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Abstract: Second order necessary and sufficient optimality con-
ditions for bang–bang control problems have been studied in Mi-
lyutin, Osmolovskii (1998). These conditions amount to testing the
positive (semi–)definiteness of a quadratic form on a critical cone.
The assumptions are appropriate for numerical verification only in
some special cases. In this paper, we study various transformations
of the quadratic form and the critical cone which will be tailored
to different types of control problems in practice. In particular,
by means of a solution to a linear matrix differential equation, the
quadratic form can be converted to perfect squares. We demon-
strate by three practical examples that the conditions obtained can
be verified numerically.
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1. Introduction

There exists an extensive literature on second order sufficient conditions (SSC)
for optimal control problems with control appearing nonlinearly, see Dunn (1995,
1996), Levitin, Milyutin, Osmolovskii (1978), Maurer (1981), Maurer, Picken-
hain (1995), Maurer, Oberle (2002), Milyutin, Osmolovskii (1998), Osmolovskii

1This work was partly supported by RFFI No. 00-15-96109
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(1988, 1988a, 1988b, 1995), Osmolovskii, Lempio (2000, 2002), Zeidan (1994)
and further literature cited in these papers. SSC require that a certain quadratic
form be positive definite on the so called critical cone. In practice, the test for
SSC can be performed by checking whether an associated matrix Riccati equa-
tion has a bounded solution under appropriate boundary conditions. The Ric-
cati approach has been extended to discontinuous controls (broken extremals) by
Osmolovskii, Lempio (2002). The importance of SSC is due to its crucial role in
the sensitivity analysis of parametric optimal control problems, see Malanowski
(1992, 1993, 1994, 2001), Malanowski, Maurer (1996, 1998, 2001), Dontchev et
al. (1995), Augustin, Maurer (2001a,2001b).

Optimal control problems with control appearing linearly lead either to bang–
bang controls or to singular controls. First and higher order necessary optimality
conditions have been studied, e.g., by Bressan (1985), Schättler (1988) and
Sussmann (1979, 1987a, 1987b) for the generic properties of bang–bang controls.
General second order necessary and sufficient conditions for an extremal with
a discontinuous control (see Osmolovskii, 1995) can be derived from the theory
of higher order conditions in Levitin, Milyutin and Osmolovskii (1978). The
main results for bang-bang controls which follow from these general conditions
are given in Milyutin and Osmolovskii (1998). Some proofs missing in that
book will appear in Osmolovskii (2003). The literature on SSC for bang–bang
controls is rather scarce both in theory and numerics. Only very recently, one
may observe a revived interest in bang–bang controls and several approaches to
SSC have been developed almost in parallel.

Sarychev (1997) has obtained first and second order optimality conditions
for time–optimal bang–bang controls. It is not clear from the article mentioned,
though, how one might apply the obtained conditions to practical examples. No-
ble, Schättler (2001) develop sufficient conditions for broken extremals which,
however, are only applicable under the assumption that the reference trajectory
can locally be embedded into a sufficiently smooth field of extremals. Felgen-
hauer (2003) discusses bang–bang controls where the dynamics are linear in
control and state. Agrachev, Stefani, Zezza (2002) treat bang–bang control
problems with fixed final time and are able to reduce the control problem to a
finite–dimensional optimization problem with respect to the switching times as
optimization variables. We are not aware of any practical bang–bang control
problem in the literature except the one given in Ledzewicz, Schättler (2002)
where SSC have been tested numerically.

Our aim is to develop SSC for bang–bang controls under verifiable assump-
tions. This goal will be achieved by deriving several representations of the
quadratic form and the critical cone in Milyutin, Osmolovskii (1998), which are
more convenient for numerical computations. For time–optimal bang–bang con-
trols with fixed initial and terminal conditions, this program was already carried
out in Maurer, Osmolovskii (2001). In the present article, we extend the analy-
sis therein to bang–bang controls with very general state boundary conditions.
Pontryagin’s minimum principle and the bang–bang property are discussed in
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Section 2. In Section 3, the critical cone is introduced and its properties are
studied. Second order necessary and sufficient optimality conditions are given
in terms of the positive (semi–)definiteness of a quadratic form on the critical
cone. A control problem from economics illustrates the use of SSC. Section 4
presents the Q−transformation whereby the quadratic form is rewritten into a
more convenient form using a solution Q of a linear differential equation. The
general form of the boundary conditions forQ is developed. Positive definiteness
conditions are given under which the quadratic form is transformed into perfect
squares. In Section 5, we discuss two numerical examples that illustrate the
numerical procedure for testing the positive definiteness of the corresponding
quadratic forms.

2. Bang–bang control problems on nonfixed time intervals

2.1. Optimal control problems with control appearing linearly

We consider optimal control problems with control appearing linearly. Let
x(t) ∈ IRd(x) denote the state variable and u(t) ∈ IRd(u) the control variable
in the time interval t ∈ ∆ = [t0, t1] with a non–fixed initial time t0 and final
time t1.

Minimize J (t0, t1, x, u) = J(t0, x(t0), t1, x(t1)) (1)

subject to the constraints

ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U, (t, x(t)) ∈ Q, t0 ≤ t ≤ t1, (2)
F (t0, x(t0), t1, x(t1)) ≤ 0, K(t0, x(t0), t1, x(t1)) = 0,
(t0, x(t0), t1, x(t1)) ∈ P , (3)

where the control variable appears linearly in the system dynamics,

f(t, x, u) = a(t, x) +B(t, x)u . (4)

Here, F,K, a are vector functions, B is a d(x) × d(u) matrix function, P ⊂
IR2+2d(x), Q ⊂ IR1+d(x) are open sets and U ⊂ IRd(u) is a convex polyhedron.
The functions J, F,K are assumed to be twice continuously differentiable on P
and the functions a,B are twice continuously differentiable on Q. The dimen-
sions of F,K are denoted by d(F ), d(K). We shall use the abbreviations

x0 = x(t0), x1 = x(t1), p = (t0, x0, t1, x1).

A trajectory

T = (x(t), u(t) | t ∈ [t0, t1])

is said to be admissible, if x(·) is absolutely continuous, u(·) is measurable
bounded and the pair of functions (x(t), u(t)) on the interval ∆ = [t0, t1] with
the end-points p = (t0, x(t0), t1, x(t1)) satisfies the constraints (2), (3).
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Definition 2.1 The trajectory T affords a Pontryagin minimum, if there is
no sequence of admissible trajectories

T n = (xn(t), un(t) | t ∈ [tn0 , t
n
1 ]), n = 1, 2, . . . ,

such that the following properties hold with ∆n = [tn0 , t
n
1 ] :

(a) J (T n) < J (T ) ∀ n and tn0 → t0, t
n
1 → t1 for n→ ∞ ;

(b) max
∆n∩∆

|xn(t) − x(t)| → 0 for n→ ∞;

(c)
∫

∆n∩∆

|un(t) − u(t)| dt→ 0 for n→ ∞.

Note that for a fixed time interval ∆, a Pontryagin minimum corresponds to an
L1-local minimum with respect to the control variable.

2.2. First order necessary optimality conditions

Let

T = (x(t), u(t) | t ∈ [t0, t1])

be a fixed admissible trajectory such that the control u(·) is a piecewise constant
function on the interval ∆ = [t0, t1]. In order to make the notations simpler we
do not use such symbols and indices as zero, hat or asterisk to distinguish this
trajectory from others.

