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Abstract: This paper studies a general optimal control problem
for nonconvex delay-differential inclusions with endpoint constraints.
In contrast to previous publications on this topic, we incorporate
time-dependent set constraints on the initial interval, which are spe-
cific for systems with delays and provide an additional source for op-
timization. Our variational analysis is based on well-posed discrete
approximations of constrained delay-differential inclusions by a fam-
ily of time-delayed systems with discrete dynamics and perturbed
constraints. Using convergence results for discrete approximations
and advanced tools of nonsmooth variational analysis, we derive
necessary optimality conditions for constrained delay-differential in-
clusions in both Euler-Lagrange and Hamiltonian forms involving
nonconvex generalized differential constructions for nonsmooth func-
tions, sets, and set-valued mappings.
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1. Introduction

The primary object of this paper is the following generalized Bolza problem
(P ) for delay-differential inclusions with general initial conditions and endpoint
constraints:

minimize J [x] := ϕ(x(a), x(b)) +
∫ b

a

f(x(t), x(t−∆), ẋ(t), t) dt (1)

1This research was partly supported by the National Science Foundation under grants
DMS-0072179 and DMS-0304989.
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over arcs x : [a − ∆, b] → IRn with ∆ ≥ 0, that are absolutely continuous on
[a, b] and L∞ functions on [a−∆, a], subject to

ẋ(t) ∈ F (x(t), x(t−∆), t) a.e. t ∈ [a, b], (2)
x(t) ∈ C(t) a.e. t ∈ [a−∆, a), (3)

(x(a), x(b)) ∈ Ω ⊂ IR2n. (4)

For the nondelayed systems (∆ = 0) this problem was studied in a number
of publications mainly devoted to necessary optimality conditions; see Clarke
(1983), Ioffe (1997), Loewen and Rockafellar (1997), Mordukhovich (1995), Suss-
mann (2000), Vinter (2000), Zhu (1996), and the references therein. To the
best of our knowledge, there are just a few papers devoted to the study of opti-
mization problems for delay-differential inclusions (mostly with the Mayer-type
cost functional); see Clarke and Watkins (1986), Clarke and Wolenski (1996),
Minchenko (1999), and Mordukhovich and Trubnik (2001). These papers (ex-
cept Clarke and Watkins, 1986, for a free-endpoint Mayer problem) concern
delay-differential inclusions with the initial condition (3) given by a single-valued
mapping C(t) = {c(t)} that closely relates delayed systems to their nondelayed
counterparts.

The present paper deals with the generalized Bolza problem (P ) involving a
set-valued mapping C(t) in the initial condition (3), which is specific for delay-
differential systems and essentially distinguishes them from nondelayed ones. A
choice of the initial function x(t) from the set C(t) on [a − ∆, a) provides an
additional source for optimizing the cost functional (1) subject to the constraints
(2)–(4).

We employ the method of discrete approximations for the study of problem
(P ). This method is based on the finite-difference replacement of the derivative

ẋ(t) ≈
[
x(t+ h)− x(t)

]
/h, h→ 0, (5)

in (2) with appropriate approximations of the cost functional and endpoint con-
straints. The method of discrete approximations is well-developed in the case of
ordinary control systems (one of the pioneering work was done by Malanowski,
1979, see also a more recent survey by Dontchev, 1996). In contrast to the
vast majority of publications on discrete approximations, we mostly focus not
on numerical aspects of this method (particularly involving estimates of conver-
gence rates in various finite-difference schemes) but rather on qualitative aspects
allowing us to use discrete approximations as a vehicle for deriving necessary op-
timality conditions in continuous-time systems. Such an approach to optimiza-
tion of nondelayed differential inclusions was developed by Mordukhovich (1988,
1995) (see also the recent book by Smirnov, 2002, and the references therein);
related developments for delay-differential problems with single-valued initial
conditions were given in Mordukhovich and Trubnik (2001) in an essentially
different framework.
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The method of discrete approximations applied to the problem (1)–(4) under
consideration allows us to build a well-posed sequence of finite-dimensional opti-
mization problems for time-delayed discrete inclusions with a strong convergence
of optimal solutions; see below. The obtained finite-dimensional problems are in-
trinsically nonsmooth (containing in fact an increasing number of set constraints
with possibly empty interiors), but they fortunately can be handled by general-
ized differential tools of modern variational analysis involving nonconvex-valued
normal cones, subdifferentials, and coderivatives that enjoy full calculi. Using
these tools, we first derive necessary optimality conditions in delay-difference
counterparts of the original problem (P ). Then, by passing to the limit from
discrete approximations, we obtain necessary optimality conditions for problem
(P ) in the extended Euler-Lagrange form, which is equivalent to the enhanced
Hamiltonian form under additional assumptions.

In this paper we relax, in the case of nonautonomous systems, some as-
sumptions previously made in the method of discrete approximations even for
nondelayed differential inclusions. To furnish this, we employ, along with the ba-
sic/limiting normal cone, subdifferential, and coderivative as in Mordukhovich
(1995), their extended counterparts for time-dependent sets, functions, and set-
valued mappings discussed in Section 3.

The rest of the paper is organized as follows. In Section 2 we construct well-
posed discrete approximations of the original problem (1)–(4), which ensure the
required strong convergence of optimal solutions under minimal assumptions.
Section 3 presents basic constructions and necessary background of generalized
differentiation that are needed for the variational analysis of discrete-time and
continuous-time systems performed in this paper. In Section 4 we obtain nec-
essary optimality conditions for nonconvex delay-difference inclusions arising in
discrete approximations of the above problem (P ). The concluding Section 5
contains necessary optimality conditions in the Euler-Lagrange and Hamilto-
nian forms for problem (P ) derived via its discrete approximations under the
assumption on relaxation stability discussed in Section 2.

Our notation is basically standard, see Mordukhovich (1995) and Rockafellar
and Wets (1998).

2. Well-posed discrete approximations

The main goal of this section is to construct well-posed discrete approxima-
tions of the original problem (P ) that ensure the strong convergence of optimal
trajectories in the norm topologies of W 1,2[a, b] and L2[a −∆, a], respectively.
Such a strong convergence plays a crucial role in the study of delay-differential
inclusions via discrete approximations.

Let x̄(·) be a feasible trajectory for (2) with the initial condition (3). We im-
pose the following assumptions, where IB stands for the closed unit ball in IRn.

(H1) There is an open set U ⊂ IRn and two positive numbers LF , MF such
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that x̄(t) ∈ U for any t ∈ [a − ∆, b], the sets F (x, y, t) are closed for all
(x, y, t) ∈ U × U × [a, b], and one has

F (x, y, t) ⊂MF IB for all (x, y, t) ∈ U × U × [a, b], (6)
F (x1, y1, t) ⊂ F (x2, y2, t) + LF (|x1 − x2|+ |y1 − y2|)IB (7)

whenever (x1, y1), (x2, y2) ∈ U × U and t ∈ [a, b].

(H2) F (x, y, ·) is Hausdorff continuous for a.e. t ∈ [a, b] uniformly in (x, y) ∈
U × U .

(H3) The multifunction C : [a−∆, a] →→ IRn is closed-valued, uniformly bounded,
and Hausdorff continuous for a.e. t ∈ [a−∆, a].

Following Dontchev and Farkhi (1989), we consider the so-called averaged
modulus of continuity for the multifunction F (x, y, t) in t ∈ [a, b] when (x, y) ∈
U × U defined by:

τ [F ;h] :=
∫ b

a

σ(F ; t, h) dt,

where σ(F ; t, h) := sup
{
ω(F ;x, y, t, h)

∣∣ (x, y) ∈ U × U
}

with

ω(F ;x, y, t, h) := sup
{

haus
(
F (x, y, t1);F (x, y, t2)

)∣∣∣t1, t2 ∈ [t−h
2
, t+

h

2
]∩[a, b]

}
,

and where haus(·, ; ·) stands for the Hausdorff distance between two compact
sets. It is proved in the mentioned paper that if F (x, y, ·) is Hausdorff continuous
for a.e. t ∈ [a, b] uniformly in (x, y) ∈ U × U , then τ [F ;h] → 0 as h → 0. Of
course, a simplified version of the above definition applies to the average modulus
of continuity τ [C;h] of the multifunction C(·) on [a−∆, a].

