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1. Introduction

The main interest of the many transforms known in mathematics (Fourier trans-
form, Laplace transform, Radon transform, Fenchel transform, ...) lies in the
fact that they convert a desired property into another one which may be more
tractable. It has been known for several decades that Fenchel duality transforms
a smoothness property into a well-posedness property and vice-versa. The first
instance of such a phenomenon is probably constituted by the Smulian theorems
about Fréchet differentiability of norms (Beauzamy, 1982, Deville, Godefroy and
Zizler, 1993, Diestel, 1975, etc.). Asplund and Rockafellar (1969) have extended
that result to general convex functions on topological vector spaces in duality.
Following previous results of Vladimirov, Nesterov and Chekanov (1978) and Za-
linescu (1983), Azé and the author (1995) have stressed a quantitative viewpoint
in the preceding connection. Azé (1999) and Azé and Rahmouni (1994, 1995,
1996) have extended the preceding results to the case an element of the subdif-
ferential is replaced by the whole subdifferential. Such questions are considered
in the books (Azé, 1997; Zalinescu, 2002). They are linked with well-posedness
properties.

It is our purpose here to consider the preceding properties in a unified way
and to extend them to the case of general dualities. We introduce subdifferen-
tiability properties which are uniform with respect to a certain set and dually,
we use a uniform B-differentiability property (in the terminology of Pang, 1990,
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1995; Robinson, 1991). After completing a draft of our paper, papers by S.
Rolewicz came to our attention (Rolewicz, 1993, 1996). In these references,
and in the monograph (Pallaschke, Rolewicz, 1997) an extension of the corre-
spondence between rotundy and smoothness to a nonlinear framework is given,
which anticipated our work. However our approach includes the subdifferen-
tial case and the uniform properties just mentioned; moreover, being set in the
framework of conjugacies using coupling functions, it is more symmetric, so that
it allows to interchange the roles of the spaces.

Our study underlines the interest of general dualities which have been brought
to the fore in many articles (Balder, 1977; Dolecki, Kurcyusz, 1978; Fan, 1963;
Flores-Bazán, Mart́ınez-Legaz, 1998; Ioffe, 2001; Mart́ınez-Legaz, 1988, 1990,
1991, 1995; Moreau, 1970; Penot, 1982, 1997, 2000, 2001; Penot, Volle, 1987,
1988, 1990; Singer, 1986, 1987, etc.) and treated in a systematic way in several
recent monographs (Pallaschke, Rolewicz, 1997; Rubinov, 2000; Singer, 1997).
However, for the sake of simplicity, we do not tackle the case of the most gen-
eral dualities but we limit our study to the case of conjugacies, i.e. dualities of
Fenchel-Moreau type, which are obtained by means of coupling functions. In
doing so, our results remain close enough to the case of the classical Fenchel
duality and they keep their intuitive character.

Let us observe that the efforts in putting duality into a general metric frame-
work in the works quoted above are not isolated in mathematics. Parallel devel-
opments extending differential calculus and dynamical systems to metric spaces
(Aubin, 1999; Pichard, 2001, etc.), differential geometry to metric spaces (Gro-
mov, 1999; Lafontaine, Pansu, 1981), measure theory and probability theory to
general topological spaces or metric spaces (Dellacherie, Meyer, 1975; Elworthy,
1975; Schwartz, 1973, 1980, etc.), criteria for estimates to metric spaces (Azé,
Corvellec, Lucchetti, 2002; Ioffe, 2001), have reached remarkable achievements
which give some hopes for duality questions.

After recalling some basic facts about conjugacies in the next section, we
exhibit two conditions relating the coupling to the metric. They play a key role
in the sequel. We also present some examples. The main estimates are obtained
in Sections 3 (coercivity properties), 4 (passage from growth properties to upper
estimates), and 5 (reverse passage).

2. Preliminaries and metric conjugacies

It will be convenient to denote by A the set of functions α from R+ into R+ ∪
{+∞} satisfying α (0) = 0 (in Azé and Penot, 1995, such functions are called
Asplund functions). Any element α of A is identified with its even extension.
The reduced function (or slope) associated with α is the function α̂ given by
α̂(0) = 0, α̂(t) = t−1α(t) for t > 0. When α̂ is nondecreasing, α is said to
be starshaped. It is said to be firm if (tn) → 0 whenever (α(tn)) → 0. An
Asplund function γ is said to be a gage (or admissible or forcing) if it is firm
and nondecreasing; equivalently, γ ∈ A is a gage if it is nondecreasing and if
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γ (t) > 0 for all t > 0. An Asplund function µ ∈ A is said to be a modulus if µ
is nondecreasing and if limtց0 µ (t) = 0. It is said to be an hypermodulus (or a
remainder) if its reduced function µ̂ is a modulus.

The following result of Asplund (Asplund, 1968), Lemma 1, see also Azé
and Penot, 1995, Lemma 2.1) connects the preceding properties when taking
conjugates. Recall that the (Fenchel) conjugate of α is the function α∗ given by
α∗(t) := sup {st − α(s) : s ∈ R} .

Lemma 2.1 (a) For any starshaped element γ of the set G of gages, γ∗ is an
hypermodulus.

(b) For any element ω of the set Ω of hypermodulus, ω∗ is a starshaped gage.

We devote the rest of the present section to some basic facts about conju-
gacies and we present some material we will use. We refer to Balder (1977),
Dolecki, Kurcyusz (1978), Moreau (1970), Pallaschke, Rolewicz (1977), Penot
(2000), Penot, Volle (1987), Rubinov (2000), Singer (1997) and to several other
items of our bibliography for further information.