Denote by

θ = {τ1, . . . , τs}, t0 < τ1 < . . . < τs < t1

the finite set of all discontinuity points (jump points) of the control u(t). Then
ẋ(t) is a piecewise continuous function whose discontinuity points belong to θ,
and hence x(t) is a piecewise smooth function on ∆. Henceforth we shall use
the notation

[u]k = uk+ − uk−

are the left hand and the right hand values of the control u(t) at τk, respectively.
Similarly, we denote by [ẋ]k the jump of the function ẋ(t) at the same point.

Let us formulate a first-order necessary condition for optimality of the tra-
jectory T – the Pontryagin minimum principle. To this end we introduce the
Pontryagin function

H(t, x, ψ, u) = ψf(t, x, u) = ψa(t, x) + ψB(t, x)u, (5)

where ψ is a row-vector of dimension d(ψ) = d(x) while x, u, f, F and K are
column-vectors. The factor of the control u in the Pontryagin function is called
the switching function

σ(t, x, ψ) = DuH(t, x, ψ, u) = ψB(t, x) (6)
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which is a row vector of dimension d(u). Denote by l the end-point Lagrange
function

l(α0, α, β, p) = α0J(p) + αF (p) + βK(p),

where α and β are row-vectors with d(α) = d(F ), d(β) = d(K), and α0 is a
number. We introduce a collection of Lagrange multipliers

λ = (α0, α, β, ψ(·), ψ0(·))

such that

ψ(·) : ∆ → IRd(x), ψ0(·) : ∆ → IR1

are continuous on ∆ and continuously differentiable on each interval of the set
∆ \ θ. In the sequel, we shall denote first or second order partial derivatives by
the subscripts referring to the variables.

Denote by M0 the set of the normed collections λ satisfying the minimum
principle conditions for the trajectory T :

α0 ≥ 0, α ≥ 0, αF (p) = 0, α0 +
∑

αi +
∑

|βj | = 1, (7)

ψ̇ = −Hx, ψ̇0 = −Ht ∀t ∈ ∆ \ θ, (8)
ψ(t0) = −lx0 , ψ(t1) = lx1 , ψ0(t0) = −lt0 , ψ0(t1) = lt1 , (9)
min
u∈U

H(t, x(t), ψ(t), u) = H(t, x(t), ψ(t), u(t)) ∀t ∈ ∆ \ θ, (10)

H(t, x(t), ψ(t), u(t)) + ψ0(t) = 0 ∀t ∈ ∆ \ θ. (11)

The derivatives lx0 and lx1 are taken at the point (α0, α, β, p), where p =
(t0, x(t0), t1, x(t1)), and the derivatives Hx, Ht are evaluated at the point
(t, x(t), u(t), ψ(t)), t ∈ ∆ \ θ. The condition M0 �= ∅ constitutes the first order
necessary condition for a Pontryagin minimum of the trajectory T , which is the
so called Pontryagin minimum principle, see Pontryagin et al. (1961), Milyutin,
Osmolovskii (1998).

Theorem 2.1 If the trajectory T affords a Pontryagin minimum, then the set
M0 is nonempty. The set M0 is a finite-dimensional compact set and the pro-
jector λ 
→ (α0, α, β) is injective on M0.

In the sequel, it will be convenient to use the simple abbreviation (t) for
indicating all arguments (t, x(t), u(t), ψ(t)), e.g., H(t) = H(t, x(t), u(t), ψ(t)),
σ(t) = σ(t, x(t), ψ(t)). The continuity of the pair of functions (ψ0(t), ψ(t)) at
the points tk ∈ θ constitutes the Weierstrass–Erdmann necessary conditions for
nonsmooth extremals. We formulate one more condition of this type which is
important for the statement of the second-order conditions for extremal with
jumps in the control. Namely, for λ ∈M0, τk ∈ θ consider the function

(∆kH)(t) = H(t, x(t), ψ(t), uk+) −H(t, x(t), ψ(t), uk−) = σ(t) [u]k. (12)
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Proposition 2.1 For each λ ∈M0 the following equalities hold

d

dt
(∆kH)

∣∣
t=τk−0

=
d

dt
(∆kH)

∣∣
t=τk+0

, k = 1, . . . , s.

Consequently, for each λ ∈ M0 the function (∆kH)(t) has a derivative at the
point τk ∈ θ. Define the quantity

Dk(H) = − d

dt
(∆kH)(τk).

Then, the minimum condition (8) implies the following property:

Proposition 2.2 For each λ ∈M0 the following conditions hold:

Dk(H) ≥ 0, k = 1, . . . , s. (13)

The value Dk(H) also can be written in the form

Dk(H) = −Hk+
x Hk−

ψ +Hk−
x Hk+

ψ − [Ht]k

= ψ̇k+ẋk− − ψ̇k−ẋk+ + [ψ0]k,

where Hk−
x and Hk+

x are the left hand and the right hand values of the function
Hx(t, x(t), u(t), ψ(t)) at τk, respectively, [Ht]k is a jump of the function Ht(t)
at τk, etc. It also follows from the above representation that we have

Dk(H) = −σ̇(τ±k )[u]k (14)

where the values on the right hand side agree for the derivative σ̇(τ+
k ) from the

right and the derivative σ̇(τ−k ) from the left. In the case of a scalar control u, the
total derivative σt + σxẋ+ σψψ̇ does not contain the control variable explicitly
and hence the derivative σ̇(t) is continuous at τk.

Proposition 2.3 For any λ ∈M0 we have

lx0 ẋ(t0) + lt0 = 0, lx1 ẋ(t1) + lt1 = 0. (15)

Proof. The equalities (15) follow from the equality ψ(t)ẋ(t)+ψ0(t) = 0 evaluated
for t = t0 and t = t1 together with the transversality conditions

ψ(t0) = −lx0 , ψ0(t0) = −lt0 , ψ(t1) = lx1 , ψ0(t1) = lt1 .

2.3. Integral cost function, unessential variables, strong minimum

It is well known that any control problem with a cost functional in integral form

J =

t1∫
t0

f0(t, x(t), u(t)) dt (16)
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can be brought to the canonical form (1) by introducing a new state variable y
defined by the state equation

ẏ = f0(t, x, u), y(t0) = 0 . (17)

This yields the cost function J = y(t1). The control variable is assumed to
appear linearly in the function f0,

f0(t, x, u) = a0(t, x) +B0(t, x)u . (18)

It follows from equations (8) and (9) that the adjoint variable ψy associated with
the new state variable y is given by ψy(t) ≡ α0, which yields the Pontryagin
function (5) in the form

H(t, x, ψ, u) = α0f0(t, x, u) + ψf(t, x, u) (19)
= α0a0(t, x) + ψa(t, x) + (α0B0(t, x) + ψB(t, x))u.

Hence, the switching function is given by

σ(t, x, ψ) = α0B0(t, x) + ψB(t, x), σ(t) = σ(t, x(t), ψ(t)). (20)

The component y is called an unessential component in the augmented problem.
The general definition of an unessential component is as follows:

Definition 2.2 The state variable xi, i.e., the i–th component of the state
vector x is called unessential if the function f does not depend on xi and if the
functions F, J,K are affine in xi0 = xi(t0) and xi1 = xi(t1).