Let us construct a discrete approximation of (2) based on the Euler finite-
difference replacement of the derivative (5). For any N ∈ IN := {1, 2, . . .} we
take tj := a+jhN for j = −N, . . . , 0, 1, . . . , k and tk+1 := b, where hN := ∆

N and
k ∈ IN is defined by a+khN ≤ b < a+(k+1)hN . Note that t−N = a−∆, t0 = a,
and hN → 0 as N → ∞. Then, the sequence of delay-difference inclusions
approximating (2) is constructed as follows:{

xN (tj+1) ∈ xN (tj) + hNF (xN (tj), xN (tj −∆), tj) for j = 0,. . . ,k,
xN (tj) ∈ C(tj) for j = -N, . . . ,-1.

(8)

A collection of vectors {xN (tj)| j = −N, . . . , k + 1} satisfying (8) is called a
discrete trajectory. The corresponding collection{xN (tj+1)− xN (tj)

hN

∣∣∣ j = 0, . . . , k
}
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is called a discrete velocity. We also consider the extended discrete velocities

vN (t) :=
xN (tj+1)− xN (tj)

hN
, t ∈ [tj , tj+1), j = 0, . . . , k,

and the corresponding extended discrete trajectories defined by

xN (t) := xN (a) +
∫ t

a

vN (s) ds, t ∈ [a, b],

on the main interval [a, b] and by

xN (t) := xN (tj), t ∈ [tj , tj+1), j = −N, . . . ,−1,

on the initial interval [a−∆, a). Observe that

ẋN (t) = vN (t) a.e. t ∈ [a, b].

Let W 1,2[a, b] be the space of absolutely continuous functions x : [a, b] → IRn

with the norm

‖x(·)‖W 1,2 := max
t∈[a,b]

|x(t)|+

(∫ b

a

|ẋ(t)|2 dt

)1/2

.

The next theorem ensures the strong approximation of x̄(·) by feasible trajecto-
ries of delay-difference inclusions (8).

Theorem 2.1 Let x̄(·) be a feasible trajectory to (2) and (3) under assump-
tions (H1)–(H3). Then there exists a sequence {zN (tj)| j = −N, . . . , k + 1} of
solutions to the delay-difference inclusions (8) with

zN (t0) := zN (a) = x̄(a)

such that the extended discrete trajectories zN (t), a − ∆ ≤ t ≤ b, converge to
x̄(·) in the L2-norm on [a−∆, a] and in the W 1,2-norm on [a, b] as N →∞.

Proof. Due to (6) and the uniform boundedness of C(·) in (H3), it is sufficient
to establish the required convergence in the norm topologies of L1[a − ∆, a]
and W 1,1[a, b]. Let {wN (·)}, N ∈ IN , be a sequence of functions on [a −∆, b],
with wN (a) := x̄(a), that are constant on the interval [tj , tj+1), j = −N, . . . , k,
and converge to x̄(·) on [a − ∆, a] and to ˙̄x(·) on [a, b], respectively, in the
norm topology of L1. Such a sequence always exists because of the density of
step-functions in L1[a−∆, b]. In the estimates below we use the sequence

ξN :=
∫ a

a−∆

|x̄(t)− wN (t)|dt+
∫ b

a

| ˙̄x(t)− wN (t)|dt→ 0 as N →∞. (9)
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Observe that due to the uniform boundedness assumptions in (H1) and (H3),
there is M > 0 with

|wN (t)| ≤M for all t ∈ [a−∆, b] and N ∈ IN.

Denote wNj
:= wN (tj) for j = −N, . . . , k+1 and define the discrete functions

{uN (tj)| j = −N, . . . , k + 1} by{
uN (tj) := wNj

for j = −N, . . . , 0,
uN (tj+1) := uN (tj) + hNwNj

for j = 0,. . . , k.
(10)

The extensions of these functions on the continuous intervals [a − ∆, a) and
[a, b], respectively, are given by{

uN (t) := wN (t) for t ∈ [tj , tj+1), j = N, . . . ,−1,
uN (t) := x̄(a) +

∫ t

a
wN (s) ds, t ∈ [a, b].

Let dist(w; Ω) be the Euclidean distance between the point w and the closed
set Ω. Then the Lipschitz condition (7) can be written as

dist(w;F (x1, t)) ≤ dist(w;F (x2))+LF |x1−x2|, w ∈ IRn, x1, x2 ∈ U, t ∈ [a, b],

and one obviously has

dist(w;F (x, t1)) ≤ dist(w;F (x, t2)) + haus(F (x, t1);F (x, t2)), w, x ∈ IRn.

Using this and the average modulus of continuity, we get

αN : = hN

−1∑
j=−N

dist(wNj
;C(tj)) + hN

k∑
j=0

dist(wNj
;F (uN (tj), tj)

=
−1∑

j=−N

∫ tj+1

tj

dist(wNj
;C(tj))dt+

k∑
j=0

∫ tj+1

tj

dist(wNj
;F (uN (tj), tj))dt

≤
−1∑

j=−N

∫ tj+1

tj

dist(wNj ;C(t))dt+
k∑

j=0

∫ tj+1

tj

dist(wNj ;F (uN (tj), t))dt

+ τ [C;hN ] + τ [F ;hN ].

Taking into account the facts that
(
ξN ,τ [C;hN ], τ [F ;hN ]

)
→ 0 as N →∞ due

to (9) and assumptions (H2) and (H3), that x̄(t) ∈ C(t) for a.e. t ∈ [a−∆, a),
and that

dist(wN (t);F (uN (t), t)) ≤ dist(wN (t);F (x̄(t), t)) + LF |uN (t)− x̄(t)|
≤ |wN (t)− ˙̄x(t)|+ LF ξN ,
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one has the estimate

αN ≤ (2+LF )ξN +lF (b−a)(MF +1)hN/2+τ [C;4N ]+τ [F ;hN ] → 0 as N →∞.

Note that the discrete functions defined in (10) may not satisfy (8), since
one does not generally have wNj

∈ C(tj) for j = −N, . . . ,−1 and wNj
∈

F (uN (tj), uN (tj − ∆), tj) for j = 1, . . . , k. Let us construct the desired tra-
jectories {zN (tj)| j = −N, . . . , k + 1} by the following proximal algorithm:
zN (tj) = vNj with |vNj − wNj | = dist(wNj ;C(tj)) for j = −N, . . . ,−1,
zN (t0) = x̄(a), zN (tj+1) = zN (tj) + hNvNj for j = 0, . . . , k,
with vNj

∈ F (zN (tj), zN (tj −∆), tj), |vNj
− wNj

| =
dist(wNj

;F (zN (tj), zN (tj∆), tj)).

(11)

One can see that all zN (·) in (11) are feasible trajectories for (8). Now, following
the scheme in the proof of Theorem 2.1 in Mordukhovich (1995) and adapting
it to the case of delayed systems with set-valued initial conditions under consid-
eration, we show that the extensions zN (t), t ∈ [a−∆, b], of the above discrete
trajectories converge to x̄(t) in the L2-norm on [a−∆, a] and in the W 1,2-norm
on [a, b]. Moreover, we can get efficient estimates of the convergence rate that
involve ξN in (9), the modulus τ [C;hN ] and τ [F ;hN ], and the constants defined
in (H1).

Our next goal is to construct a well-posed discrete approximation of the
whole dynamic optimization problem (1)–(4) (not only of the
delay-differentialinclusion) such that optimal solutions to discrete approxima-
tion problems strongly converge to a given optimal solution x̄(·) to the original
problem (P ). The following construction explicitly involves the optimal solution
x̄(·) to problem (P ) under consideration.