In the sequel, X and Y are metric spaces (or semi-metric spaces) whose
metrics (or semi-metrics) are denoted by d inasmuch there is no risk of confu-
sion. For a subset S of X, dS stands for the distance function to S : dS(x) :=
inf {d(x, w) : w ∈ S} ; the closed ball with center x and radius r is denoted
by B(x, r) or BX(x, r). A coupling or pairing of X with Y is a function
c : X × Y → R := R ∪ {−∞, +∞}. Given a function f : X → R, its con-
jugate is the function f c : Y → R defined by

f c(y) := − inf {f(x) − c(x, y) : x ∈ X} , (1)

where r−s mean r+(−s), the addition of R being the extension of the addition
of R given by +∞ + s = +∞ for each s ∈ R, −∞ + s = −∞ for each s ∈
R ∪ {−∞} . When f (or c) takes only finite values, one gets the more familiar
expression f c(y) = sup {c(x, y) − f(x) : x ∈ X} . We refer to Moreau (1970)
for the subtilities of the calculus rules in R. For the sake of simplicity, in the
following sections we assume that the coupling is real-valued.

The subdifferential ∂cf of f : X → R at x0 ∈ domf := f−1(R) associated
with a coupling c is defined by: y0 ∈ ∂cf(x0) iff c(x0, y0) ∈ R and

∀x ∈ X f(x) ≥ f(x0) + c(x, y0) − c(x0, y0). (2)

Thus one sees that y0 ∈ ∂cf(x0) iff c(x0, y0) ∈ R and the Young-Fenchel
equality holds:

f(x0) + f c(y0) = c(x0, y0).

The symmetry between X and Y enables us to define in a similar way the
subdifferential ∂cg of a function g on Y.

The following definitions relate the coupling with the metrics of the spaces.
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Definition 2.1 Given λ > 0, one says that the coupling c is a λ-submetric
coupling at (x0, y0) ∈ X × Y if c(x0, y0) ∈ R and for any (x, y) ∈ X × Y one
has

c(x, y) − c(x0, y) ≤ c(x, y0) − c(x0, y0) + λd(x, x0)d(y, y0). (3)

If S and T are subsets of X and Y respectively, one says that c is a λ-submetric
coupling at S × T if it is a λ-submetric coupling at (x0, y0) for any (x0, y0) ∈
S × T . When S = X, T = Y, one simply says that c is a λ-submetric coupling.

Changing the metric d in X or Y to λd would enable to take λ = 1; in such
a case we say that c is a submetric coupling (at (x0, y0) ∈ X × Y, etc...). For
a real-valued coupling, the preceding definition is symmetric in X and Y. Note
that relation (3) can also be written in the following non symmetric form which
allows for a clear comparison with the next notion: for any r ∈ R+, x ∈ X, one
has

sup
y∈B(y0,r)

(c(x, y) − c(x0, y)) ≤ c(x, y0) − c(x0, y0) + λrd(x, x0).

Definition 2.2 Given κ > 0, one says that the coupling c is a κ-super-metric
coupling at (x0, y0) ∈ X × Y if c(x0, y0) ∈ R and for any r ∈ R+, x ∈ X, one
has

sup
y∈B(y0,r)

(c(x, y) − c(x0, y)) ≥ c(x, y0) − c(x0, y0) + κrd(x, x0), (4)

where B(y0, r) denotes the closed ball with center y0 and radius r. One says
that c is a κ-super-metric coupling at (S, T ) ⊂ (X, Y ) if it is a κ-super-metric
coupling at (x0, y0) ∈ X × Y for any (x0, y0) ∈ S × T.

Observe that in this second definition the roles of X and Y are not sym-
metric. If the transposed coupling cT : Y × X → R given by cT (y, x) := c(x, y)
is also a κ-super-metric coupling with respect to (y0, x0), then we say that c is
κ-super-metric pairing with respect to (x0, y0). When κ = 1 we omit to mention
it; moreover, c is said to be a metric coupling if it is both a submetric coupling
and a super-metric coupling.

An anonymous referee raised the question of comparing the preceding notion
with the concept of monotonicity property with constant κ ∈ (0, 1) introduced
in Rolewicz (1993, 1994). In order to answer this question let us say that c has
the κ-monotonicity property at (x0, y0) if for each x ∈ X there exists a sequence
(rn) of positive real numbers with limit 0 such that for each n ∈ N one has

sup
y∈B(y0,rn)

(c(x, y) − c(x0, y)) ≥ c(x, y0) − c(x0, y0) + κrnd(x, x0). (5)

Then, following Rolewicz (1993, 1994), one says that c has the κ-monotonicity
property if it has it at any (x0, y0) ∈ X×Y. Clearly, the κ-monotonicity property
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at (x0, y0) is a consequence of the property that c is a κ-super-metric coupling at
(x0, y0), hence the κ-monotonicity property is a consequence of the property that
c is a κ-super-metric coupling at (X, Y ). It may happen that the κ-monotonicity
property at (x0, y0) holds while c is not a κ-super-metric coupling at (x0, y0).
This fact occurs when X = Y = R, x0 = y0 = 0, c(x, y) = |x| |y| for (x, y) ∈
X×[−1, 1], c(x, y) = 0 otherwise (take any κ ∈ (0, 1) and any sequence (rn) with
limit 0). On the other hand, our conditions bear on a particular pair (x0, y0)
while condition (5) has to be satisfied for any pair (x0, y0) ∈ X × Y. When Y
contains an isolated point y the κ-monotonicity property at (x0, y) cannot hold,
whatever x0 is.

Let us give some examples. As just mentioned, they show that in general
one cannot expect that the properties defined above are valid for any couple
(x0, y0).