Unessential components should not be taken into consideration in the defi-
nition of a minimum. This leads to the definition of a strong minimum which
is a stronger type than the Pontryagin minimum in Definition 1. The strong
minimum refers to the proximity of the state components in the trajectory only.
In the following, let x denote the vector of all essential components of state
vector x.

Definition 2.3 We say that the trajectory T affords a strong minimum if there
is no sequence of admissible trajectories

T n = (xn(t), un(t) | t ∈ [tn0 , t
n
1 ]), n = 1, 2, . . .

such that
(a) J (T n) < J (T ),

(b) tn0 → t0, tn1 → t1, xn(t0) → x(t0) (n→ ∞),

(c) max
∆n∩∆

|xn(t) − x(t)| → 0 (n→ ∞), where ∆n = [tn0 , t
n
1 ].

The strict strong minimum is defined in a similar way, with the strict in-
equality (a) replaced by the non-strict one and the trajectory T n required to be
different from T for each n.
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2.4. Bang-bang control

The intuitive definition of a bang–bang control is that of a control which assumes
values only in the vertex set of the admissible polyhedron U in (2). We shall
need a slightly more restrictive definition of a bang–bang control to obtain the
sufficient conditions in Theorem 3.2. Let

Arg min v∈U σ(t)v

be the set of points v ∈ U where the minimum of the linear function σ(t)v is
attained. For a given extremal trajectory T = { (x(t), u(t)) | t ∈ ∆ } with a
piecewise constant control u(t) we say that u(t) is a bang-bang control if there
exists (ψ0, ψ) ∈M0 such that

Arg min v∈U σ(t)v = [u(t− 0), u(t+ 0)] , (21)

where [u(t−0), u(t+0)] denotes the line segment spanned by the vectors u(t−0)
and u(t+ 0) in IRd(u). Note that [u(t− 0), u(t+0)] is a singleton {u(t)} at each
continuity point of the control u(t) with u(t) being a vertex of the polyhedron
U . Only at the points tk ∈ θ does the line segment [uk−, uk+] coincide with an
edge of the polyhedron.

If the control is scalar, d(u) = 1 and U = [umin, umax], then the bang–bang
property is equivalent to

σ(t) �= 0 ∀ t ∈ ∆ \ θ
which yields the control law

u(t) =
{
umin, if σ(t) > 0
umax, if σ(t) < 0

}
∀ t ∈ ∆ \ θ. (22)

For vector–valued control inputs, condition (21) imposes further restrictions.
For example, if U is the unit cube in IRd(u), condition (21) precludes simul-
taneous switching of the control components. This property holds in many
examples. Condition (21) will be indispensable in the sensitivity analysis of
optimal bang–bang controls.

3. Quadratic necessary and sufficient optimality condi-
tions

In this section, we shall formulate a quadratic necessary optimality condition of a
Pontryagin minimum (Definition 2.1) for given bang–bang control. A strength-
ening of this quadratic condition yields a quadratic sufficient condition for a
strong minimum (Definition 2.3). These quadratic conditions are based on the
properties of a quadratic form on the so called critical cone, whose elements
are first order variations along a given trajectory T . The main results of this
section (Theorems 3.1 and 3.2) are due to Osmolovskii, see Milyutin and Os-
molovskii (1998), Part 2, Chapter 3. Proofs missing in this book will appear in
Osmolovskii (2003).
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3.1. Critical cone

For a given trajectory T we introduce the space Z(θ) and the critical cone K ⊂
Z(θ). Denote by PθC1(∆, IRd(x)) the space of piecewise continuous functions

x̄(·) : ∆ → IRd(x),

continuously differentiable on each interval of the set ∆ \ θ. For each x̄ ∈
PθC

1(∆, IRd(x)) and for τk ∈ θ we set

x̄k− = x̄(τk − 0), x̄k+ = x̄(τk + 0), [x̄]k = x̄k+ − x̄k−.

Set z̄ = (t̄0, t̄1, ξ, x̄), where t̄0, t̄1 ∈ IR1, ξ ∈ IRs, x̄ ∈ PθC
1(∆, IRd(x)). Thus,

z̄ ∈ Z(θ) := IR2 × IRs × PθC
1(∆, IRd(x)).

For each z̄ we set

x̃0 = x̄(t0) + t̄0ẋ(t0), x̃1 = x̄(t1) + t̄1ẋ(t1), p̃ = (t̄0, x̃0, t̄1, x̃1). (23)

The vector p̃ is considered as a column vector. Note that t̄0 = 0, respectively,
t̄1 = 0 for fixed initial time t0, respectively, final time t1. Denote by IF (p) = {i ∈
{1, . . . , d(F )} | Fi(p) = 0} the set of indices of all active endpoint inequalities
Fi(p) ≤ 0 at the point p = (t0, x(t0), t1, x(t1)). Denote by K the set of all
z̄ ∈ Z(θ) satisfying the following conditions:

J ′(p)p̃ ≤ 0, F ′
i (p)p̃ ≤ 0 ∀ i ∈ IF (p), K ′(p)p̃ = 0, (24)

˙̄x(t) = f ′
x(t, x(t), u(t))x̄(t), [x̄]k = [ẋ]kξk, k = 1, . . . , s, (25)

where p = (x(t0), t0, x(t1), t1).
It is obvious that K is a convex finite-dimensional and finite-faced cone in

the space Z(θ). We call it the critical cone. Each element z̄ ∈ K is uniquely
defined by numbers t̄0, t̄1, a vector ξ and the initial value x̄(t0) of the function
x̄(t).

Proposition 3.1 For any λ ∈M0 and z̄ ∈ K we have

lx0 x̄(t0) + lx1 x̄(t1) = 0. (26)

Proof. Integrating the equality ψ( ˙̄x − fxx̄) = 0 on [t0, t1] and using the adjoint

equation ψ̇ = −ψfx we obtain
t1∫
t0

d
dt (ψx̄) dt = 0, whence

(ψx̄)|t1t0 −
s∑

k=1

[ψx̄]k = 0.

From the jump conditions [x̄]k = [ẋ]kξk and the equality ψ(t)ẋ(t) +ψ0(t) = 0 it
follows that

[ψx̄]k = ψ(τk)[ẋ]kξk = [ψẋ]kξk = −[ψ0]kξk = 0 ∀ k.
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Then the equation (ψx̄)|t1t0 = 0 together with the transversality conditions
ψ(t0) = −lx0 and ψ(t1) = lx1 imply (26).

Proposition 3.2 For any λ ∈M0 and z̄ ∈ K we have

s∑
i=1

αiFipp̃+ βKpp̃ = 0. (27)

Proof. For λ ∈M0 and z̄ ∈ K, we have by Propositions 2.3 and 3.1

t̄0(lx0 ẋ(t0) + lt0) + t̄1(lx1 ẋ(t1) + lt1) + lx0 x̄(t0) + lx1 x̄(t1) = 0 .

Now using the equalities x̃0 = x̄(t0) + t̄0ẋ(t0), x̃1 = x̄(t1) + t̄1ẋ(t1), and p̃ =
(t̄0, x̃0, t̄1, x̃1) we get lpp̃ = 0, which is equivalent to condition (27).

Two important properties of the critical cone follow from Proposition 3.2.

Proposition 3.3 For any λ ∈M0 and z̄ ∈ K, we have

α0J
′(p)p̃ = 0, αiF

′
i (p)p̃ = 0 ∀i ∈ IF (p).