Given x̄(t), a −∆ ≤ t ≤ b, take its approximation zN (t) from Theorem 2.1
and denote ηN := |zN (b) − x̄(b)|. For any N ∈ IN we consider the dynamic
optimization problem (PN ) for constrained delay-difference inclusions:

minimize JN [xN ] := ϕ(xN (a), xN (b)) + |xN (a)− x̄(a)|2

+
−1∑

j=−N

∫ tj+1

tj

|xN (tj)− x̄(t)|2dt

+ hN

k∑
j=0

f
(
xN (tj), xN (tj −∆),

xN (tj+1)− xN (tj)
hN

, tj
)

+
k∑

j=0

∫ tj+1

tj

∣∣∣xN (tj+1)− xN (tj)
hN

− ˙̄x(t)
∣∣∣2dt

(12)
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subject to the constraints

xN (tj+1) ∈ xN (tj) + hNF (xN (tj), xN (tj −∆), tj), j = 0, . . . , k, (13)
xN (tj) ∈ C(tj), j = −N, . . . ,−1, (14)
(xN (a), xN (b)) ∈ ΩN := Ω + ηNIB, (15)
|xN (tj)− x̄(tj)| ≤ ε, j = 1, . . . , k + 1, (16)

where ε is a given positive number. In addition to (H1)–(H3) with some neigh-
borhood U of x̄(t), we impose the following hypotheses on the behavior of ϕ, f ,
and Ω around the optimal trajectory:

(H4) ϕ is continuous on U × U , f(x, y, v, ·) is continuous for a.e. t ∈ [a, b] and
bounded uniformly in (x, y, v) ∈ U × U ×MF IB, and Ω is locally closed
around (x̄(a), x̄(b)).

(H5) There exists µ > 0 such that f(·, ·, ·, t) is continuous on the set

Aµ(t) :=
{
(x, y, v) ∈ U×U×(MF +µ)IB

∣∣ v ∈ F (x, y, s)for some s ∈ (t−µ, t]
}

uniformly in t ∈ [a, b].

In what follows we select ε > 0 in (16) such that x̄(t) + εIB ⊂ U for all
t ∈ [a−∆, b] and take sufficiently large N satisfying ηN < ε. Note that problems
(PN ) have feasible solutions, since the trajectories zN from Theorem 2.1 satisfy
all the constraints (13)–(16) for large N . Moreover, the sets of feasible solutions
to (PN ) are bounded for all N due to (14) and (16). Hence, each (PN ) admits an
optimal solution x̄N (·) by the classical Weierstrass theorem in finite dimensions.

We are going to justify the strong convergence of x̄N (·) → x̄(·) in the sense
of Theorem 2.1. To proceed, we need to involve an important intrinsic property
of the original problem (P ) called relaxation stability. Let us consider, along
with (2), the convexified delay-differential inclusion

ẋ(t) ∈ coF (x(t), x(t−∆), t) a.e. t ∈ [a, b], (17)

where “co ” stands for the convex hull of a set. Further, given the integrand f
in (1), we consider its extension

fF (x, y, v, t) := f(x, y, v, t) + δ(v;F (x, y, t))

with respect to the set-valued mapping F of (2), where δ(·;F ) stands for the
indicator function of a set. Denote by f̂F (x, y, v, t) the convexification of fF in
the v variable and define the relaxed generalized Bolza problem (R) as follows:

minimize Ĵ [x] := ϕ(x(a), x(b)) +
∫ b

a

f̂F (x(t), x(t−∆), ẋ(t), t) dt (18)
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over functions x : [a−∆, b] → IRn, which are absolutely continuous on [a, b] and
continuous on [a − ∆, a), subject to (3) and the endpoint constraints (4). It
follows from the structure of (18) that the condition Ĵ [x(·)] < ∞ implies that
x(·) is a trajectory for the convexified delay-differential inclusion (17) called a
relaxed trajectory for (2).

One clearly has inf(R) ≤ inf(P ) for the optimal values of the cost functionals
in the relaxed and original problems. We say that the original problem (P ) is
stable with respect to relaxation if

inf(P ) = inf(R).

This property, which obviously holds under the convexity assumptions, turns
out also to be natural for nonconvex continuous-time problems governed by dif-
ferential and delay-differential inclusions due to the inherent “hidden convexity”
of such systems (related to the convexity of integrals for set-valued mappings
over nonatomic measures). In particular, the following fundamental approxi-
mation property holds under the assumed Lipschitz continuity of F in (x, y):
Every relaxed trajectory x(·) can be uniformly on [a, b] approximated by orig-
inal trajectories xm(·) with the same initial history xm(t) = x(t) on [a −∆, a]
and

lim inf
m→∞

∫ b

a

f(xm(t), xm(t−∆), ẋm(t), t) dt ≤
∫ b

a

f̂F (x(t), x(t−∆), ẋ(t), t) dt.

This result, which ensures the relaxation stability of problems (P ) for delay-
differential inclusions with no endpoint constraints at t = b, can be proved
similarly to the one for nondelayed differential inclusions; see Aubin and Cellina
(1984). The reader can find in Mordukhovich (1995), more discussions and
references on the validity of this property for nonconvex constrained systems
governed by differential inclusions. Similar results and discussions also hold for
the delay-differential inclusions under consideration, see also the book of Warga
(1972) for various classes of functional differential control systems.

To be able to establish the desired strong convergence of discrete approxima-
tions, we have to impose the following additional assumptions that are specific
for delay-differential inclusions with set-valued initial conditions as in (3).

(H6) C(t) is convex for a.e. t ∈ [a − ∆, a]; F (x, y, t) is linear in y for a.e.
t ∈ [a, a+ ∆]; f(x, y, v, t) is convex in (y, v) for a.e. t ∈ [a, a+ ∆].

Now we are ready to establish the strong convergence theorem that makes a
bridge between optimization problems for delay-differential and delay-difference
inclusions.

Theorem 2.2 Let x̄(·) be an optimal solution to problem (P ), which is assumed
to be stable with respect to relaxation. Assume also that hypotheses (H1)–(H6)
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hold. Then, any sequence {x̄N (·)}, N ∈ IN, of optimal solutions to (PN ),
extended to the continuous interval [a−∆, b], converges to x̄(·) in the L2-norm
on [a−∆, a] and in the W 1,2-norm on [a, b] as N →∞.

Proof. We know from the above discussion that (PN ) has an optimal solution
x̄N (·) for all N sufficiently large; suppose that it happens for all N ∈ IN with-
out loss of generality. Given x̄(·), we consider the sequence {zN (·)} strongly
approximating x̄(·) by Theorem 2.1. Since each zN is feasible to (PN ), one has

JN [x̄N ] ≤ JN [zN ] for all N ∈ IN.

Similarly to the proof of Theorem 3.3 in Mordukhovich (1995) for the case of
nondelayed differential inclusions, we can show that

JN [zN ] → J [x̄] as N →∞.

The above two relationships yield

lim sup
N→∞

JN [x̄N ] ≤ J [x̄]. (19)

To justify the required convergence x̄N (·) → x̄(·), we need to prove that

ρN :=
∫ a

a−∆

|x̄N (t)− x̄(t)|2dt

+ |x̄N (a)− x̄(a)|2 +
∫ b

a

| ˙̄xN (t)− ˙̄x(t)|2dt→ 0 as N →∞.