Example 1 (classical duality)
Let X and Y be normed vector spaces in metric duality. This means that

there exists a continuous bilinear map c : X × Y → R such that the associated
mappings cX : X → Y ∗, cY : Y → X∗ given by cX(x)(y) := c(x, y), cY (y)(x) :=
c(x, y) are isometric embeddings. Then c and cT are metric couplings. Note
that the present example contains the cases Y = X∗ and X = Y ∗ and other
cases. This framework is often convenient. For instance, when X = Lp(T, E),
Y = Lq(T, E∗), where T is an interval, E is a Banach space and 1 ≤ p < ∞,
q = (1−1/p)−1 one does not need to assume that the Radon-Nikodým property
holds for E, as it would be the case if one wanted to have Y = X∗.

Example 2
Let X and Y be normed vector spaces and let c : X×Y → R be an arbitrary

continuous bilinear map. Then, for any λ ≥ ‖c‖, c is a λ-submetric coupling.
If cX open at 0 with rate κ onto its image, i.e. if for each t > 0 one has
BY ∗(0, κt) ∩ cX(X) ⊂ cX(BX(0, t)), and if cX is injective, then c is a κ-super-
metric coupling at (x0, y0) for each (x0, y0) ∈ X × Y. A similar result holds for
cT .

Example 3 (Stepanov duality)
Let X and Y be metric spaces and let cY : Y → R

X be an arbitrary map.
Then, setting c(x, y) := cY (y)(x), we get a coupling c : X × Y → R. Suppose
the image of cY is contained in the set S(X, x0) of Stepanov functions at x0 (or
stable at x0 functions) which is the set of functions f : X → R such that there
exists some k > 0 for which |f(x) − f(x0)| ≤ kd(x, x0). Endow S(X, x0) with
the semi-norm given by

‖f‖
0
S := sup

x∈X\{x0}

|f(x) − f(x0)|

d(x, x0)
, f ∈ S(X, x0)

or the norm given by ‖f‖S := ‖f‖
0
S + |f(x0)| . If cY is stable at y0 ∈ Y in

the sense that there exists some λ > 0 such that, for each y ∈ Y , one has
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‖cY (y) − cY (y0)‖
0
S ≤ λd(y, y0), then c is a λ-submetric coupling at (x0, y0). If

cY is a Lipschitz mapping with rate λ, the coupling c is a λ-submetric coupling
at (x0, Y ). If cY is such that, for each y ∈ Y , one has ‖cY (y) − cY (y0)‖

0
S ≥

κd(y, y0) then c is a κ-super-metric coupling at (x0, y0).

Example 4
In particular, if X is a metric space not reduced to x0, Y = S(X, x0) endowed

with the norm ‖·‖S and if c is the evaluation mapping, c is a metric coupling at
(x0, Y ), as follows from the fact that for any r > 0 the function y0 + rd(x0, ·)
belongs to the closed ball of center y0 and radius r in Y .

Example 5 (Lipschitz duality, Mart́ınez-Legaz, 1988; Pallasche, Rolewicz,
1997; Rolewicz, 1994)

Suppose the mapping cY of the preceding example takes its values in the
subspace L(X) of Lipschitzian functions on X. Given x0 ∈ X, endow L(X) with
the norm

‖f‖L := sup
w,x∈X, w 6=x

|f(w) − f(x)|

d(w, x)
+ |f(x0)| .

If cY is stable at y0 ∈ Y , then c is a λ-submetric coupling at (X, y0) for some
λ > 0. If cY is a Lipschitz mapping with rate λ, c is a λ-submetric coupling at
(X, Y ).

In particular, if X is a metric space not reduced to x0, Y = L(X) and if c is
the evaluation mapping, c is a metric coupling.

Example 6 (homogeneous duality, Rubinov, 2000, and its references)
Let X be a normed vector space, let Y be a metric space and let c : X×Y →

R be such that the image of cY is contained in the space H(X) of positively
homogeneous functions on X which are bounded on the unit ball B of X. Let
us endow H(X) with the norm given by ‖h‖ = sup{|h(x)| : x ∈ B}. If cY is
stable at some y0 ∈ Y with rate λ, then c is a λ-submetric coupling at (0, y0).

In particular, if Y = H(X), c is a metric coupling at (0, Y ).
A special case of interest is the choice for Y of the set of infima of finite

families of continuous linear forms on X (see Rubinov, 2000, Rubinov, Shveidel,
2000).

Example 7 (subaffine duality, Mart́ınez-Legaz, 1988; Penot, Volle, 1987, 1988,
1990)

Let X be a normed vector space with dual X∗ and let Y = X∗×R endowed
with the sup norm; let c be given by c(x, y) = x∗(x) ∧ s for y := (x∗, s), where
r ∧ s := min(r, s) = 1

2 (r + s − |r − s|). As

|r ∧ s − r′ ∧ s′| ≤
1

2
|r − r′ + s − s′| +

1

2
||r − s| − |r′ − s′||

≤
1

2
|r − r′| +

1

2
|s − s′| +

1

2
|r − s − r′ + s′|

≤ |r − r′| + |s − s′|
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and as

|x∗(x) ∧ s − x∗(x′) ∧ s| ≤ ‖x∗‖ ‖x − x′‖ ≤ ‖y‖ ‖x − x′‖ ,

we see that c induces a submetric coupling at (X, y0), where y0 = (0, 0). The
Hahn-Banach theorem ensures that it is a 1-super-metric coupling at (0, y0)
when X is endowed with the metric given by d(x, x′) := ‖x − x′‖ ∧ 1. It is not
the case for the distance associated with the norm.