Proposition 3.4 Suppose that there exist λ ∈ M0 with α0 > 0. Then adding
the equalities

αiF
′
i (p)p̃ = 0 ∀i ∈ IF (p),

to the system (24), (25) defining K, one can omit the inequality

J ′(p)p̃ ≤ 0,

in that system without affecting K.

Thus, K is defined by condition (25) and by the condition p̃ ∈ K0, where K0

is the cone in IR2d(x)+2 given by (24). But if there exists λ ∈ M0 with α0 > 0,
then we can put

K0 = {p̃ ∈ IRd(x)+2 | F ′
i (p)p̃ ≤ 0, αiF ′

i (p)p̃ = 0 ∀ i ∈ IF (p), K ′(p)p̃ = 0}. (28)

If, in addition, αi > 0 holds for all i ∈ IF (p), then K0 is a subspace in IRd(x)+2.
An explicit representation of the variations x̄(t) in (25) is obtained as follows.

For each k = 1, ..., s, define the vector functions yk(t) as the solutions to the
system

ẏ = fx(t)y, y(τk) = [ẋ]k, t ∈ [τk, t1].

For t < τk we put yk(t) = 0 which yields the jump [yk]k = [ẋ]k. Moreover, define
y0(t) as the solution to the system

ẏ = fx(t)y, y(t0) = x̄(t0) =: x̄0.
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By the superposition principle for linear ODEs it is obvious that we have

x̄(t) =
s∑

k=1

yk(t)ξk + y0(t)

from which we obtain the representation

x̃1 =
s∑

k=1

yk(t1)ξk + y0(t1) + ẋ(t1)t̄1 . (29)

Furthermore, denote by x(t; τ1, ..., τs) the solution of the state equation (2) using
the values of the optimal bang–bang control with switching points τ1, ...τs. It
easily follows from elementary properties of ODEs that the partial derivatives
of state trajectories w.r.t. to the switching points is given by

∂x

∂τk
(t; τ1, ..., τs) = −yk(t) for t ≥ τk, k = 1, ..., s. (30)

This gives the following expression for x̄(t) :

x̄(t) = −
s∑

k=1

∂x

∂τk
(t)ξk + y0(t). (31)

In a special case that frequently arises in practice, we can use these formulas
to show that K = {0}. This property then yields a first order sufficient condition
in view of Theorem 3.2. Namely, consider the problem with an integral cost
functional (16) where the initial time t0 = t̂0 is fixed, while the final time t1
is free, and where the initial and final values of the state variables are given:
minimize

J =
∫ t1

t0

f0(t, x, u)dt (32)

subject to

ẋ = f(t, x, u), x(t0) = x̂0, x(t1) = x̂1, u(t) ∈ U. (33)

In the definition of K we then have t̄0 = 0, x̄(t0) = 0, x̃(t1) = 0. The condition
x̄(t0) = 0 implies that y0(t) ≡ 0 whereas the condition x̃(t1) = 0 yields in view
of the representation (29)

s∑
k=1

yk(t1)ξk + ẋ(t1)t̄1 = 0.

This equation leads to the following statement:
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Proposition 3.5 In problem (32), (33), assume that the s+ 1 vectors

yk(t1) = − ∂x

∂τk
(t1) (k = 1, ..., s), ẋ(t1)

are linearly independent. Then the critical cone is K = {0}.

We conclude this subsection with a special property of the critical cone for
time–optimal control problems with fixed initial time and state,

t1 → min, ẋ = f(t, x, u), u ∈ U, t0 = t̂0, x(t0) = x̂0, K(x(t1)) = 0, (34)

where f is defined by (4). The following result generalizes Proposition 3.1 from
Maurer, Osmolovskii (2001) and will be used in Example 5.2 to simplify the
critical cone.

Proposition 3.6 Suppose that there exists (ψo, ψ) ∈ M0 such that α0 > 0.
Then t̄1 = 0 holds for each z̄ = (t̄1, ξ, x̄) ∈ K.

Proof. For arbitrary (ψ0, ψ) ∈M0 and z̄ = (t̄1, ξ, x̄) ∈ K we infer from the proof
of Proposition 3.1 that ψ(t)x̄(t) is a constant function on [t0, t1]. In view of the
relations ψ(t1) = βKx1(x(t1)), Kx1(x(t1))x̃1 = 0 and x̃1 = x̄(t1) + ẋ(t1)t̄1 we
get

0 = (ψx̄)(t0) = (ψx̄)(t1) = ψ(t1)(x̃1 − ẋ(t1)t̄1) = −ψ(t1)ẋ(t1)t̄1 = ψ0(t1)t̄1 .

Since ψ0(t1) = α0 > 0, this relation yields t̄1 = 0.
In the case of α0 > 0 we note as a consequence that the critical cone is a

subspace defined by the conditions

˙̄x = fx(t)x̄, [x̄]k = [ẋ]kξk (k = 1, ..., s),
t̄0 = t̄1 = 0, x̄(t0) = 0, Kx1(x(t1))x̄(t1) = 0.

(35)

3.2. Quadratic necessary optimality conditions

Let us introduce a quadratic form on the critical cone K defined by the conditions
(24), (25). For each λ ∈M0 and z̄ ∈ K we set

Ω(λ, z̄) = 〈Ap̃, p̃〉 +
s∑

k=1

(
Dk(H)ξ2k + 2[Hx]kx̄kavξk

)
+
∫
∆

〈Hxxx̄(t), x̄(t)〉 dt, (36)

where

〈Ap̃, p̃〉 = 〈lppp̃, p̃〉 + 2ψ̇(t0)x̃0 t̄0 + (ψ̇0(t0) − ψ̇(t0)ẋ(t0))t̄20
−2ψ̇(t1)x̃1 t̄1 − (ψ̇0(t1) − ψ̇(t1)ẋ(t1))t̄21, (37)

lpp = lpp(α0, α, β, p), p = (t0, x(t0), t1, x(t1)),
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Hxx = Hxx(t, x(t), u(t), ψ(t)), x̄kav =
1
2
(x̄k− + x̄k+).

Note that the functional Ω(λ, z̄) is linear in λ and quadratic in z̄. Also note
that for a problem on a fixed time interval [t0, t1] we have t̄0 = t̄1 = 0 and,
hence, the quadratic form (37) reduces to 〈Ap̃, p̃〉 = 〈lppp̃, p̃〉. The following
theorem gives the main second order necessary condition of optimality.

Theorem 3.1 If the trajectory T affords a Pontryagin minimum, then the fol-
lowing Condition A holds: the set M0 is nonempty and

max
λ∈M0

Ω(λ, z̄) ≥ 0 for all z̄ ∈ K.

We call Condition A the necessary quadratic condition, although it is truly
quadratic only ifM0 is a singleton. In the last case we have an accessory problem:
minimize the quadratic form Ω on the critical cone K.

3.3. Quadratic sufficient optimality conditions

A natural strengthening of the necessary Condition A turns out to be a sufficient
optimality condition not only for a Pontryagin minimum, but also for a strong
minimum, see Definition 2.3. The following result has been obtained in Milyutin,
Osmolovskii (1998), Part 2, Chapter 3, section 12.4, and Osmolovskii (2003).