Suppose it is not true. Then, we can find a constant c > 0 and a subsequence
{Nm} ⊂ IN such that ρNm

→ c. Without loss of generality assume that ρN → c
as N →∞. Since the sequences {x̄N (·)} and { ˙̄xN (·)} are uniformly bounded on
[a−∆, a] and [a, b], respectively, under the assumptions made there is a function
x̃ : [a−∆, b] → IRn belonging to L2 on [a−∆, a] and to W 1,2 on [a, b] such that

x̄N (·) → x̃(·) weakly in L2[a−∆, a] (20)

and ˙̄xN (·) → ˙̃x weakly in L2[a, b]

along a subsequence of N ∈ IN , which is supposed to be equal to the whole IN .
Invoking now the classical Mazur theorem, we conclude that there are convex
combinations of the sequences in (20) converging pointwisely to x̃(t) and to ˙̃x(t)
for a.e. t ∈ [a−∆, a] and [a, b], respectively.

It follows from (H3) and the convexity of C(t) that x̃(t) ∈ C(t) for a.e.
t ∈ [a−∆, a]. Taking into account the assumptions on F in (H2) and (H6) and
that x̄N (t) → x̃(t) uniformly on [a, b], we arrive at the convexified inclusion

˙̃x(t) ∈ coF (x̃(t), x̃(t−∆), t) a.e. t ∈ [a, b].
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Due to the corresponding assumptions on f and by

hN

k∑
j=0

f(x̄N (tj), x̄N (tj −∆),
x̄N (tj+1)− x̄N (tj)

hN
, tj)

=
k∑

j=0

∫ tj+1

tj

f(x̄N (tj), x̄N (tj −∆), ˙̄xN (t), tj)dt

one has the inequality∫ b

a

f̂F (x̃(t), x̃(t−∆), ˙̃x(t), t)dt

≤ lim inf
N→∞

hN

k∑
j=0

f(x̄N (tj), x̄N (tj −∆),
x̄N (tj+1)− x̄N (tj)

hN
, tj),

since f̂F ≤ fF . Observe further that the integral functionals

I1[v] :=
∫ a

a−∆

|v(t)− x̄(t)|2dt and I2[v] :=
∫ b

a

|v(t)− ˙̄x(t)|2dt

are lower semicontinuous in the weak topology of L2[a − ∆, a] and L2[a, b],
respectively, due to the convexity of the integrands in v. Since

−1∑
j=−N

∫ tj+1

tj

|x̄N (tj)− x̄(t)|2dt =
∫ a

a−∆

|x̄N (t)− x̄(t)|2dt and

k∑
j=0

∫ tj+1

tj

∣∣∣ x̄N (tj+1)− x̄N (tj)
hN

− ˙̄x(t)
∣∣∣2dt =

∫ b

a

| ˙̄xN (t)− ˙̄x(t)|2dt,

the latter implies that∫ a

a−∆

|x̃(t)− x̄(t)|2dt ≤ lim inf
N→∞

−1∑
j=−N

∫ tj+1

tj

|x̄N (tj)− x̄(t)|2dt and

∫ b

a

| ˙̃x(t)− ˙̄x(t)|2dt ≤ lim inf
N→∞

k∑
j=0

∫ tj+1

tj

∣∣∣ x̄N (tj+1)− x̄N (tj)
hN

− ˙̄x(t)
∣∣∣2dt.

Now passing to the limit in (12), we arrive at

Ĵ [x̃] + c ≤ lim inf
N→∞

JN [x̄N ],

where x̃ is a feasible trajectory to the relaxed problem (R) due to the above
discussion. So if

c = lim
N→∞

[ ∫ a

a−∆

|x̄N (t)− x̄(t)|2dt

+ |x̄N (a)− x̄(a)|2 +
∫ b

a

| ˙̄xN (t)− ˙̄x(t)|2dt
]
> 0,
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we get Ĵ [x̃] < J [x̄] = Ĵ [x̄] due to (19), which contradicts the optimality of x̄(·)
in the relaxed problem and completes the proof of theorem.

3. Tools of generalized differentiation

The results of the previous section allow us to make a bridge between the original
infinite-dimensional optimization problem (P ) for delay-differential inclusions
and the sequence of finite-dimensional dynamic optimization problems (PN )
for delay-difference inclusions. Our strategy is to obtain first the necessary
optimality conditions for each of the latter finite-dimensional problems and then
derive necessary optimality conditions for the original problem (P ) by passing
to the limit from the ones for (PN ) as N →∞.

Observe that problems (PN ) are essentially nonsmooth, even in the case
of smooth functions ϕ and f in the cost functional and unconstrained delay-
difference inclusions. The main source of nonsmoothness comes from the (in-
creasing number of) geometric constraints (13) and (14) as N → ∞, which
may have empty interiors. To deal with such problems, we use appropriate
tools of generalized differentiation introduced by Mordukhovich (1976, 1988)
and then developed and applied in many publications; see, in particular, the
book of Rockafellar and Wets (1998) for detailed treatments and the extensive
bibliography.

Recall the the basic/limiting normal cone to the set Ω ⊂ IRn at the point
x̄ ∈ Ω is

N(x̄; Ω) := Lim sup
x

Ω→x̄

N̂(x; Ω), (21)

where x Ω→ x̄ means that x → x̄ with x ∈ Ω, where “Lim sup” stands for the
the Painlevé-Kuratowski upper (outer) limit

Lim sup
x→x̄

F (x) :=
{
y ∈ Y

∣∣ ∃xk → x̄, ∃yk → y with yk ∈ F (xk), k ∈ IN
}

for a multifunction F : X →→ Y , and where

N̂(x̄; Ω) :=
{
x∗ ∈ IRn

∣∣∣ lim sup
x

Ω→x̄

〈x∗, x− x̄〉
|x− x̄|

≤ 0
}

is the cone of Fréchet (or regular) normals to Ω at x̄. Note that for convex sets
Ω one has

N(x̄; Ω) = N̂(x̄; Ω) =
{
x∗ ∈ IRn

∣∣ 〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω
}
. (22)

Given an extended-real-valued function ϕ : IRn → IR := [−∞,∞] finite at x̄,
the subdifferential of ϕ at x̄ is

∂ϕ(x̄) :=
{
x∗ ∈ IRn

∣∣ (x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)
}
, (23)
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where epiϕ := {(x, µ) ∈ IRn+1| µ ≥ ϕ(x)}. Then, the coderivative D∗F (x̄, ȳ) :
IRm →→ IRn of a set-valued mapping F : IRn →→ IRm at a point (x̄, ȳ) ∈ gphF is
defined by

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ IRn

∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )
}
. (24)

Note the useful relationships

∂ϕ(x̄) = D∗Eϕ(x̄, ϕ(x̄))(1) and D∗f(x̄)(y∗) = ∂〈y∗, f〉(x̄), y∗ ∈ IRm,

between the subdifferential and coderivative, where Eϕ(x) := {µ ∈ IR| µ ≥
ϕ(x)} is the epigraphical multifunction associated with ϕ : IRn → IR and where
〈y∗, f〉(x) := 〈y∗, f(x)〉 is the scalarized function associated with a locally Lip-
schitz mapping f : IRn → IRm.

For applications in this paper we need to consider proper extensions of the
basic constructions (21), (23), and (24) to the case of sets, functions, and set-
valued mappings depending on parameters. The following extended construc-
tions fit our requirements.

Definition 3.1 Let T be a topological space.
(i) Given a moving set Ω: T →→ IRn and x̄ ∈ Ω(t̄), we define the extended

normal cone to Ω(t̄) at x̄ by

Ñ(x̄; Ω(t̄)) := Lim sup
(t,x)

gphΩ→ (t̄,x̄)

N̂(x; Ω(t)). (25)

Ω(·) is said to be normally semicontinuous at (x̄, t̄) if Ñ(x̄; Ω(t̄)) = N(x̄; Ω(t̄)).