Example 8 (discrete measures)
Given a set E, let X be a subfamily of the set Pf (E) of finite subsets of E

and let Y be a subspace of the space of bounded functions on E, endowed with
the sup norm. Let us set for x, x′ ∈ X, y ∈ Y,

d(x, x′) := #(x△x′), c(x, y) :=
∑

e∈x

y(e)

where #S denotes the number of elements of the finite set S and x△x′ :=
(x\x′) ∪ (x′\x). One easily checks that d defines a metric on X and that, for
x, x′ ∈ X, y, y′ ∈ Y, one has

c(x, y)− c(x′, y)− c(x, y′)+ c(x′, y′) ≤
∑

e∈x△x′

|y − y′| (e) ≤ d(x, x′) ‖y − y′‖ ,

while for x, x′ ∈ X, y ∈ Y, one has

c(x, y) − c(x′, y) − c(x, y′) + c(x′, y′) =
∑

e∈x△x′

|y − y′| (e) ≥ rd(x, x′)

for y′ given by y′(e) := y(e) for e ∈ S\x△x′, y′(e) := y(e) + r for e ∈ x′\x,
y′(e) := y(e) − r for e ∈ x\x′, so that c is a metric coupling. This example is
important for discrete optimization.

Example 9 (homotone duality)
Let (X,≤) be an ordered metric space and let Y be a subset of the set of

homotone functions on X, a function f being homotone (or isotone or nonde-
creasing) if for any x, x′ ∈ X with x ≤ x′ one has f(x) ≤ f(x′). Given x0 ∈ X
let us set for y, y′ ∈ Y d(y, y′) := sup{r−1 |y(x) − y′(x)| : x ∈ B(x0, r), r > 0}.
Then the evaluation mapping is a submetric coupling at (x0, Y ). The special
case when X = R

d, Y being the set of superadditive homotone functions null
at 0 is considered in Wolsey (1981). The special case when X is a distributive
lattice and Y is formed of modular or submodular functions is also important
(see Fujishige (1984), for instance).

Example 10 (shady conjugacy)
Let X be a n.v.s. and let Y be its dual. Let c∨ and c∇ be the couplings

given by c∨(x, y) = −ι[y≤1](x) and c∇(x, y) = −ι[y<1](x), where [y ≤ 1] := {x ∈
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X : y(x) ≤ 1}, [y < 1] := {x ∈ X : y(x) < 1} and where, for a subset S of X ,
ιS is the indicator function of S given by ιS(x) = 0 for x ∈ S, ιS(x) = +∞ for
x ∈ X\S. Then c∨ and c∇ are submetric couplings at (0, 0). See Penot (1997,
2000, 2001), Thach (1991, 1993, 1994, 1995), Volle (1985).

Example 11 (partial sublevel duality)

Let X be a n.v.s. and let Y := X∗×R−. Let cΣ be given by cΣ(x, (x∗, r)) =
−ι[x∗≥r](x). Then c∇ is a submetric coupling at (0, (0, r)) for each r ∈ R−.
Similarly, if Y := X∗ × (−P), where P is the set of positive numbers and if
cS(x, (x∗, r)) = −ι[x∗>r](x), then cS is a submetric coupling at (0, (0, r)) for
each r ∈ P (see Penot, 2000).

Example 12 (augmented duality)

Given a coupling c : X ×Y → R and a function k : X → R, let ĉ be given by
ĉ(x, y) := c(x, y) + k(x). Then one easily checks that ĉ is a metric coupling iff c

is a metric coupling. The case in which X is a Hilbert space and k(x) := r
2 ‖x‖

2

for some r > 0 is known to be of special importance (Janin, 1973; Rockafellar,
1974; Penot, Volle, 1988; Poliquin, 1992; Eberhard, Nyblom, 1998, etc.).

Other examples are given in Rubinov (2000), Rubinov, Glover (1997, 1998,
1999), Rubinov, Andramonov and Penot (1999, 2000, 2001), Rubinov, Shveidel
(2000), Rubinov, Simsek (1995), Schwartz (1973, 1980), Singer (1986, 1987,
1997), for instance.

3. Coercivity

Hereafter X and Y are metric spaces, c is a coupling between X and Y . In
order to illustrate the possible uses of nonlinear dualities, we intend to study
the interplay between boundedness, conjugacy and coercivity. This can be done
in a quantitative (and simple) way (see also Cominetti, 1994, Fougères, 1977,
Penot, 1995, for the classical case).

Let us say that a function f on a metric space X is coercive if there exists
x0 ∈ X such that f(x) → ∞ as d(x, x0) → ∞. This property is obviously
independent of the point x0: it amounts to the requirement that for each r ∈ R

the sublevel set [f ≤ r] is bounded. We say that f is super-coercive if there
exists x0 ∈ X such that c∞(f) := lim infd(x,x0)→∞ f(x)/d(x, x0) > 0. We call
c∞(f) the coercivity rate of f. It does not depend on the choice of x0. Clearly,
when c∞(f) is finite, it is the supremum of the real numbers b such that f(x) ≥
bd(x, x0) for d(x, x0) large enough. Note that, if f is bounded below on balls,
then c∞(f) is also the supremum of the real numbers b such that for some real
number a one has f(x) ≥ bd(x, x0) − a for each x ∈ X. Let us say that f is
hyper-coercive if f(x)/d(x, x0) → ∞ as d(x, x0) → ∞, or, equivalently, when
c∞(f) = +∞.

In the following two statements we suppose X and Y are provided with
base points x0 and y0 respectively and that c(·, y0) = 0. This last assumption
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is satisfied in several of the examples displayed above. It can be obtained by
replacing c by ĉ given by ĉ(x, y) := c(x, y) − c(x, y0).

Proposition 3.1 (a) Suppose the coupling c is a λ-submetric coupling at (x0, y0)
and c(·, y0) = 0. If for some a ∈ R, b > 0, a function f on X satisfies
f(x) ≥ bd(x, x0)− a for each x ∈ X, then g := f c is bounded above by a + a′ on
the ball B(y0, λ

−1b) provided c(x0, ·) is bounded above by a′ on this ball.

