100) and (101) x̄0 = 0n−nz
. It follows that

[xT
0 01×(m+q)]









A + HxC − ζ0In Hm

C

[

Im

0q×m

]









= 01×(n+m) . (104)

Therefore, ζ0 is also an invariant zero of (102) by Lemma 10 given in Ap-
pendix 2. Note that zeroing of Z21 ∈ Rq×nz must be excluded. Otherwise,
not only xT

0 Hm = 01×m but also xT
0 Hq = 01×q, and consequently ζ0 ∈ ∂D̄∆

turns out to be an invariant zero of Ω(ζ)−1, which is a contradiction, since

Ω(ζ) ∈ RH
(m+q)×(m+q)
∞ . From what has been shown, another simple lemma

immediately follows.

Lemma 8 In the case of Gγ(ζ) with zeros on ∂D̄∆, using of central estimators
is to be excluded since K(ζ) = −Ω11(ζ)−1Ω12(ζ) always has poles (a pole) on
∂D̄∆.

Let K(ζ) = DHM (Ω(ζ)−1, Φ) with a non-zero static termination Φ ∈ Rm×q.
According to the elaboration given in Appendix 1, we have
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K(ζ) =

[

A + HxC − HmD−1
1 Ĉ HmD−1

1 D2 − Hq

D−1
1 Ĉ −D−1

1 D2

]

(105)

where

Ĉ = M11L + M12C − Φ(M21L + M22C) ∈ Rm×n (106)

D1 = M11 − ΦM21 ∈ Rm×m and D2 = M12 − ΦM22 ∈ Rm×q. (107)

Considering an equivalent model of (105) in which [S1 Z11]
T is employed

as a similarity matrix and taking into account (99)-(101) we conclude that
λ(T−1

z Sz) ⊂ λ(A + HxC − HmD−1
1 Ĉ). Hence, making modes λ(T−1

z Sz) non-
observable is a necessary condition for K(ζ) to be stable. From (99) and (105)
it follows that choosing Φ in such a way that

Ĉ [S1 Z11]
−T

=
[

∗ 0m×nz

]

∈ Rm×n

n−nz nn

(108)

ensures both the required block-diagonal structure of the corresponding state
matrix of K(ζ) and the zeroing of the suitable part of the output matrix of
this model. Formula (106) shows that for this to happen, the following linear
equation in Φ should be solved

ΦV = V (109)

where V ∈ Rm×nz and V ∈ Rq×nz are defined by

MxC[S1 Z11]
−T

[

0(n−nz)×nz

Inz

]

=

[

V
V

]

m

q
. (110)

Since only unitary bounded solutions are admissible (i.e. ‖ Φ ‖< 1 is obligatory)
it is a rational choice to examine the minimum-norm solution Φ = V V +, where
V + ∈ Rnz×q.

The following lemma summarises the above development.

Lemma 9 Any unitary bounded solution Φ to (109), leading to a stable K(ζ) =
DHM (Ω(ζ)−1, Φ) ∈ RHm×q

∞ of the minimal order (n − nz) is satisfying with
respect to the problem of (86). For (109) to be solved we claim nz ≤ q and

Im(V
T
) ⊂ Im(V T ).

Remark 9 From (12) it follows that det(U−λW )|λ=−1/∆ ∝ det(In+∆P )det(T−
∆ST (In+∆P )−1Q), hence det(Ux−λWx)|λ=−1/∆ ∝ det(In+∆A) det(DJmrGγ(−1
/∆)T ), by (39). In consequence, for an inadequate modelling of the measure-
ment noise channel, i.e. if condition (C2) is violated by rankD2 < q, we observe
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that −1/∆ ∈ λ(Ux, Wx) and −1/∆ ∈ λ(A + HxC). Such a singular filtering
(see Hautus and Silverman, 1983; Stoorvogel, 1992; Willems, 1981; Willems et
al., 1986) can give a bounded H∞ norm for the objective transfer matrix, but in
general should be avoided, especially for small ∆ s.