(ii) Given ϕ : IRn × T → IR finite at (x̄, t̄), the extended subdifferential
of ϕ at (x̄, t̄) with respect to x is

∂̃xϕ(x̄, t̄) :=
{
x∗ ∈ IRn

∣∣ (x∗,−1) ∈ Ñ((x̄, ϕ(x̄, t̄)); epiϕ(·, t̄))
}
. (26)

The function ϕ is subdifferentially semicontinuous at (x̄, t̄) with respect to
t if

∂̃xϕ(x̄, t̄) = ∂xϕ(x̄, t̄),

where ∂xϕ(x̄, t̄) stands for the subdifferential (23) of ϕ(·, t̄) at x̄, i.e., for the
partial subdifferential of ϕ with respect to x. (iii) Given F : IRn×T →→ IRm and

ȳ ∈ F (x̄, t̄), we define the extended coderivative of F at (x̄, ȳ, t̄) ∈ gphF
with respect to x by

D̃∗xF (x̄, ȳ, t̄)(y∗) :=
{
x∗ ∈ IRn

∣∣ (x∗,−y∗) ∈ Ñ((x̄, ȳ); gphF (·, t̄))
}
, (27)

y∗ ∈ IRm.

The mapping F is coderivatively semicontinuous at (x̄, ȳ, t̄) with respect to t
if

D̃∗xF (x̄, ȳ, t̄)(y∗) = D∗xF (x̄, ȳ, t̄)(y∗) for all y∗ ∈ Rm,

where D∗xF (x̄, ȳ, t̄) stands for the coderivative (24) of F (·, t̄) at (x̄, ȳ).
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It follows from (21) that the extended normal cone does not change if
N̂(x; Ω(t)) is replaced by N(x; Ω(t) in the limiting procedure (25). Thus the
normal semicontinuity of Ω(·) from Definition 3.1 agrees with the N -(normal)
semicontinuity introduced by Mordukhovich (1984, 1988) in connection with
covering/metric regularity results, see also Zhu (2000), where this property was
used under the name of “regularity.” The subdifferential and coderivative semi-
continuity assumptions were directly imposed on functions and mappings in
Mordukhovich (1995) and Mordukhovich and Trubnik (2001) for deriving nec-
essary optimality conditions in optimal control problems governed by differential
and delay-differential inclusions. The extended normal cone (25) was recently
used by Bellaassali and Jourani (2002) and by Mordukhovich, Treiman and Zhu
(2002) in applications to multiobjective optimization problems without any nor-
mal semicontinuity assumptions.

Let us discuss some conditions ensuring the fulfilment of the normal semi-
continuity for moving sets; they automatically generate the corresponding con-
ditions for the subdifferential semicontinuity of extended-real-valued functions
and for the coderivative semicontinuity of set-valued mappings due to the above
definitions.

First, observe that these properties always hold for sets, functions, and set-
valued mappings not depending on the parameter t, which corresponds to op-
timal control problems for autonomous systems. Also, it is easily implied by
the definitions that Ω(·) is normally semicontinuous at (x̄, t̄) if Ω(t) − f(t) is
a constant set near t̄ for some single-valued continuous mapping f . The next
useful sufficient conditions for the normal semicontinuity of moving sets were
given in Mordukhovich (1984, 1988); see also Proposition 4.4 in Mordukhovich,
Treiman and Zhu (2002).

Proposition 3.1 Ω(·) is normally semicontinuous at (x̄, t̄) if it is convex-
valued near t̄ and inner/lower semicontinuous at this point, i.e.,

Ω(t̄) ⊂
{
x ∈ IRn

∣∣ ∀tk → t̄ ∃xk → x̄ with xk ∈ Ω(tk), k ∈ IN
}
.

Recently Lionel Thibault (personal communication) obtained more general
sufficient conditions for the normal semicontinuity of moving sets. In partic-
ular, he proved this property for inner semicontinuous Ω(·) whose images are
uniformly prox-regular near reference points in the sense of Poliquin, Rockafellar
and Thibault (2000).

Observe that the extended normal subdifferential, and coderivative construc-
tions from Definition 3.1 satisfy the the following robustness property important
for performing limiting procedures. For brevity, we present this property only
in the case of moving sets.

Proposition 3.2 Let Ω: T →→ IRn with x̄ ∈ Ω(t̄). Then one has

Ñ(x̄; Ω(t̄)) = Lim sup
(t,x)

gphΩ→ (t̄,x̄)

Ñ(x; Ω(t)). (28)
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Proof. It is sufficient to prove the inclusion “⊃” in (28), since the opposite
one is obvious. Taking x∗ from the right-hand side of (28), we find sequences
(tk, xk, x

∗
k) satisfying

tk → t̄, xk → x̄, x∗k → x∗

as k →∞ with xk ∈ Ω(tk) and x∗k ∈ Ñ(xk; Ω(tk)), k ∈ IN.

By the construction of Ñ in (25), for each k ∈ IN there are sequences
(tkm, xkm, x

∗
km) such that

tkm → tk, xkm → xk, x
∗
km → x∗k

as m→∞ with xkm ∈ Ω(tkm) and x∗km ∈ N̂(xkm; Ω(tkm))

for all m ∈ IN . Employing the diagonal process, we construct sequences
(tm, xm, x

∗
m) satisfying

tm → t̄, xm → x̄, x∗m → x∗

as m→∞ with xm ∈ Ω(tm) and x∗m ∈ N̂(xm; Ω(tm)), m ∈ IN.

The latter yields x∗ ∈ Ñ(x̄; Ω(t̄)) and completes the proof of the proposition.

Note that the extended constructions from Definition 3.1 enjoy a full gener-
alized differential calculus similar to the basic constructions (21), (23), and (24).
This can be derived similarly to the latter ones, e.g., by using a fuzzy calculus
for Fréchet-like preliminary objects. We are not going to use such a calculus in
the present paper.

4. Necessary optimality conditions for delay-difference in-
clusions

The objective of this section is to obtain necessary conditions for optimal solu-
tions to discrete approximations problems (PN ) governed by delay-difference in-
clusions. We derive new necessary optimality conditions in the extended Euler-
Lagrange form employing the basic generalized differential constructions (21),
(23), and (24). The results obtained do not require any restrictive assumptions
on the initial data. In particular, we do not impose either convexity assumptions
like in (H6) or the Lipschitz continuity of F like in (H1).

Our approach is based on reducing the dynamic optimization problems (PN )
for each N ∈ IN to a static mathematical programming problem (MP ) with
many geometric constraints given by sets with possibly empty interiors, the
number of which tends to infinity together with the approximating parameter
N →∞. This makes problems (MP ) to be intrinsically nonsmooth, even in the
case of smooth cost functions and endpoint constraints.
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The general structure of problems (MP ) is as follows:
minimize φ0(z) subject to
φj(z) ≤ 0, j = 1, . . . , r,
gj(z) = 0, j = 0, . . . ,m,
z ∈ Λj , j = 0, . . . , l,

where φj : IRd → IR, gj : IRd → IRn, and Λj ⊂ IRd. For our applications in this
paper we need the following version of the generalized Lagrange multiplier rule
taken from Corollary 7.5.1 in Mordukhovich (1988):

Proposition 4.1 Let z̄ be an optimal solution to (MP ). Assume that all φi

are Lipschitz continuous, that gj are continuously differentiable, and that Λj are
locally closed near z̄. Then there exist real numbers {µj | j = 0, . . . , r} as well
as vectors {ψj ∈ IRn| j = 0, . . . ,m} and {z∗j ∈ IRd| j = 0, . . . , l}, not all zero,
such that

µj ≥ 0 for j = 0, . . . , r, (29)
µjφj(z̄) = 0 for j = 1, . . . , r, (30)
z∗j ∈ N(z̄; Λj) for j = 0, . . . , l, (31)

−
l∑

j=0

z∗j ∈ ∂
( r∑

j=0

µjφj

)
(z̄) +

m∑
j=0

∇gj(z̄)∗ψj . (32)

Now we employ Proposition 4.1 and calculus rules for the generalized differ-
ential constructions used therein to derive the necessary optimality conditions
for discrete approximation problems (PN ). Fix N ∈ IN and consider the “long”
vector z defined by

z = (xN
−N , . . . , x

N
k+1, y

N
0 , . . . , y

N
k )

:= (xN (t−N ), . . . , xN (tk+1), yN (t0), . . . , yN (tk)).