Theorem 3.2 Let the following Condition B be fulfilled for the trajectory T :
(a) u(t) is a bang-bang control for which condition (21) holds,

(b) there exists λ ∈M0 such that Dk(H) > 0, k = 1, . . . , s,

(c) max
λ∈M0

Ω(λ, z̄) > 0 for all z̄ ∈ K \ {0}.
Then T is a strict strong minimum.

Note that the condition (c) is automatically fulfilled, if K = {0}, which gives
a first order sufficient condition for a strong minimum in the problem. A specific
situation where K = {0} holds was described in Proposition 3.5. Also note that
the condition (c) is automatically fulfilled if there exists λ ∈M0 such that

Ω(λ, z̄) > 0 for all z̄ ∈ K \ {0}. (38)

Example: Resource allocation problem. Let x(t) be the stock of a resource and
let the control u(t) be the investment rate. The control problem is to maximize
the overall consumption∫ t1

0

x(t)(1 − u(t)) dt

on a fixed time interval [0, t1] subject to

ẋ(t) = x(t)u(t), x(0) = x0 > 0, 0 ≤ u(t) ≤ 1 .
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The Pontryagin function (5) for the equivalent minimization problem is

H = α0x(u − 1) + ψ xu = −α0x+ σu, σ(x, ψ) = x(α0 + ψ).

A straightforward discussion of the minimum principle shows that the optimal
solution has one switching point τ1 = t1 − 1 for t1 > 1. Moreover, we can take
α0 = 1 and find

u(t) =
{

1 , 0 ≤ t ≤ τ1
0 , τ1 ≤ t ≤ t1

}
,

(x(t), ψ(t)) =
{

(x0e
t,−e−(t−τ1)) , 0 ≤ t ≤ τ1

(x0e
τ1 , t− t1) , τ1 ≤ t ≤ t1

}
The switching function is σ(t) = x(t)(1 − ψ(t)) for which we compute σ̇(τ1) =
x0e

τ1 �= 0. Here we have k = 1, [u]1 = −1 and thus obtain D1(H) = −σ̇(τ1)[u]1

= σ̇(τ1) > 0 in view of (12) and (14). Hence, conditions (a) and (b) of Theorem
3.2 hold. The check of condition (c) is rather simple since the quadratic form
(36) reduces here to Ω(λ, z̄) = D1(H)ξ21 . This relation follows from Hxx ≡ 0
and [Hx]1 = (1 + ψ(τ1))[u]1 = 0 and the fact that the quadratic form (37)
vanishes. Note that the above control problem can not be handled in the class
of convex optimization problems. This means that the necessary conditions do
not automatically imply optimality of the computed solution.

We conclude this subsection with the case of a time–optimal control problem
(34) with a single switching point, i.e., s = 1. Assume that α0 > 0 for a given
λ ∈ M0. Then, by Proposition 3.6 we have t̄1 = 0 and thus the critical cone
is the subspace defined by (35). In this case, the quadratic form Ω can be
computed explicitly as follows. Denote by y(t), t ∈ [τ1, t1], the solution to the
Cauchy problem

ẏ = fxy, y(τ1) = [ẋ]1.

The following assertion is obvious: if (ξ, x̄) ∈ K, then x̄(t) = 0 for t ∈ [t0, τ1)
and x̄(t) = y(t)ξ for t ∈ (τ1, t1]. Therefore, the inequality Kx1(x(t1))y(t1) �= 0
would imply K = {0}. Consider now the case Kx1(x(t1))y(t1) = 0. This
condition always holds for time–optimal problems with a scalar function K and
α0 > 0. Indeed, the condition d

dt(ψy) = 0 implies (ψy)(t) = const. in [τ1, t1],
whence

(ψy)(t1) = (ψy)(τ1) = ψ(τ1)[ẋ]1 = σ(τ1)[u]1 = 0.

Using the transversality condition ψ(t1) = βKx1(x(t1)) and the inequality β �= 0
(if β = 0, then ψ(t1) = 0 and hence ψ(t) = 0 and ψ0(t) = 0 in [t0, t1]) we see
that the equality (ψy)(t1) = 0 implies the equality Kx1(x(t1)y(t1) = 0.

Observe now that the cone K is a one–dimensional subspace on which the
quadratic form has the representation Ω = ρξ2, where

ρ := D1(H) − [ψ̇]1[ẋ]1 +

t1∫
τ1

(y(t))∗Hxx(t)y(t) dt+ (y(t1))∗(βK)x1x1y(t1). (39)
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This gives the following result.

Proposition 3.7 Suppose that we have found an extremal for the time–optimal
control problem (35) that has one switching point and satisfies α0 > 0 and
Kx1(x(t1)y(t1) = 0. Then the inequality ρ > 0 with ρ defined in (39) is equiva-
lent to the positive definiteness of Ω on K.

4. Sufficient conditions for positive definiteness of the
quadratic form Ω on the critical cone K

Assume that the following conditions are fulfilled for the trajectory T :
(i) u(t) is a bang-bang control with s ≥ 1 switching points;

(ii) there exists λ ∈M0 such that Dk(H) > 0, k = 1, . . . , s.
Let λ ∈ M0 be a fixed element (possibly, different from that in the as-

sumption (ii)) and let Ω = Ω(λ, ·) be the quadratic form (36) for this element.
According to Theorem 3.2, the positive definiteness of Ω on the critical cone K
is a sufficient condition for a strict strong minimum of the trajectory. Recall
that K is defined by (25) and the condition p̃ ∈ K0 where p̃ = (t̄0, x̃0, t̄1, x̃1),
x̃0 = x̄(t0)+ t̄0ẋ(t0), x̃1 = x̄(t1)+ t̄1ẋ(t1). The cone K0 is defined by (28) in the
case α0 > 0 and by (24) in the general case.

Now our aim is to find sufficient conditions for the positive definiteness of
the quadratic form Ω on the cone K. In what follows we shall use some ideas
and results presented in Maurer, Osmolovskii (2001) and in Osmolovskii, Lem-
pio (2002), who have extended the Riccati approach from Maurer, Pickenhain
(1995), Zeidan (1994) to broken extremals.

4.1. Q-transformation of Ω on K

Let Q(t) be a symmetric matrix on [t0, t1] with piecewise continuous entries
which are absolutely continuous on each interval of the set [t0, t1]\θ. Therefore,
Q may have a jump at each point τk ∈ θ. For z̄ ∈ K we obviously have

t1∫
t0

d

dt
〈Qx̄, x̄〉 dt = 〈Qx̄, x̄〉

∣∣∣∣
t1

t0

−
s∑

k=1

[〈Qx̄, x̄〉]k ,

where [〈Qx̄, x̄〉]k is the jump of the function 〈Qx̄, x̄〉 at the point τk ∈ θ. Using
the equation ˙̄x = fxx̄ with fx = fx(t, x(t), u(t)), we obtain

s∑
k=1

[〈Qx̄, x̄〉]k +

t1∫
t0

〈(Q̇+ f∗
xQ+Qfx)x̄, x̄〉 dt− 〈Qx̄, x̄〉(t1) + 〈Qx̄, x̄〉(t0) = 0,
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where the asterisk denotes transposition. Adding this zero-form to Ω and using
the equality [Hx]k = −[ψ̇]k we get

Ω = 〈Ap̃, p̃〉 − 〈Qx̄, x̄〉(t1) + 〈Qx̄, x̄〉(t0)

+
s∑

k=1

(
Dk(H)ξ2k − 2[ψ̇]kx̄kavξk + [〈Qx̄, x̄〉]k

)
(40)

+

t1∫
t0

〈(Hxx + Q̇+ f∗
xQ+Qfx)x̄, x̄〉 dt.