(b) Suppose the coupling c is a κ-super-metric coupling at (x0, y0) and c(·, y0) =
0. If g is a function on Y which is bounded above by a on a ball B(y0, b) for
some a ∈ R, b > 0, then f := gc satisfies f(x) ≥ κbd(x, x0) − a + a′′ for each
x ∈ X provided c(x0, ·) is bounded below by a′′ on this ball. In particular f is
super-coercive and its coercivity rate c∞ is such that c∞ ≥ κb.

When κ = λ = 1 as in the classical case, we get a dual interpretation of
the coercivity rate of a function bounded below on balls with center x0 as the
supremum of the radius of the balls centered at y0 on which the conjugate
function is bounded above.

Proof. (a) Let f be such that for some a ∈ R, b > 0, one has f(x) ≥ bd(x, x0)−a
for each x ∈ X. If the coupling c is a λ-submetric coupling at (x0, y0), and if
c(x0, ·) is bounded above by a′ on B(y0, λ

−1b) then for y ∈ B(y0, λ
−1b) one has

f c(y) ≤ sup
x∈X

(c(x, y) − bd(x, x0) + a)

≤ sup
x∈X

(c(x0, y) + λd(x, x0)d(y, y0) − bd(x, x0) + a) ≤ a + a′.

(b) Let g : Y → R be bounded above by a on a ball B(y0, b) for some
a ∈ R, b > 0. If the coupling c is a κ-super-metric coupling at (x0, y0) and
c(x0, ·) is bounded below by a′′ on B(y0, b), then for each x ∈ X, one has

gc(x) ≥ sup
y∈B(y0,b)

c(x, y) − a

≥ sup
y∈B(y0,b)

(c(x, y) − c(x0, y) + a′′) − a ≥ κbd(x, x0) + a′′ − a.

Remark 3.1 The preceding proof shows that f c − c(x0, ·) is bounded above by
a on the ball B(y0, λ

−1b) whenever f satisfies f ≥ bd(·, x0)−a and the coupling
c is such that c(x, y) − c(x0, y) ≤ λd(x, x0)d(y, y0) for any x ∈ X, y ∈ Y. This
condition is satisfied if c is a λ-submetric coupling at (x0, y0) such that c(·, y0) =
0. Similarly, gc ≥ κbd(·, x0)−a whenever g−c(x0, ·) is bounded above by a on the
ball B(y0, b) and the coupling c is such that supy∈B(y0,b) (c(x, y) − c(x0, y)) ≥
κbd(x, x0) for any x ∈ X. This condition is satisfied if c is a κ-super-metric
coupling at (x0, y0) such that c(·, y0) = 0.
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Corollary 3.1 (a) Suppose the coupling c is a λ-submetric coupling at (x0, y0),
c(·, y0) = 0 and c(x0, ·) is bounded above on balls. If a function f on X is hyper-
coercive and bounded below on bounded sets, then f c is bounded above on bounded
sets of Y.

(b) Suppose the coupling c is a κ-super-metric coupling at (x0, y0), c(·, y0) = 0
and c(x0, ·) is bounded below on balls. If a function g on Y is bounded above on
bounded sets of Y, then gc is hyper-coercive.

4. From rotundity properties to smoothness properties

In this section we suppose a function f on X satisfies a lower estimate and we
get an upper estimate on its conjugate. Several of the estimates we deal with
involve functions of the form

σT,x0
(x) := sup

v∈T

(c(x, v) − c(x0, v))

for some x0 ∈ X and some T ⊂ Y. When X has a group structure and c(·, y0) is
additive for each y0 ∈ T, this term is just the support function of T evaluated
at x − x0 : σT,x0

(x) = σT (x − x0) with

σT (u) := sup
v∈T

c(u, v).

Furthermore, if c is the classical duality, X being a normed space, if f is convex
and continuous at x0 and if T = ∂f(x0) := {y0 ∈ X∗ : 〈y0, ·〉 ≤ f(x0+·)−f(x0)},
one has σT (x− x0) = f ′(x0, x− x0), the lower Hadamard derivative (or contin-
gent derivative) of f at x0 given by

f ′(x0, u) := lim inf
(t,v)→(0+,u)

t−1 (f(x0 + tv) − f(x0))

for u ∈ X .
We start with a variant of Theorem 3.2 of Rolewicz (1994), an extension of

the famous Asplund (1968) and Brønsted (1964) theorem; see also Azé, Penot
(1995), Proposition 3.5.

Proposition 4.1 Given x0 ∈ domf , y0 ∈ Y such that c is a λ-submetric
coupling at (x0, y0), let γ : IR+ → IR be such that

f(x) ≥ f(x0) + c(x, y0) − c(x0, y0) + γ(d(x, x0)) ∀x ∈ X. (6)

Then one has

f c(y) ≤ f c(y0) + c(x0, y) − c(x0, y0) + γ∗(λd(y, y0)) ∀y ∈ Y. (7)

When γ is a starshaped gage, relation (6) can be interpreted as a reinforced
subdifferentiability property or a rotundity property; then, by Lemma 2.1, γ∗ is
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an hypermodulus, so that relation (7) is an approximation property. When Y is
a normed vector space, x0 ∈ ∂cf c(y0) and y 7→ c(x0, y) − c(x0, y0) is linear and
continuous, this last relation is a smoothness property which amounts to Fréchet
super-differentiability of f c at y0. Moreover, when c(·, y0) = 0, and γ(t) > 0 for
t > 0, relation (6) is a conditioning property of the minimizer x0.

The preceding statement is a consequence of the following result which is
more technical but more versatile (take S = {x0}, T = {y0}).

Lemma 4.1 Given S ⊂ domf , T ⊂ Y such that c is a λ-submetric coupling at
(S, T ) and γ : IR → IR such that

f(x) ≥ inf
x0∈S

[
f(x0) + inf

y0∈T
(c(x, y0) − c(x0, y0)) + γ(d(x, x0))

]
∀x ∈ X (8)

one has

f c(y) ≤ sup
y0∈T

[
f c(y0) + sup

x0∈S

(c(x0, y) − c(x0, y0)) + γ∗(λd(y, y0))

]
∀y ∈ Y.