Then the discrete approximation problem (PN ) can be reduced to the above
problem (MP ) with

φ0(z) := ϕ(xN
0 , x

N
k+1) + |xN

0 − x̄(a)|2 +
−1∑

j=−N

∫ tj+1

tj

∣∣xN
j − x̄(t)

∣∣2dt
+hN

k∑
j=0

f(xN
j , x

N
j−N , y

N
j , tj) +

k∑
j=0

∫ tj+1

tj

∣∣yN
j − ˙̄x(t)

∣∣2dt, (33)

φj(z) := |xN
j − x̄(tj)| − ε, j = 1, . . . , k + 1, (34)

gj(z) := xN
j+1 − xN

j − hNy
N
j , j = 0, . . . , k, (35)
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Λj :=
{
(xN
−N , . . . , y

N
k )
∣∣ xN

j ∈ C(tj)
}
, j = −N, . . . ,−1, (36)

Λj :=
{
(xN
−N , . . . , y

N
k )
∣∣ yN

j ∈ F (xN
j , x

N
j−N , tj)

}
, j = 0, . . . , k, (37)

Λk+1 :=
{
(xN
−N , . . . , y

N
k )
∣∣ (xN

0 , x
N
k+1) ∈ ΩN

}
. (38)

Let z̄N = (x̄N
−N , . . . , x̄

N
k+1, ȳ

N
0 , . . . , ȳ

N
k ) be an optimal solution to problem

(MP ) with the data (33)–(38), for each fixed N ∈ IN . Employing Propo-
sition 4.1, we find real numbers {µN

j | j = 0, . . . , k + 1} as well as vectors
{ψN

j ∈ IRn| j = 0, . . . , k} and {z∗j ∈ IRn(2k+N+3)| j = −N, . . . , k + 1}, not
all zero, such that conditions (29)–(32) are satisfied.
Taking z∗j = (x∗−N,j , . . . , x

∗
k+1,j , y

∗
0,j , . . . , y

∗
k,j) ∈ N(z̄N ; Λj) for j = −N, . . . ,−1,

we observe from the structure of Λj that all but one components of z∗j are zero
with the remaining one satisfying

x∗j,j ∈ N(x̄N
j ;C(tj)), j = −N, . . . ,−1. (39)

Similarly, the conditions z∗j ∈ N(z̄N ; Λj) for j = 0, . . . , k and z∗k+1 ∈ N(z̄N ; Λk+1)
are equivalent, respectively, to

(x∗j,j , x
∗
j−N,j , y

∗
j,j) ∈ N((x̄N

j , x̄
N
j−N , ȳ

N
j ); gphFj), j = 0, . . . , k, and (40)

(x∗0,k+1, x
∗
k+1,k+1) ∈ N((x̄N

0 , x̄
N
k+1); ΩN ) (41)

with all the other components of z∗j , j = 0, . . . , k + 1, equal to zero.
By Theorem 2.2 on the convergence of discrete approximations, we conclude

that φj(z̄N ) < 0 for j = 1, . . . , k+ 1 when N is sufficiently large. Thus, µN
j = 0

for these indexes j due to the complementary slackness conditions (30). De-
note by λN ≥ 0 the remaining multiplier µN

0 from Proposition 4.1. Further,
employing the subdifferential sum rule for φ0 in (33), one obtains

∂φ0(z̄N ) ⊂ ∂ϕ(x̄N
0 , x̄

N
k+1) + 2(x̄N

0 − x̄(a)) +
−1∑

j=−N

∫ tj+1

tj

2
(
x̄N

j − x̄(t)
)
dt

+hN

k∑
j=0

∂f(x̄N
j , x̄

N
j−N , ȳ

N
j , tj) +

k∑
j=0

∫ tj+1

tj

2
(
ȳN

j − ˙̄x(t)
)
dt,

(42)

where ∂f stands in (42) and in what follows for the basic subdifferential of f
with respect to the first three variables.

One can easily see that

k∑
j=0

∇gj(z̄N )∗ψj (43)

= (0, . . . 0,−ψN
0 , ψ

N
0 − ψN

1 , . . . , ψ
N
k−1 − ψN

k , ψ
N
k ,−hNψ

N
0 , . . . ,−hNψ

N
k ).
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Combining (32) with (39)–(43), we have the following relationships:

−x∗j,j − x∗j,j+N = λNhNκ
N
j + λNσN

j , j = −N, . . . ,−1, (44)

−x∗j,j − x∗j,j+N = λNhNκ
N
j + λNhNv

N
j + ψN

j−1 − ψN
j , (45)

j = 1, . . . , k −N,

−x∗j,j = λNhNv
N
j + ψN

j−1 − ψN
j , j = k −N + 1, . . . , k, (46)

−y∗j,j = λNhNω
N
j + λNθN

j − hNψ
N
j , j = 0, . . . , k, (47)

−x∗k+1,k+1 = λNuN
k+1 + ψN

k , (48)

−x∗0,0 − x∗0,k+1 = λNuN
0 + λNhNκ

N
0 + 2λN (x̄N

0 − x̄(a)) (49)

+λNhNv
N
0 − ψ0

with the notation

(uN
0 , u

N
k+1) ∈ ∂ϕ(x̄N

0 , x̄
N
k+1), (vN

j , κ
N
j−N , ω

N
j ) ∈ ∂f(x̄N

j , x̄
N
j−N , ȳ

N
j , tj),

θN
j := 2

∫ tj+1

tj

(
ȳN

j − ˙̄x(t)
)
dt, σN

j := 2
∫ tj+1

tj

(
x̄N

j − x̄(t)
)
dt.

The next theorem gives necessary optimality conditions for discrete approxima-
tion problems (PN ) governed by constrained delay-difference inclusions.

Theorem 4.1 Let z̄N be an optimal solution to problem (PN ), where Fj :=
F (·, ·, tj). Assume that the sets gphFj are closed and the functions ϕ and fj

are Lipschitz continuous around (x̄N
0 , x̄

N
k+1) and (x̄N

j , x̄
N
j−N , ȳ

N
j ), respectively,

for all j = 0, . . . , k. Then there exist λN ≥ 0, pN
j (j = 0, . . . , k + 1), and

qN
j (j = −N, . . . , k + 1), not all zero, such that(pN

j+1 − pN
j

hN
,
qN
j−N+1 − qN

j−N

hN
,−

λNθN
j

hN
+ pN

j+1 + qN
j+1

)
∈ λN∂f(x̄N

j , x̄
N
j−N , ȳ

N
j , tj) +N((x̄N

j , x̄
N
j−N , ȳ

N
j ); gphFj), j = 0, . . . , k,

(50)

−
qN
j+1 − qN

j

hN
− λN

σN
j

hN
∈ N(x̄N

j ;C(tj)), j = −N, . . . ,−1, (51)

qN
j = 0, j = k −N + 1, . . . , k + 1, (52)

(pN
0 + qN

0 ,−pN
k+1) ∈ λN∂ϕ(x̄N

0 , x̄
N
k+1) +N((x̄N

0 , x̄
N
k+1); ΩN ). (53)

Proof. Consider first p̃N
j := ψN

j−1 for j = 1, . . . , k+1, q̃N
j := λNκN

j +x∗j,j+N/hN

for j = −N, . . . , k − N , and q̃N
j := 0 for j = k − N + 1, . . . , k + 1. Then let

qN
k+1 := 0 and define qN

j := qN
k+1 − q̃N

j hN for j = −N, . . . , k + 1. It is easy to
check that qN

j = 0 for j = k −N + 1, . . . , k + 1. Finally, we define

pN
0 := λNuN

0 + x∗0,k+1 − qN
0 and pN

j := p̃N
j − qN

j hN for j = 1, . . . , k + 1.
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Then (50) follows from (46)–(47), (51) comes from (44), and (53) follows from
(48) and (50). This completes the proof of the theorem.