Remark 10 To avoid complex (non-real) arithmetic manipulations the follow-
ing standard procedure for cancellation of the non-observable modes of (105)
can be applied: after performing the singular value decomposition of the observ-
ability matrix Mo = UoΣoV

T
o ∈ Rmn×n corresponding to the pair (A + HxC −

HmD−1
1 Ĉ, D−1

1 Ĉ), we use Vo ∈ Rn×n as a unitary similarity matrix leading to

the following non-minimal realisation of (105): V T
o (A+HxC−HmD−1

1 Ĉ)V0, V
T
o

(HmD−1
1 D2−Hq), D

−1
1 ĈV0,−D−1

1 D2), and finally, a minimal realisation is ob-
tained via taking suitable upper-left (n − nz) submatrices.

6. Numerical examples

Two examples of the δ-domain H∞ estimation are given (see Fig. 3). The first
example concerns a regular system having no zeros on ∂D̄∆. In the second
example, the developed mechanism for dealing with such zeros is illustrated. A
stable plant is described by the following continuous-time model

Pc(s) =















−2.3 −0.4 −1.3 12

−1 −2 −1.15 12

−1.7 0.4 −2.7 4

1 −1 0 0

0 0 1 0















. (111)

Assumption of ∆ = 0.02s gives the corresponding δ-domain discrete-time model
(P : w1 → y)

P (ζ) =















−2.2230 −0.3882 −1.2324 11.6330

−0.9394 −1.9611 −1.0850 11.6038

−1.6211 0.3882 −2.6118 3.7438

1 −1 0 0

0 0 1 0















(112)

Two different continuous-time models of the measurement noise channel will be
considered

Pdc(s) =











−0.04 0 1 0

0 −0.02 0 1

0.04 0 0.1 0

0 0.005 0 −0.1











(113)
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and

Pdc(s) =











−0.5 0 1 0

0 −0.03 0 1

−0.05 0 0.1 0

0 −0.018 0 0.6











Note that in the second case we are faced with a problem of measurement noises
of two significantly different time scales. It follows that n1 = 3, n2 = 2, r1 = 1,
r2 = 2, q = 2, m = 1, and consequently n = 5, and r = 3. Moreover, an
exemplary L = [1.25 − 1 0] is taken.

6.1. First example: regular case

In this regular case, the δ-domain model of the measurement noise channel
(Pd : w2 → y) has no zeros on ∂D̄∆

Pd(ζ) =











−0.0400 0 0.9996 0

0 −0.0200 0 0.9998

0.04 0 0.1 0

0 0.005 0 −0.1











=

[

Pd1(ζ) 0
0 Pd2(ζ)

]

=

=







0.1ζ + 0.044

ζ + 0.0400
0

0
−0.1ζ + 0.003

ζ + 0.0200






. (114)

For an admissible γ = 1.4 we have

X =













8.3303 7.9107 1.3424 −2.1299 0.0452
7.9107 7.5364 1.3526 −1.8750 0.0289
1.3424 1.3526 0.4697 0.1106 −0.0249

−2.1299 −1.8750 0.1106 1.9027 −0.4586
0.0452 0.0289 −0.0249 −0.4586 25.0000













≥ 0 (115)

Hx =













0.9590 −30.9915 −65.4913
0.8810 −27.5754 −65.6203
0.0564 1.0790 −21.2502

−0.4135 7.4814 −5.3961
0.0144 0.1917 −0.0103













, Mx =





0.7171 0 0
0.0119 9.7308 0
0.0241 0.0730 7.1753





(116)
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which gives the following algorithms for the H∞ estimation:

K(ζ) =















−33.2145 30.6033 −66.7237 −1.2397 −0.3275 30.9915 65.4913
−28.5148 25.6143 −66.7052 −1.1030 −0.3281 27.5754 65.6203
−0.5421 −0.6909 −23.8620 0.0432 −0.1063 −1.0790 21.2502

7.4814 −7.4814 −5.3961 0.2593 −0.0270 −7.4814 5.3961
0.1917 −0.1917 −0.0103 0.0077 −0.0200 −0.1917 0.0103

1.25 −1 0 0 0 0 0















=

= [K1(ζ) K2(ζ)] =

=







11.1640(ζ + 0.0202)(ζ + 0.0400)(ζ + 1.7488)(ζ + 26.4519)

(ζ + 0.0201)(ζ + 0.3371)(ζ2 + 3.6800ζ + 3.6302)(ζ + 27.1858)
16.24380(ζ + 0.0200)(ζ − 0.1541)(ζ + 2.9903)(ζ + 5.0070)

(ζ + 0.0201)(ζ + 0.3371)(ζ2 + 0.3.6800ζ + 3.6302)(ζ + 27.1858)







T

. (117)

In the case of the unweighted modelling of measurement noises (d = w2 and
n = n1 = 3 ), we obtain

X =





65.8531 55.4485 −9.2417
55.4485 47.1946 −6.4509
−9.2417 −6.4509 4.8804



 ≥ 0 (118)