We shall call this formula the Q-transformation of Ω on K.
In order to eliminate the integral term in Ω we assume that Q(t) satisfies

the following linear matrix differential equation,

Q̇+ f∗
xQ+Qfx +Hxx = 0 on [t0, t1] \ θ. (41)

It is interesting to note that the same equation is obtained from the modified
Riccati equation in Maurer, Pickenhain (1995), equation (47), when all con-
trol variables are on the boundary of the control constraints. Using (41) the
quadratic form (40) reduces to

Ω = ω0 +
s∑

k=1

ωk , (42)

ωk := Dk(H)ξ2k − 2[ψ̇]kx̄kavξk + [〈Qx̄, x̄〉]k , k = 1, . . . , s, (43)
ω0 := 〈Ap̃, p̃〉 − 〈Qx̄, x̄〉(t1) + 〈Qx̄, x̄〉(t0). (44)

Thus, we have proved the following statement:

Proposition 4.1 Let Q(t) satisfy the linear differential equation (41) on [t0, t1]\
θ. Then for each z̄ ∈ K the representation (42) holds.

Now our goal is to derive conditions such that ωk > 0, k = 0, . . . , s, holds on
K \ {0}. To this end we shall express ωk via the vector (ξk, x̄k−). We use the
formula

x̄k+ = x̄k− + [ẋ]kξk, (45)

which implies

〈Qk+x̄k+, x̄k+〉 = 〈Qk+x̄k−, x̄k−〉 + 2〈Qk+[ẋ]k, x̄k−〉ξk + 〈Qk+[ẋ]k, [ẋ]k〉ξ2k.

Consequently,

[〈Qx̄, x̄〉]k = 〈[Q]kx̄k−, x̄k−〉 + 2〈Qk+[ẋ]k, x̄k−〉ξk + 〈Qk+[ẋ]k, [ẋ]k〉ξ2k.

Using this relation together with

x̄kav = x̄k− +
1
2
[ẋ]kξk
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in the definition (43) of ωk, we obtain

ωk = {Dk(H) +
(
([ẋ]k)∗Qk+ − [ψ̇]k

)
[ẋ]k} ξ2k

+2
(
([ẋ]k)∗Qk+ − [ψ̇]k

)
x̄k−ξk + (x̄k−)∗[Q]kx̄k−.

(46)

Here [ẋ]k and x̄k− are column vectors, while ([ẋ]k)∗, (x̄k−)∗ and [ψ̇]k are row
vectors. By putting

qk+ = ([ẋ]k)∗Qk+ − [ψ̇]k, bk+ = Dk(H) + (qk+)[ẋ]k (47)

we get

ωk = (bk+)ξ2k + 2(qk+)x̄k−ξk + (x̄k−)∗[Q]kx̄k−. (48)

Note that ωk is a quadratic form in the variables (ξk, x̄k−) with the matrix

Mk+ =

(
bk+ qk+

(qk+)∗ [Q]k

)
, (49)

where qk+ is a row vector and (qk+)∗ is a column vector.
Similarly, using the relation

x̄k− = x̄k+ − [ẋ]kξk,

we obtain

[〈Qx̄, x̄〉]k = 〈[Q]kx̄k+, x̄k+〉 + 2〈Qk−[ẋ]k, x̄k+〉ξk − 〈Qk−[ẋ]k, [ẋ]k〉ξ2k.

This formula, together with the relation

x̄kav = x̄k+ − 1
2
[ẋ]kξk,

leads to the representation

ωk = (bk−)ξ2k + 2(qk−)x̄k+ξk + (x̄k+)∗[Q]kx̄k+, (50)

where

qk− = ([ẋ]k)∗Qk− − [ψ̇]k, bk− = Dk(H) − (qk−)[ẋ]k. (51)

We consider (50) as a quadratic form in the variables (ξk, x̄k+) with the matrix

Mk− =

(
bk− qk−

(qk−)∗ [Q]k

)
. (52)

Since the right hand sides of equalities (48) and (50) are connected by the
relation (45), the following statement obviously holds.
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Proposition 4.2 For each k = 1, . . . , s, the positive (semi)definiteness of the
matrix Mk− is equivalent to the positive (semi)definiteness of the matrix Mk+.

Now we can prove two theorems.

Theorem 4.1 Assume that s = 1. Let Q(t) be a solution of the linear differ-
ential equation (41) on [t0, t1] \ θ which satisfies two conditions:
(i) the matrix M1+ is positive semidefinite and
(ii) the quadratic form ω0 is positive on the cone K0 \ {0}.
Then Ω is positive on K \ {0}.

Proof. Take an arbitrary element z̄ ∈ K. Conditions (i) and (ii) imply that
ωk ≥ 0 for k = 0, 1, and hence Ω = ω0 + ω1 ≥ 0 for this element. Assume now
that Ω = 0. Then, ωk = 0 for k = 0, 1. In virtue of (ii) the equality ω0 = 0
implies that t̄0 = t̄1 = 0 and x̄(t0) = x̄(t1) = 0. The last two equalities together
with equation ˙̄x = fxx̄ show that x̄(t) = 0 in [t0, τ1)∪(τ1, t1]. Now using formula
(43) for ω1 = 0, as well as the conditions D1(H) > 0 and x̄1− = x̄1+ = 0 we
obtain that ξ1 = 0. Consequently, we have z̄ = 0 which means that Ω is positive
on K \ {0}.

Theorem 4.2 Assume that s ≥ 2. Let Q(t) be a solution of the linear differ-
ential equation (41) on [t0, t1] \ θ, which satisfies the following conditions:
(a) the matrix Mk+ is positive semidefinite for each k = 1, . . . , s;
(b) bk+ := Dk(H) + (qk+)[ẋ]k > 0 for each k = 1, . . . , s− 1;
(c) the quadratic form ω0 is positive on the cone K0 \ {0}.
Then Ω is positive on K \ {0}.

Proof. Take an arbitrary element z̄ ∈ K. Conditions (a) and (c) imply that
ωk ≥ 0 for k = 0, 1, . . . , s and hence Ω ≥ 0 for this element.

Assume that Ω = 0. Then ωk = 0 for k = 0, 1, . . . , s. In virtue of (c) the
equality ω0 = 0 implies that t̄0 = t̄1 = 0 and x̄(t0) = x̄(t1) = 0. The last two
equalities together with equation ˙̄x = fxx̄ show that x̄(t) = 0 in [t0, τ1)∪ (τs, t1]
and hence x̄1− = x̄s+ = 0. The conditions ω1 = 0, x̄1− = 0 and b1+ > 0 by
formula (48) (with k = 1) yield ξ1 = 0. Then [x̄]1 = 0 and hence x̄1+ = 0.
The last equality together with equation ˙̄x = fxx̄ show that x̄(t) = 0 in (t1, t2)
and hence x̄2− = 0. Similarly, the conditions ω2 = 0, x̄2− = 0 and b2+ > 0 by
formula (48) (with k = 2) imply that ξ2 = 0 and x̄(t) = 0 in (t2, t3). There-
fore, x̄3− = 0, etc. Continuing this process we get that x̄ ≡ 0 and ξk = 0 for
k = 1, . . . , s− 1. Now, using formula (43) for ωs = 0, as well as the conditions
Ds(H) > 0 and x̄ ≡ 0 we obtain that ξs = 0. Consequently, we have z̄ = 0
which means that Ω is positive on K \ {0}.