Corollary 4.1 In addition to the assumptions of Theorem 4.1, suppose that
the mapping Fj is bounded and Lipschitz continuous around (x̄N

j , x̄
N
j−N ) for each

j = 0, . . . , k. Then conditions (50)–(53) and λN ≥ 0 hold with (λN , pN
k+1) 6= 0,

i.e., one can set

(λN )2 + |pN
k+1|2 = 1. (54)

Proof. If λN = 0, then (50) implies that(pN
j+1 − pN

j

hN
,
qN
j−N+1 − qN

j−N

hN

)
(55)

∈ D∗Fj(x̄N
j , x̄

N
j−N , ȳ

N
j )(−pN

j+1 − qN
j+1), j = 0, . . . , k,

by the coderivative definition (24). Set j = k. If we assume that pN
k+1 = 0, then

(52) and (55) give the inclusion(−pN
k

hN
,
−qN

k−N

hN

)
∈ D∗Fk(x̄N

k , x̄
N
k−N , ȳ

N
k )(0).

The latter yields pN
k = qN

k−N = 0 due to the coderivative characterization of
the local Lipschitzian property from Theorem 5.11 in Mordukhovich (1993).
By repeating the above procedure along (55), we conclude that pN

j = 0 for all
j = 0, . . . , k+1 and qN

j = 0 for all j = −N, . . . , k+1. This contradicts the non-
triviality assertion of Theorem 4.1 and completes the proof of this corollary.

5. Optimality conditions for delay-differential inclusions

Now we come back to the original Bolza problem (P ) for delay-differential inclu-
sions and establish the necessary optimality conditions for (P ) in the extended
Euler-Lagrange form involving the generalized differential constructions of Sec-
tion 3. Let us keep the assumptions (H1)–(H3), but instead of (H4) and (H5)
we impose their following modifications:

(H4’) ϕ is Lipschitz continuous on U × U , f(x, y, v, ·) is continuous for a.e.
t ∈ [a, b] and bounded uniformly in (x, y, v) ∈ U × U ×mF IB, and Ω is
locally closed around (x̄(a), x̄(b)).

(H5’) There are positive numbers µ and lf such that f(·, ·, ·, t) is Lipschitz
continuous on the set Aµ(t) from (H5) with the constant lf .

In the results of this section the subdifferential, normal, and coderivative
symbols are used with respect to all variables but t.
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Theorem 5.1 Let x̄(·) be an optimal solution to the Bolza problem (P ) under
hypotheses (H1)–(H3), (H4’), (H5’), and (H6). Assume also that problem (P )
is stable with respect to relaxation. Then there exist a number λ ≥ 0 as well as
absolutely continuous functions p : [a, b] → IRn and q : [a−∆, b] → IRn satisfying
the conditions:(
ṗ(t), q̇(t−∆)

)
∈ co

{
(u,w)

∣∣∣ (u,w, p(t) + q(t)
)

∈ λ∂̃f(x̄(t), x̄(t−∆), ˙̄x(t), t)
+Ñ((x̄(t), x̄(t−∆), ˙̄x(t)); gphF (·, ·, t))

}
a.e. t ∈ [a, b],

(56)

〈
q̇(t), x̄(t)

〉
= min

c∈C(t)

〈
q̇(t), c

〉
a.e. t ∈ [a−∆, a), (57)

(p(a) + q(a),−p(b)) ∈ λ∂ϕ(x̄(a), x̄(b)) +N((x̄(a), x̄(b)); Ω), (58)

q(t) = 0, t ∈ [b−∆, b], (59)

λ+ |p(b)| > 0. (60)

Proof. We are going to prove this theorem by the method of discrete approxima-
tions and first construct a sequence of finite-dimensional problems (PN ) whose
solutions x̄N = (x̄N

−N , . . . , x̄
N
k+1) strongly approximate x̄(·) in the sense of The-

orem 2.1. By employing Corollary 4.1 to x̄N , we find λN ≥ 0 and pN
j , q

N
j

satisfying relationships (50)–(54).
Without loss of generality we suppose that λN → λ as N → ∞ for some

λ ≥ 0. As usual, the symbols x̄N (t), pN (t), and qN (t − ∆) stand for the
piecewise linear extensions of the corresponding discrete functions on [a, b] with
their piecewise constant derivatives ˙̄xN (t), ṗN (t), and q̇N (t−∆).

Define θN (t) := θN
j /hN for t ∈ [tj , tj+1), j = 0, . . . , k and conclude by

Theorem 2.1 that∫ b

a

|θN (t)|dt =
k∑

j=0

|θN
j |

≤ 2
k∑

j=0

∫ tj+1

tj

∣∣∣ ˙̄x(t)− x̄N
j+1 − x̄N

j

hN

∣∣∣dt = 2
∫ b

a

| ˙̄x(t)− ˙̄xN (t)|dt→ 0.

Similarly, by letting σN (t) := σN
j /hN for t ∈ [tj , tj+1), j = −N, . . . ,−1, one

obtains∫ a

a−∆

|σN (t)|dt =
−1∑

j=−N

|σN
j |

≤ 2
−1∑

j=−N

∫ tj+1

tj

∣∣x̄(t)− x̄N
j

∣∣dt = 2
∫ a

a−∆

|x̄(t)− x̄N (t)|dt→ 0.
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Since the convergence in L1(T ) of a sequence of functions defined on some
interval T implies the convergence of its subsequence almost everywhere on T ,
we suppose with no restriction that ˙̄xN (t) → ˙̄x(t), θN (t) → 0, and σN (t) → 0
as N →∞ a.e. on the corresponding intervals. Such a pointwise convergence is
important in what follows.

Let us estimate (pN (t), qN (t−∆)) for large N . It follows from (50) that for
all j = 0, . . . , k one has the inclusions(pN

j+1 − pN
j

hN
− λNvN

j ,
qN
j−N+1 − qN

j−N

hN
− λNκN

j−N ,

−
λNθN

j

hN
+ pN

j+1 + qN
j+1 − λNωN

j

)
∈ N((x̄N

j , x̄
N
j−N , ȳ

N
j ); gphFj)

with some (vN
j , κ

N
j−N , ω

N
j ) ∈ ∂f(x̄N

j , x̄
N
j−N , ȳ

N
j , tj).

This implies by (24) that

(pN
j+1 − pN

j

hN
− λNvN

j ,
qN
j−N+1 − qN

j−N

hN
− λNκN

j−N

)
∈ D∗Fj(x̄N

j , x̄
N
j−N , ȳ

N
j )
(
λNωN

j +
λNθN

j

hN
− pN

j+1 − qN
j+1

)
.

Using again Theorem 5.1 from Mordukhovich (1993) providing coderivative
characterizations of the Lipschitz continuity for Fj , we get the estimate∣∣∣(pN

j+1 − pN
j

hN
− λNvN

j ,
qN
j−N+1 − qN

j−N

hN
− λNκN

j−N

)∣∣∣
≤ LF

∣∣∣λNωN
j +

λNθN
j

hN
− pN

j+1 − qN
j+1

∣∣∣.
Since |(vN

j , κ
N
j−N , ω

N
j )| ≤ lf due to the Lipschitz continuity of f with modulus

lf , one derives from the above that

|(pN
j , q

N
j−N )| ≤ LF |λNθN

j |+ LFλ
NhN |ωN

j |
+ LFhN |pN

j+1 + qN
j+1|+ |(pN

j+1, q
N
j−N+1)|+ λNhN |(vN

j , κ
N
j−N )| ≤ LF |θN

j |
+ (LFhN + hN )lf + LFhN |pN

j+1 + qN
j+1|+ |(pN

j+1, q
N
j−N+1)|, j = 0, . . . , k,

and taking (52) into account, that

|(pN
j , q

N
j−N )| ≤ LF |θN

j |+ (LF + 1)hN lf + (LFhN + 1)|(pN
j+1, q

N
j−N+1)|

≤ LF |θN
j |+ (LFhN + 1)LF |θN

j+1|+ (LF + 1)hN lf

+ (LFhN + 1)(LF + 1)hN lf + (LFhN + 1)2|(pN
j+2, q

N
j−N+2)| ≤ · · ·

≤ exp[LF (b− a)](1 + lf (LF + 1)/LF + LF νN ), j = 0, . . . , k + 1,
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where νN :=
∫ b

a
| ˙̄x(t) − ˙̄xN (t)|dt → 0 as N → ∞. This implies the uniform

boundedness of {pN
j , q

N
j−N} and hence of {(pN (t), qN (t−∆))} on [a, b].