Hx =





13.7195 −10.3125 8.8603
11.2356 −8.1650 6.2141
−2.7750 2.8069 −4.5567



 , Mx =





0.7601 0 0
0.0536 0.9767 0
−0.0531 0.0559 0.9535





(119)

and consequently

K(ζ) =









−12.5355 9.9243 7.6279 10.3125 −8.8603
−9.1044 6.2039 5.1292 8.1650 −6.2141
1.1858 −2.4188 −7.1685 −2.8069 4.5567
1.25 −1 0 0 0









=

= [K1u(ζ) K2u(ζ)] =









4.7256(ζ + 1.8785)(ζ + 5.3933)

(ζ + 1.8463)(ζ2 + 11.6538ζ + 39.8184)
4.8612(ζ + 2.0099)(ζ + 3.3222)

(ζ + 1.8463)(ζ2 + 11.6538ζ + 39.8184)









T

. (120)

Frequency responses of K(ζ) and Pd(ζ) in ζ = (ejω∆ − 1)/∆ are plotted in
Fig. 5. As we can observe, the additional knowledge about the measurement
noise that follows from the model Pd(ζ) gives a possibility for improving the
estimator: if the gain of the measurement noise channel is relatively high (Fig.
5a - low frequencies) the considered estimators K1(ζ) and K1u(ζ) have simi-
lar characteristics. On the other hand, if the gains of the measurement noise
channels are low (Fig. 5a - high frequencies, and Fig. 5b) the estimator K(ζ) is
more ’active’. This observation is confirmed by plots given in Fig. 6, where an
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Figure 5. Frequency responses of estimators and disturbance channels

0 5 10 15 20 25
-3

0

3

[s]t

v

zu

z

Figure 6. Time characteristics: reference and residues

exemplary reference signal v = Lx as well as the corresponding residues z and
zu are represented.

The following two pairs of conditioning measures are obtained: (κδ = 991.5,
κq = 4582.6) if the exact modelling of the measurement noise channel is em-
ployed and (κδu = 123.4, κqu = 683.0) for the case in which no weighting is
assumed. It can be observed that the δ-operator approach turns out to be far
superior to the q-operator methodology while the reliability of computations is
taken into account (this claim is clearly confirmed by plots given in Fig. 7,
where smaller samplings periods are also examined). Computations concerning
the unweighted model of the measurement noise cannel are numerically more
robust mainly because of the lower dimensionality of the corresponding prob-
lem. Note, however, that this is not always the case (see the next numerical
example).
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Figure 7. Comparison of Riccati equation conditioning

6.2. Second example: irregular case

The considered model of the measurement noise channel (Pd : w2 → y) has the
δ-domain zero 0 = ζ0 ∈ ∂D̄∆

Pd(ζ) =









−0.4975 0 0.9950 0
0 −0.0300 0 0.9997

−0.05 0 0.1 0
0 −0.018 0 0.6









=

=

[

Pd1(ζ) 0
0 Pd2(ζ)

]

=







0.1ζ

ζ + 0.4975
0

0
0.6ζ

ζ + 0.0300






(121)

The numerically reliable technique for computing zeros is based on the Kro-
necker canonical form of the system matrix and on recent methods for comput-
ing it (Van Dooren, 1979; Van Dooren, 1981b; Emami-Naeini and Van Dooren,
1982; Boley, 1987; Varga, 1996). Since the considered generalised plant Gγ(ζ)
of (85) has only one ∂D̄∆ zero located at the origin, extraction of the entire
Kronecker structure of the pencil SGT

γ
(ζ) is not necessary and the following

simple algorithm can be applied to obtaining Qz, Zz and Tz (it is obvious that
Sz = 0).
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The algorithm contains three main steps:

1) Perform the singular value decomposition (Demmel, 1997; Golub and Van
Loan, 1996)

[

A B
C D

]

= UΣV T (122)

where U ∈ R(n+m+q)×(n+m+q) and V ∈ R(n+m+r)×(n+m+r) are unitary
matrices, while Σ ∈ R(n+m+q)×(n+m+r) is a diagonal matrix with non-
negative diagonal elements in increasing order.