(9)

Proof. Let y ∈ Y. When f c(y) = −∞ inequality (9) is obvious. Let r ∈ IR,
r < f c(y). We can find x ∈ X such that −r > f(x)− c(x, y). Then f(x) < +∞,
c(x, y) > −∞ and f(x) < c(x, y) − r. By (8) we can find (x0, y0) ∈ S × T such
that

c(x, y) − r > f(x0) − c(x0, y0) + c(x, y0) + γ(d(x, x0)).

By the relations f(x0) − c(x0, y0) ≥ −f c(y0), γ(s) − st ≥ −γ∗(t) we get

−r > −f c(y0) + c(x, y0) − c(x, y) + γ(d(x, x0))

≥ −f c(y0) + c(x0, y0) − c(x0, y) − λd(x, x0)d(y, y0) + γ(d(x, x0))

≥ −f c(y0) + c(x0, y0) − c(x0, y) − γ∗(λd(y, y0)).

Since we may assume that f c(y0) < +∞, hence that f c(y0) is finite, reversing
signs and taking the supremum over (x0, y0) ∈ S × T and over r, we obtain
inequality (9).

We have seen that when S and T are singletons, one obtains the preceding
proposition. If only one of the subsets S or T is a singleton, one also obtains
interesting consequences. When S = {x0}, relation (8) is a kind of calmness
condition. Let us give a statement when T is a singleton {y0}.

Corollary 4.1 Given S ⊂ domf , y0 ∈ Y such that c is a λ-submetric coupling
at (S, y0) and γ : IR → IR such that

f(x) ≥ inf
x0∈S

[f(x0) + c(x, y0) − c(x0, y0) + γ(d(x, x0))] ∀x ∈ X (10)
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one has

f c(y) ≤ f c(y0) + sup
x0∈S

[c(x0, y) − c(x0, y0)] +
.

γ∗(λd(y, y0)) ∀y ∈ Y. (11)

When X and Y are normed vector spaces, c is the Fenchel coupling and γ
is a starshaped gage, relation (10) is satisfied when f is rotund at some x0 ∈ S
and then relation (11) is a conical approximation property.

Taking for S a set of minimizers, and setting dS(x) := inf{d(x, w) : w ∈ S}
one gets a consequence of a conditioning property in the sense of Penot (1998).

Corollary 4.2 Suppose c(·, y0) = 0, γ is nondecreasing and let S be a non-
empty subset of the set of minimizers of f . Let m := inf f(X). Suppose that
one has

f(x) ≥ m + γ(dS(x)) ∀x ∈ X.

Then, if c is a λ-metric coupling at (S, y0), setting σS(y) := supx0∈S c(x0, y),
one has

f c(y) ≤ f c(y0) + σS(y) + γ∗ (λd(y, y0)) ∀y ∈ Y.

Now let us give a variant of Lemma 4.1 which will yield other statements
generalizing results in Azé (1999), Azé, Rahmouni (1994, 1995, 1996).

Lemma 4.2 Suppose c is a λ-submetric coupling at (S, T ) with S ⊂ domf,
T ⊂ Y . Suppose that for some nondecreasing function γ : R+ → R one has for
each x ∈ X

f(x) ≥ sup
x0∈S

[
f(x0) + sup

y0∈T

(c(x, y0) − c(x0, y0))

]
+ γ(dS(x)). (12)

Then, for each y ∈ Y, one has

f c(y) ≤ sup
x0∈S

(−f(x0) + c(x0, y)) + γ∗ (λdT (y)) . (13)

Moreover, if for some subset Z of Y one has z ∈ ∂cf(x0) for any x0 ∈ S, z ∈ Z,
then, for each y ∈ Y one has

f c(y) ≤ sup
x0∈S

(
inf
z∈Z

(f c(z) − c(x0, z)) + c(x0, y)

)
+ γ∗ (λdT (y))

≤ inf
z∈Z

(
f c(z) + sup

x0∈S

(c(x0, y) − c(x0, z))

)
+ γ∗ (λdT (y)) .

Proof. Given y ∈ Y such that f c(y) > −∞, let r ∈ R, r < f c(y). We can find
x ∈ X such that r < c(x, y) − f(x). Taking (12) into account, for any x0 ∈ S,
y0 ∈ T, the property of the coupling yields

r < −f(x0) + c(x, y) − c(x, y0) + c(x0, y0) − γ(dS(x))
r < −f(x0) + c(x0, y) + λd(x, x0)d(y, y0) − γ(dS(x)).
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Taking the infimum over y0 ∈ T , and, for a given ε > 0, picking some x0 ∈ S
such that dS(x) ≥ d(x, x0) − ε we get

r < −f(x0) + c(x0, y) + λd(x, x0)dT (y) − γ(d(x, x0) − ε).

Setting s := d(x, x0) − ε, t := λdT (y) and observing that st − γ(s) ≤ γ∗(t), we
get

r ≤ −f(x0) + c(x0, y) + γ∗ (λdT (y)) + λεdT (y).

Taking the supremum over x0 ∈ S and the infimum over ε > 0 we obtain

r ≤ sup
x0∈S

(−f(x0) + c(x0, y)) + γ∗ (λdT (y)) .

Since r is arbitrarily close to f c(y), relation (13) follows. The second assertion
is a consequence of (13) and of the Fenchel equality −f(x0) = f c(z) − c(x0, z)
for each z ∈ Z.

Simplified statements can be given when S, T or Z are singletons or when
one takes Z = T. This last choice can be justified by the fact that, whenever
γ takes nonnegative values, in particular when γ(0) = 0, relation (12) implies
that T ⊂ ∂cf(x0) for each x0 ∈ S. Let us give a statement for this special case.