To estimate (ṗN (t), q̇N (t−∆)), we have

|(ṗN (t), q̇N (t−∆))| =
∣∣∣(pN

j+1 − pN
j

hN
,
qN
j−N+1 − qN

j−N

hN

)∣∣∣
≤ LF

∣∣∣λNωN
j +

λNθN
j

hN
− pN

j+1 − qN
j+1

∣∣∣+ λN |(vN
j , v

N
j−N )|

≤ LF lf + lf + LF (|θN (t)|+ |pN
j+1|+ |qN

j+1|), t ∈ [tj , tj+1),

which implies the (essential) uniform boundedness of {ṗN (t), q̇N (t−∆)} on [a, b].
By standard compactness results of real analysis we find absolutely continuous
functions p(·) and q(· −∆) with

pN (t) → p(t), qN (t−∆) → q(t−∆) uniformly on [a, b],

ṗN (t) → ṗ(t), q̇N (t−∆) → q̇(t−∆) weakly in L2[a, b] as N →∞.

It is easy to observe that the discrete Euler-Lagrange inclusion (50) can be
rewritten as

(ṗN (t), q̇N (t−∆)) ∈
{

(u, v)
∣∣∣ (u, v, pN (tj+1) + qN (tj+1)−

λNθN
j

hN

)
∈ λN∂f(x̄(tj), x̄(tj −∆), ˙̄xN (tj), tj) +N((x̄N (tj), x̄N (tj −∆), ˙̄xN (tj));
gphF (·, ·, tj)

} (61)

for all t ∈ [tj , tj+1) and all j = 0, . . . , k.
By the classical Mazur theorem there is a sequence of convex combinations

of the functions (ṗN (t), q̇N (t − ∆)) that converges to (ṗ(t), q̇(t − ∆)) for a.e.
t ∈ [a, b]. Passing to the limit in (61) as N → ∞ and taking into account the
construction of the extended normal cone and subdifferential in Definition 3.1 as
well as their robustness property from Proposition 3.2, we arrive at the extended
Euler-Lagrange inclusion (56). To justify the tail condition (57), we pass to the
limit in (51) with the use of the specific form of the normal cone to convex
sets (22) as well as Proposition 3.1 whose assumptions are satisfied for C(·) due
to (H3) and (H6). Finally, conditions (58)–(60) follow directly from (52)–(54),
which completes the proof of the theorem.

For the Mayer problem (PM ), that is, (1)–(4) with f = 0, the extended Euler-
Lagrange condition (56) is equivalently expressed via the extended coderivative
(27) with respect to the first two variables of the multifunction F = F (x, y, t),
i.e., (

ṗ(t), q̇(t−∆)
)
∈ co D̃∗x,yF

(
x̄(t), x̄(t−∆), ˙̄x(t), t

)(
− p(t)− q(t)

)
(62)

a.e. t ∈ [a, b].
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One can replace D̃∗x,y by the basic coderivative (24) with respect to (x, y) if F is
coderivatively semicontinuous at (x̄(t), x̄(t−∆), ˙̄x(t), t) with respect to t almost
everywhere on [a, b].

It happens that the extended Euler-Lagrange condition obtained above im-
plies, under the relaxation stability of the original problems, two principal op-
timality conditions expressed in terms of the classical Hamiltonian. In the fol-
lowing corollary we consider for simplicity the case of the Mayer problem (PM )
for autonomous delay-differential inclusions. Then, the Hamiltonian function
for (2) is given by

H(x, y, p) := sup
{
〈p, v〉

∣∣ v ∈ F (x, y)
}
. (63)

Corollary 5.1 Let x̄(·) be an optimal solution to the Mayer problem (PM )
for the autonomous delay-differential inclusion (2) under assumptions (H1),
(H3), (H4’), and (H6). Suppose that the problem (PM ) is stable with respect
to relaxation. Then there exist a number λ ≥ 0 and the absolutely continuous
functions p : [a, b] → IRn and q : [a−∆, b] → IRn satisfying conditions (57)–(60)
as well as the Hamiltonian inclusion(

ṗ(t), q̇(t−∆)
)

(64)

∈ co
{
(u,w)

∣∣ (− u,−w, ˙̄x(t)
)
∈ ∂H

(
x̄(t), x̄(t−∆), p(t) + q(t)

)}
and the maximum condition

〈p(t) + q(t)〉, ˙̄x(t)〉 = max
{
〈p(t) + q(t), v〉

∣∣ v ∈ F (x̄(t), x̄(t−∆))
}

(65)

for almost all t ∈ [a, b]. If, moreover, F is convex-valued around (x̄(t), x̄(t−∆)),
then (64) is equivalent to the Euler-Lagrange inclusion(

ṗ(t), q̇(t−∆)
)
∈ coD∗F

(
x̄(t), x̄(t−∆), ˙̄x(t)

)(
− p(t)− q(t)

)
(66)

a.e. t ∈ [a, b],

which automatically implies the maximum condition (65) in this case.

Proof. Since (PM ) is stable with respect to relaxation, x̄(·) is an optimal solution
to the relaxed problem (RM ), whose only difference with respect to (PM ) is that
the delay-differential inclusion (2) is replaced by its convexification (17). Due
to Theorem 5.1 the optimal solution x̄(·) satisfies conditions (57)–(60) and the
relaxed counterpart of (62), that is the same as (66) in this case, with F replaced
by coF . According to Theorem 3.3 in Rockafellar (1996), one has

co
{

(u, v)
∣∣∣ (u,w, p) ∈ N((x, y, v); gph(coF )

}
= co

{
(u,w)

∣∣∣ (−u,−w, v) ∈ ∂HR(x, y, p)
}
,

where HR stands for the Hamiltonian (63) of the relaxed system, i.e., with F
replaced by coF . It is easy to see that HR = H. Thus the Euler-Lagrange
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inclusion for the relaxed system implies the Hamiltonian inclusion (64), which
surely yields the maximum condition (65). When F is convex-valued, (64) and
( 66) are equivalent due to the mentioned result of Rockafellar (1996). This
completes the proof of the corollary.

Note that the Hamiltonian inclusion (64) obviously improves over following
one(
− ṗ(t),−q̇(t−∆), ˙̄x(t)

)
∈ co ∂H

(
x̄(t), x̄(t−∆), p(t) + q(t)

)
a.e. t ∈ [a, b] (67)

obtained by Clarke and Watkins (1986) for the Mayer problem (PM ) with convex
velocities in (2) and no endpoint constraints (4) ,but without imposing the
convexity hypothesis (H6).
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Warga, J. (1972) Optimal Control of Differential and Functional Equations.

Academic Press, New York.
Zhu, Q.J. (1996) Necessary optimality conditions for nonconvex differential

inclusions with endpoint constraints. J. Diff. Equ., 124, 186–204.
Zhu, Q.J. (2002) Hamiltonian necessary conditions for a multiobjective opti-

mal control problem with endpoint constraints. SIAM J. Control Optim.,
39, 97–112.