2) Compute a Householder matrix H ∈ R(n+m+r)×(n+m+r) (Demmel, 1997;
Golub and Van Loan, 1996; Meyer, 2000) associated with the first column
of V T ĪnU ∈ R(n+m+r)×(n+m+q), where

Īn =

[

In 0n×(m+q)

0(m+r)×n 0(m+r)×(m+q)

]

. (123)

3) Compute

Qz = V HT , Zz = U,

[

Tz ∗
∗ ∗

]

= HV T ĪnU. (124)

Consequently, taking an admissible γ = 1.4 , we obtain Tz = −0.5660 and

X =













16.7650 16.2171 3.3359 −0.2735 −0.9115
16.2171 15.7124 3.3161 −0.2230 −0.8507
3.3359 3.3161 0.9875 0.0580 −0.0596

−0.2735 −0.2230 0.0580 0.9981 −0.1254
−0.9115 −0.8507 −0.0596 −0.1254 0.1308













≥ 0 (125)

Hx =













2.1457 −48.7690 −8.3531
2.0517 −44.4264 −8.2563
0.3370 −0.2035 −2.2640

−0.0623 0.0213 −0.1542
−0.1521 5.0423 −1.4142













, Mx =





0.7193 0 0
0.0183 9.5247 0
0.0143 −0.0575 1.6224





(126)

Accounting for (109) gives the following simple linear equation [ 0.0473 -0.0780 ]ΦT .
The corresponding minimum-norm solution Φ = [ 0.1062 -0.1752 ] turns out to
be feasible and leads to the H∞ estimator

K(ζ) =













−6.9157 −0.0286 0.0020 −0.0004 −3.5963 −0.7224
42.6596 −2.9973 0.1853 −0.0351 28.3369 8.0911

−68.3104 −3.8323 −3.2145 0.5815 −48.1174 −8.8409
37.7983 1.6674 1.3342 −0.7745 26.4595 5.1847
0.3276 0.4954 0.0976 0.0543 1.4192 −0.3947













=
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= [K1(ζ) K2(ζ)] =









1.4192(ζ + 0.9286ζ + 6.3894)(ζ + 15.2383)

(ζ + 0.4901)(ζ2 + 6.8668ζ + 12.6031)(ζ + 6.5451)
−0.3947(ζ + 0.0300)(ζ + 1.8698)(ζ + 2.5522)

(ζ + 0.4901)(ζ2 + 6.8668ζ + 12.6031)(ζ + 6.5451)









T

(127)

As is the case in Section 6.1, the simplified model of the measurement noise
channel with no weighting has been considered. i.e. (118)-(120).

The results of computations are shown in Figs. 8-10. Frequency responses
of K(ζ) and Pd(ζ) are illustrated in Fig. 8. Time characteristics computed for
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Figure 8. Frequency responses of estimators and disturbance channels

various disturbances w are illustrated in Fig. 9: disturbances d = [d1 d2]
T are

presented in Figs. 9a,c,e, while plots given in Figs. 9b,d,f represent references and
the corresponding residues. Conditioning of the considered Riccati equations is
illustrated in Fig. 10.

7. Conclusions

The dual and extended dual J-lossless factorisation approach to the suboptimal
H∞ estimation has been presented. The approach is based on discrete-time
dual chain-scattering representations of processes being estimated. For both
the regular and the irregular processes the fundamental solvability conditions
have been derived and represented in terms of the δ-domain state-space set-
ting. The structures of these conditions are much more complicated than in
the continuous-time cases and can not be exposed based on the direct bilinear
transformation approach. Estimators are obtained via performing two J-lossless
factorisations of the corresponding rational transfer matrices. In order to per-
form these factorisations it is in general required that two coupled δ-domain
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Figure 9. Time characteristics: a,c,e) measurement noise, b,d,f) references and
residues
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Riccati equations be solved. If the estimated process is asymptotically stable
only one Riccati equation is to be solved. The properly defined relative condi-
tion number has been used as a measure of the numerical sensitivity of these
δ-domain Riccati equations and it has been shown that the δ-domain J-lossless
factorisation approach to the H∞ estimation is far superior to the standard
q-domain approach. Especially, it has been demonstrated that the δ-domain
generalised eigenproblem formulation provides a unified methodology, which fa-
cilitates the reliable numerical solution of the considered H∞ optimisation.
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Appendix 1

Consider two systems with properly dimensioned state-space models

G :

[

z
w

]

→

[

u
y

]

, G(ζ) =









A Bz Bw

Cu Duz Duw

Cy Dyz Dyw









(128)

K : y → u, K(ζ) =

[

Ak Bk

Ck Dk

]

. (129)

A state-space realisation of the dual homographic transformation DHM (G, K)
of (34), which represents the transfer function from w to z (Fig. 2), can easily
be derived following the development given by Kimura (1997) for homographic
transformations. The DHM (G, K) takes the form