Proposition 4.2 Suppose c is a λ-submetric coupling at (S, T ) with S ⊂domf,
T ⊂ Y . Suppose that for some nondecreasing function γ : R+ → R+ relation
(12) holds. Then, for each y0 ∈ T, one has for any y ∈ Y

f c(y) ≤ f c(y0) + sup
x0∈S

(c(x0, y) − c(x0, y0)) + γ∗ (λdT (y)) .

The case S is a singleton is stated in the following corollary.

Corollary 4.3 Suppose c is a λ-submetric coupling at (x0, T ) for some x0 ∈ X,
T ⊂ Y . Let f : X → R be an arbitrary function with x0 ∈ domf , T, Z ⊂
∂cf(x0). Suppose that for some nondecreasing function γ : R+ → R one has for
each x ∈ X

f(x) ≥ f(x0) + sup
y0∈T

(c(x, y0) − c(x0, y0)) + γ(d(x, x0)). (14)

Then, for each y ∈ Y one has

f c(y) ≤ inf
z∈Z

(f c(z) − c(x0, z) + c(x0, y)) + γ∗ (λdT (y)) . (15)

Relation (14) can be interpreted as a kind of firm subdifferentiability prop-
erty as it can be written

f(x) ≥ f(x0) + σT,x0
(x) + γ(d(x, x0)).
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When Y is a normed space and c(x0, ·) is additive, relation (15) yields, for each
y0 ∈ T

f c(y) ≤ f c(y0) + c(x0, y − y0) + γ∗ (λdT (y))

≤ f c(y0) + c(x0, y − y0) + γ∗ (λ ‖y − y0‖) ,

which says that f∗ := f c is Fréchet super-differentiable at y0, uniformly on T,
provided γ is a starshaped gage, as then γ∗ is an hyper-modulus by Lemma 2.1.

With the same choice for c, relation (12) can be interpreted as a form of a
firm subdifferentiability property, uniform on S; relation (15) yields a conical
upper approximation of f around z0 when z0 ∈ T . Such an approximation
property has been studied by a number of researchers starting from Mignot
(see Dontchev, Hager, 1994, Mignot, 1976, Pang, 1990 and 1995, Penot, 1982,
Robinson, 1991, at least in its two-sided version, for the one-sided version used
here see Agadi, Penot, 1996).

Now let us take for Z a singleton {z0} in Lemma 4.2.

Corollary 4.4 Suppose c, λ, f , γ, S ⊂ domf , T ⊂ Y are as in Lemma 4.2
and relation (12) holds. Suppose that z0 ∈ Y is such that z0 ∈ ∂cf(x0) for each
x0 ∈ S. Then, for each y ∈ Y, one has

f c(y) ≤ f c(z0) + sup
x0∈S

(c(x0, y) − c(x0, z0)) + γ∗ (λdT (y)) .

Taking T = {y0} = {z0} , we obtain a further simplification.

Corollary 4.5 Suppose c, λ, γ, S ⊂ domf are as above and let y0 ∈ ∂cf(x0)
for each x0 ∈ S. Suppose c is a λ-submetric coupling at (S, y0) and that for
each x ∈ X one has

f(x) ≥ sup
x0∈S

(f(x0) + c(x, y0) − c(x0, y0)) + γ(dS(x)).

Then, for each y ∈ Y, one has

f c(y) ≤ f c(y0) + sup
x0∈S

(c(x0, y) − c(x0, y0)) + γ∗ (λd(y, y0)) .

5. From upper differentiability properties to rotundity

properties

We now study the consequences of a reverse estimate: we suppose a function g
on Y satisfies an upper estimate and we get a lower estimate on its conjugate.
In view of the symmetry of our framework it would be possible to perform such
a study on a function f on X. However, our choice is dictated by the hope to
get a converse of the results of the preceding section.
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Proposition 5.1 Let g be a given function on Y and let ω : R+ → R be
nondecreasing. Suppose that for some subset T of Y and some x0 ∈

⋂
{∂cg(y0)

: y0 ∈ T } the following estimate holds for any y0 ∈ T and any y ∈ Y

g(y) ≤ g(y0) + c(x0, y) − c(x0, y0) + ω (d(y, y0)) . (16)

If for each y0 ∈ T the coupling c is a κ-super-metric coupling at (x0, y0), then
the conjugate gc of g satisfies

gc(x) ≥ gc(x0) + sup
y0∈T

(c(x, y0) − c(x0, y0)) + ω∗ (κd(x, x0)) . (17)

We observe that when ω is an hyper-modulus, relation (16) can be inter-
preted as a super-differentiability property at y0. Then, relation (17) is a rotun-
dity property. We also note that the preceding result can be obtained from the
case T = {y0}. We deduce it from the following statement by taking S := {x0}.

Proposition 5.2 Let g be a given function on Y and let ω : R+ → R be
nondecreasing. Suppose that for some subset T of Y and some S ⊂

⋂
{∂cg(y0)

: y0 ∈ T } the following estimate holds for any y0 ∈ T

g(y) ≤ g(y0) + sup
x0∈S

(c(x0, y) − c(x0, y0)) + ω (d(y, y0)) ∀y ∈ Y. (18)

If c is a κ-super-metric coupling at (S, T ), then the conjugate gc of g satisfies

gc(x) ≥ sup
x0∈S

[
gc(x0) + sup

y0∈T

(c(x, y0) − c(x0, y0))

]
+ω∗ (κdS(x)) ∀x ∈ X. (19)

Proof. Let y0 ∈ T, x ∈ X and let t > gc(x), t ∈ R. For each y ∈ Y we
can find sy < g(y) such that t > c(x, y) − sy and xy ∈ S such that sy <
g(y0) + c(xy, y) − c(xy, y0) + ω (d(y, y0)) , hence

c(x, y) − sy ≥ −g(y0) + c(x, y) − c(xy , y) + c(xy , y0) − ω (d(y, y0)) .