Similarly, using representation (50) for ωk we can prove the following state-
ment:
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Theorem 4.3 Let Q(t) be a solution of the linear differential equation (41) on
[t0, t1] \ θ which satisfies the following conditions:
(a’) the matrix Mk− is positive semidefinite for each k = 1, . . . , s;
(b’) bk− := Dk(H) − (qk−)[ẋ]k > 0 for each k = 2, . . . , s (if s = 1, then this
condition is not required);
(c) the quadratic form ω0 is positive on the cone K0 \ {0}.
Then Ω is positive on K \ {0}.

4.2. The case of fixed initial values t0 and x(t0)

Consider the problem (1)-(3) with additional constraints t0 = t̂0 and x(t0) = x̂0.
In this case we have additional equalities in the definition of the critical cone K:
t̄0 = 0 and x̃0 := x̄(t0)+t̄0ẋ(t0) = 0 whence x̄(t0) = 0. The last equality together
with the equation ˙̄x = fxx̄ shows that x̄(t) = 0 in [t0, τ1) whence x̄1− = 0. From
definitions (44) and (37) of ω0 and 〈Ap̃, p̃〉, respectively, it follows that for each
z̄ ∈ K we have

ω0 = 〈A1p̃, p̃〉 − 〈Q(t1)(x̃1 − t̄1ẋ(t1)), (x̃1 − t̄1ẋ(t1))〉, (53)

where

〈A1p̃, p̃〉 = lt1t1 t̄
2
1 + 2lt1x1 x̃1 t̄1 + 〈lx1x1 x̃1, x̃1〉

−2ψ̇(t1)x̃1 t̄1 − (ψ̇0(t1) − ψ̇(t1)ẋ(t1))t̄21. (54)

The equalities t̄0 = 0 and x̃0 = 0 hold also for each element p̃ of the finite
dimensional and finite–faced cone K0 given by (28) for α0 > 0 and by (24)
in the general case. Rewriting the terms ω0 we get a quadratic form in the
variables (t̄1, x̃1) generated by the matrix

B :=
(
B11 B12

B∗
12 B22

)
,

where

B11 = lt1t1 + ψ̇(t1)ẋ(t1) − ψ̇0(t1) − ẋ(t1)∗Q(t1)ẋ(t1),
B12 = lt1x1 − ψ̇(t1) + ẋ(t1)∗Q(t1),
B22 = lx1x1 −Q(t1).

(55)

The property x̄(t) = 0 in [t0, τ1) for z̄ ∈ K allows to refine Theorems 4.1 and
4.2.

Theorem 4.4 Assume that the initial values t0 = t̂0 and x(t0) = x̂0 are fixed
in the problem (1)-(3), and let s=1. Let Q(t) be a continuous solution of the
linear differential equation (41) on [τ1, t1] which satisfies two conditions:
(i) b1 := D1(H) +

(
([ẋ]1)∗Q(τ1) − [ψ̇]1

)
[ẋ]1 ≥ 0;

(ii) the quadratic form ω0 is positive on the cone K0 \ {0}.
Then Ω is positive on K \ {0}.
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Proof. Continue Q(t) arbitrarily as a solution of differential equation (41) to
the whole interval [t0, t1] with possible jump at the point τ1. Note that the
value b1 in condition (i) is the same as the value b1+ for the continued solution,
and hence b1+ ≥ 0. Let z̄ ∈ K and hence x̄1− = 0. Then by (48) with k = 1
the condition b1+ ≥ 0 implies the inequality ω1 ≥ 0. Condition (ii) implies the
inequality ω0 ≥ 0. Consequently Ω = ω0 + ω1 ≥ 0. Further arguments are the
same as in the proof of Theorem 4.1.

Theorem 4.5 Assume that the initial values t0 = t̂0 and x(t0) = x̂0 are fixed
in the problem (1)-(3) and s ≥ 2. Let Q(t) be a solution of the linear differential
equation (41) on (τ1, t1] \ θ which satisfies the following conditions:
(a) the matrix Mk+ is positive semidefinite for each k = 2, . . . , s;
(b) bk+ := Dk(H) + (qk+)[ẋ]k > 0 for each k = 1, . . . , s− 1;
(c) the quadratic form ω0 is positive on the cone K0 \ {0}.
Then Ω is positive on K \ {0}.

Proof. Again, without loss of generality we can consider Q(t) as a discontinuous
solution of equation (41) on the whole interval [t0, t1]. Let z̄ ∈ K. Then by (48)
with k = 1 the conditions b1+ > 0 and x̄1− = 0 imply the inequality ω1 ≥ 0.
Further arguments are the same as in the proof of Theorem 4.2.

4.3. Q-transformation of Ω to perfect squares

We shall formulate special jump conditions for the matrixQ at each point τk ∈ θ.
This will make it possible to transform Ω to perfect squares and thus to prove
its positive definiteness on K.

Proposition 4.3 (Osmolovskii, Lempio, 2002) Suppose that

bk+ := Dk(H) + (qk+)[ẋ]k > 0 (56)

and that Q satisfies the jump condition at τk

bk+[Q]k = (qk+)∗(qk+), (57)

where (qk+)∗ is a column vector while qk+ is a row vector. Then ωk can be
written as the perfect square

ωk = (bk+)−1
(
(bk+)ξk + (qk+)(x̄k−)

)2
(58)

= (bk+)−1
(
Dk(H)ξk + (qk+)(x̄k+)

)2
.

Proof. Using (48), (56), and (57), we obtain

ωk = (bk+)ξ2k + 2(qk+)x̄k−ξk + (x̄k−)∗[Q]kx̄k−

= (bk+)−1
(
(bk+)2ξ2k + 2(qk+)x̄k−(bk+)ξk +

(
(qk+)x̄k−

)2)
= (bk+)−1

(
(bk+)ξk + (qk+)(x̄k−)

)2
.
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Since

(bk+)ξk + (qk+)x̄k− =
(
Dk(H) + (qk+)[ẋ]k

)
ξk + (qk+)x̄k−

= Dk(H)ξk + (qk+)[x̄]k + (qk+)x̄k− = Dk(H)ξk + (qk+)x̄k+,

we see that equality (58) holds.

Theorem 4.6 Let Q(t) satisfy the linear differential equation (41) on [t0, t1]\θ
and let conditions (56) and (57) hold for each k = 1, . . . , s. Let ω0 be positive
on K0 \ {0}. Then Ω is positive on K \ {0}.

Proof. By Proposition 4.3 and formulae (48), (49) the matrix Mk+ is positive
semidefinite for each k = 1, . . . , n. Now using Theorem 4.1 for s = 1 and
Theorem 4.2 for s ≥ 2 we obtain that Ω is positive on K \ {0}.
Similar assertions hold for the jump conditions that use left hand values of Q
at each point τk ∈ θ.