DHM (G, K) : w → z, DHM (G, K) =

[

Ac Bc

Cc Dc

]

(130)

Ac =

[

A 0
BkCy Ak

]

+

[

Bz

BkDyz

]

D−1
1 [−Ĉ Ck] (131)

Bc =

[

Bw − BzD
−1
1 D2

Bk(Dyw − DyzD
−1
1 D2)

]

,

Cc = D−1
1 [−Ĉ Ck], Dc = −D−1

1 D2 (132)

where

[

Ĉ D1 D2

]

=
[

I −Dk

]

[

Cu Duz Duw

Cy Dyz Dyw

]

(133)

subject to the condition that D1 = Duz − DkDyz is invertible. This is the
condition for the well-posedness of the feedback scheme of Fig. 2. In the case of
a static termination u = Dky we then obtain

DHM (G, K) =

[

A − BzD
−1
1 Ĉ Bw − BzD

−1
1 D2

−D−1
1 Ĉ −D−1

1 D2

]

. (134)

Appendix 2

Consider a system G(ζ) corresponding to a realisation (A ∈ Rn×n, B ∈ Rn×r, C ∈
Rq×n, D ∈ Rq×r).
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Lemma 10 Suppose SG(ζ) has full row normal rank. Then ζ0 is a (left) in-
variant zero of (A, B, C, D) iff there exist a non-zero 0n 6= x ∈ Rn and v ∈ Rq

such that [xT vT ]SG(ζ0) = 01×(n+r). Moreover, if v = 0q, then ζ0 is also a
non-controllable mode.

Proof. Based on the definition of invariant zeros we conclude that ζ0 is an invari-
ant zero if there is a non-zero vector [xT vT ]T ∈ Rn+q such that [xT vT ]SG(ζ0) =
01×(n+r) since SG(ζ) has full row normal rank (Douglas and Athans, 1996; Wein-
mann, 1991). On the other hand, assume that ζ0 is an invariant zero, then there
exists a vector [xT vT ]T 6= 0n+q such that [xT vT ]SG(ζ0) = 01×(n+r). We should
assert that x 6= 0n. Otherwise, vT [C D] = 01×(n+r) or v = 0q since SG(ζ) has
full row normal rank. Consequently, [xT vT ]T = 0n+q which is a contradiction.
Moreover, if v = 0q we have xT [A − ζ0In B] = 01×(n+r) which means that ζ0

is a non-controllable mode by the Popov-Belevitch-Hautus test (Petkov et al.,
1991; Zhou et al., 1996; Dullerud and Paganini, 2000).

Appendix 3

Two important properties of dual (Jmq, Jmr)-lossless matrices can be stated.

Lemma 11 Any dual (Jmq, Jmr)-lossless transfer matrix G(ζ) ∈ RL
(m+q)×(m+r)
∞

can be represented as

G(ζ) = D

[

A B

JmrB
T IAX−1 Im+r

]

(135)

where X > 0 and D ∈ R(m+q)×(m+r) is a constant matrix.

Proof. Let (A, B, C, D) be a controllable realisation of G(ζ) and X > 0 denote a
matrix satisfying (35)-(37). From (36), C = DJmrB

T IAX−1, which gives (135).
Note that letting ∆ → 0 gives a dual (Jmq, Jmr)−unitary constant matrix as the
first factor of the corresponding continuous-time model and a dual Jmr-lossless
transfer matrix as the second factor of this model.

Lemma 12 If ζ0 is an invariant zero of a dual (Jmq, Jmr)-lossless matrix G(ζ) ∈

RL
(m+q)×(m+r)
∞ , then, ζ∼0 = −ζ0/(1 + ∆ζ0) is a pole of G(ζ).

Proof. Let (A, B, C, D) be a realisation of G(ζ). From Lemmas 10 and 11, it
follows that if ζ0 is a zero of G(ζ), then there exist vectors 0n 6= x ∈ Rn and
v ∈ Rm+q such that xT (A − ζ0In) + vT DJmrB

T IAX−1 = 01×n and xT B +
vT D = 01×(m+r). Eliminating v yields xT (A−BJmrB

T IAX−1− ζ0In) = 01×n.
On account of (35), we obtain xT X(AT IA + ζ0In) = 01×n and consequently
((1 + ∆ζ0)A + ζ0In)Xx = 0n, which establishes the assertion due to X > 0.
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