Since c is a κ-super-metric coupling at (xy , y0) and since ω is nondecreasing,
taking the supremum over the ball B(y0, r) for a given r ≥ 0, we get

sup
y∈B(y0,r)

(c(x, y) − sy) − c(x, y0) ≥ −g(y0) + κrd(x, xy) − ω (r) ,

t − c(x, y0) ≥ −g(y0) + κrdS(x) − ω (r) .

Given x0 ∈ S, using the relation −g(y0) = −c(x0, y0) + gc(x0), and taking the
supremum over r ∈ R+, we get

t ≥ gc(x0) − c(x0, y0) + c(x, y0) + sup
r≥0

(κrdS(x)) − ω (r)) .
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Taking the supremum over y0 ∈ T and the infimum over t > gc(x), we obtain
the result from the very definition of ω∗.

Note that assumption (16) in Proposition 5.1 corresponds to the conclusion
of Proposition 4.1 with g = f c, ω = γ∗, λ = 1 while the conclusion (17)
corresponds to assumption (6) in Proposition 4.1 when κ = 1, f = gc and
γ = ω∗. Therefore we have obtained the following characterization.

Theorem 5.1 Let f : X → R and let γ : R+ → R be nondecreasing and such
that γ∗∗ = γ. Given x0 ∈ domf , y0 ∈ ∂cf(x0) such that c is a metric coupling
at (x0, y0), the following two relations are equivalent:

f(x) ≥ f(x0) + c(x, y0) − c(x0, y0) + γ(d(x, x0)) ∀x ∈ X. (20)

f c(y) ≤ f c(y0) + c(x0, y) − c(x0, y0) +
.

γ∗(d(y, y0)) ∀y ∈ Y. (21)

Similarly, from Proposition 5.2 one can get a characterization of well-condi-
tioning. We first state a sufficient condition.

Corollary 5.1 Let f be a given function on X such that f = f cc and let
ω : R+ → R be nondecreasing. Suppose there exists some element y0 of Y such
that c(·, y0) = 0. Suppose that for some subset S of the set of minimizers of f
the following estimate holds

f c(y) ≤ f c(y0) + sup
x0∈S

c(x0, y) + ω (d(y, y0)) ∀y ∈ Y. (22)

If c is a κ-super-metric coupling at (S, y0), then

f(x) ≥ inf f(X) + ω∗ (κdS(x)) . (23)

Proof. Let us observe that, setting g := f c, we have S ⊂ ∂cg(y0) as g(y0) =
− inf f(X) because c(·, y0) = 0 and as for any x0 ∈ S, y ∈ Y we have gc(x0) =
f(x0) = inf f(X). Then the conclusion follows from Proposition 5.2 with T :=
{y0}.

Gathering this sufficient condition with the necessary condition of Corollary
4.2 we get the following characterization of well-conditioning.

Theorem 5.2 Let f be a given function on X such that f = f cc and let γ :
R+ → R be a gage such that γ∗∗ = γ. Suppose there exists some element y0 of
Y such that c(·, y0) = 0 and c is a metric coupling at (S, y0) where S is the set
of minimizers of f. Then f satisfies the estimate

f(x) ≥ inf f(X) + γ (dS(x))) ∀x ∈ X

iff

f c(y) ≤ f c(y0) + sup
x0∈S

c(x0, y) + γ∗ (d(y, y0)) ∀y ∈ Y. (24)
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Let us end our study with the following corollary generalizing part of Azé,
Rahmouni (1995), Lemma 2. It deals with the computation of the conjugate of
a function of the form g := ϕ ◦ dT , where T is some subset of Y .

Corollary 5.2 Suppose there exists a point x0 ∈ X such that c(x0, ·) = 0 and
the coupling c is a metric coupling at (x0, y0) for each y0 ∈ T, where T is some
subset of Y . Let ϕ : R+ → R be nondecreasing and such that ϕ(0) = 0. Then,
for σT and g given by σT (x) := supy0∈T c(x, y0), g(y) = ϕ(dT (y)), one has

gc(x) = σT (x) + ϕ∗(d(x, x0)).

In particular, one has (dT )c(x) = σT (x) for x ∈ B(x0, 1), else +∞.

Proof. Since c(x0, ·) = 0 and since for any y0 ∈ T, y ∈ Y, one has g(y0) = ϕ(0) =
0 ≤ ϕ(dT (y)) = g(y), so that x0 ∈ ∂cg(y0) and gc(x0) = 0. Thus, Proposition
5.1 with ω = ϕ yields

gc(x) ≥ gc(x0) + sup
y0∈T

c(x, y0) + ϕ∗ (d(x, x0)) = σT (x) + ϕ∗(d(x, x0)).

On the other hand, by substituting Y, X, T, g, ϕ, x0, to X, Y, S, f, γ, z0 in
Corollary 4.4 and observing that

g(y) ≥ sup
y0∈T

(g(y0) + c(x0, y) − c(x0, y0)) + ϕ(dT (y)),

we get

gc(x) ≤ gc(x0) + sup
y0∈T

c(x, y0) + ϕ∗ (d(x, x0)) = σT (x) + ϕ∗(d(x, x0)).

The last assertion corresponds to the case ϕ(t) = |t| for which ϕ∗ = ι[0,1], the
indicator function of [0, 1] whose value is 0 on [0, 1] and +∞ elsewhere.

It is shown in Azé, Rahmouni (1994, 1995, 1996), Penot (1995), that well-
conditioning of f is linked with a continuity property of the subdifferential of
the conjugate function of f and with a growth property of the subdifferential of
f. These questions will not be considered here.
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