Proposition 4.4 (Osmolovskii, Lempio, 2002) Suppose that

bk− := Dk(H) − (qk−)[ẋ]k > 0 (59)

and that Q satisfies the jump condition at τk

bk−[Q]k = (qk−)∗(qk−). (60)

Then

ωk = (bk−)−1
(
(bk−)ξk + (qk−)(x̄k+)

)2
(61)

= (bk−)−1
(
Dk(H)ξk + (qk−)(x̄k−)

)2
.

Theorem 4.7 Let Q(t) satisfy the linear differential equation (41) on [t0, t1]\θ,
and let conditions (59) and (60) hold for each k = 1, . . . , s. Let ω0 be positive
on K0 \ {0}. Then Ω is positive on K \ {0}.

5. Numerical examples

5.1. Minimal fuel consumption of a car

The following optimal control problem has been treated by Oberle, Pesch (2000)
as an exercise of applying the minimum principle. Consider a car whose dynam-
ics (position x1 and velocity x2) are subject to friction and gravitational forces.
The acceleration u(t) is proportional to the fuel consumption. Thus the control
problem is to minimize the total fuel consumption

J =
∫ t1

0

u(t) dt (62)
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in a time interval [0, t1] subject to the dynamic constraints, boundary conditions
and the control constraints

ẋ1 = x2, ẋ2 =
u

mx2
− αg − c

m
x2

2, (63)

x1(0) = 0, x2(0) = 1, x1(t1) = 10, x2(t1) = 3, (64)
umin ≤ u(t) ≤ umax, 0 ≤ t ≤ t1. (65)

The final time t1 is unspecified. The following values of the constants will be
used in computations below:

m = 4, α = 1, g = 10, c = 0.4, umin = 100, umax = 140.

In view of the integral cost criterion (62) we consider the Pontryagin function
(Hamiltonian) (19) where we can put α0 = 1,

H(x1, x2, ψ1, ψ2, u) = u+ ψ1x2 + ψ2

(
u

mx2
− αg − c

m
x2

2

)
. (66)

The adjoint equations (8) are

ψ̇1 = 0, ψ̇2 = −ψ1 + ψ2

(
u

mx2
2

+
2c
m
x2

)
. (67)

The condition (11) evaluated for the free final time t1 yields the additional
boundary condition

u(t1) + 3ψ1(t1) + ψ2(t1)
(
u(t1)
3m

− αg − 9c
m

)
= 0. (68)

The switching function

σ(x, ψ) = DuH = 1 +
ψ2

mx2
, σ(t) = σ(x(t), ψ(t)),

determines the control law as

u(t) =
{
umin, if σ(t) > 0
umax, if σ(t) < 0

}
.

Computations give evidence to the fact that the optimal control is bang–bang
with one switching point τ1,

u(t) =
{
umin, 0 ≤ t ≤ τ1
umax, τ1 ≤ t ≤ t1

}
.

We have used both the code BNDSCO of Oberle, Grimm (1989) and the package
NUDOCCCS of Büskens (1998) to compute the switching point τ1, the final
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Figure 1. Optimal fuel consumption for a car: optimal state x2 (left) and adjoint
variable ψ2 (right) on the normalized time interval [0, 1]

time t1 and the adjoint variables ψ(t). The following numerical results allow to
reconstruct the complete solution that is displayed in Fig. 1:

τ1 = 3.924283925 , t1 = 4.25407390 ,
ψ1(0) = −42.24169870 , ψ2(0) = −3.87639606 ,
x1(τ1) = 9.08646352 , x2(τ1) = 2.36732904 ,
ψ1(t1) = −42.24169870 , ψ2(t1) = −17.31509202 .

We will show that this trajectory satisfies the assumptions of Proposition
3.5 which yields the critical cone K = {0}. It can be verified immediately that
the computed vectors

∂x

∂τ1
(t1) = (−0.6326710 , −0.7666666)∗, ẋ(t1) = (3.0 , 0.7666666)∗

are linearly independent. Moreover, we find, in view of (14),

D1(H) = −σ̇(τ1) [u]1 = 0.472397 · 40 > 0 ,

Theorem 3.2 shows that the computed bang–bang control is indeed a strong
minimum.

5.2. Time–optimal control of the van der Pol oscillator with a non-
linear boundary condition

In Maurer, Osmolovskii (2001), the time–optimal control of a van der Pol os-
cillator with a fixed initial and terminal state was studied. Here, we consider
the same problem but replace the two terminal conditions by one nonlinear ter-
minal condition. This allows us to demonstrate the evaluation of the quadratic
boundary conditions (53)–(55) for the matrix Q(t1). The control problem is to
minimize the endtime t1 subject to the constraints

ẋ1(t) = x2(t) , ẋ2(t) = −x1(t) + x2(t)(1 − x2
1(t)) + u(t) , (69)
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x1(0) = 1.0, x2(0) = 1.0 , x1(t1)2 + x2(t1)2 = r2, r = 0.2 , (70)

|u(t) | ≤ 1 for t ∈ [0, t1 ] . (71)

The Pontryagin (or Hamiltonian) function (5) is given by

H(x, u, ψ) = ψ1x2 + ψ2 (−x1 + x2(1 − x2
1) + u) . (72)

The adjoint equations (8) and boundary conditions (9) are

ψ̇1 = ψ2(1 + 2x1x2), ψ1(t1) = 2βx1(t1),
ψ̇2 = −ψ1 − ψ2(1 − x2

1), ψ2(t1) = 2βx2(t1).
(73)

The boundary condition (11) associated with the free final time t1 leads to

1 + ψ1(t1)x2(t1) + ψ2(t1) (−x1(t1) + x2(t1)(1 − x1(t1)2) + u(t1)) = 0 , (74)

where we have taken α0 = 1. The switching function is σ(t) = Hu(t) = ψ2(t).
The structure of the optimal solution in Maurer, Osmolovskii (2001) for fixed
terminal conditions x1(t1) = x2(t1) = 0 suggests that the optimal control for
the boundary condition x1(t1)2 + x2(t1)2 = r2, r = 0.2, is bang–bang with one
switching point τ1,

u(t) =

{
−1 for 0 ≤ t ≤ τ1

1 for τ1 ≤ t ≤ t1

}
. (75)

In particular, we get the switching condition

σ(τ1) = ψ2(τ1) = 0. (76)

Using either the boundary value solver BNDSCO of Oberle, Grimm (1989) or
the direct optimization routine NUDOCCCS of Büskens (1998) we obtain the
following set of selected values for the switching point, final time and state and
adjoint variables:

τ1 = 0.7139356 , t1 = 2.864192 ,
ψ1(0) = 0.9890682 , ψ2(0) = 0.9945782 ,
x1(τ1) = 1.143759 , x2(τ1) = −0.5687884 ,
ψ1(τ1) = 1.758128 , ψ2(τ1) = 0.0 ,
x1(t1) = 0.06985245 , x2(t1) = −0.1874050 ,
ψ1(t1) = 0.4581826 , ψ2(t1) = −1.229244 ,

β = 3.279646 .

(77)

We have two alternatives to check sufficient conditions. One way is to use
Theorem 4.4 by solving the linear equation (41). Another possibility is offered
by the direct evaluation of the quadratic form as given in Proposition 3.7. Let us
begin with testing the assumptions of Theorem 4.4 and consider the symmetric
2 × 2–matrix

Q(t) =
(
Q11(t) Q12(t)
Q12(t) Q22(t)

)
.
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Figure 2. Time–optimal control of the van der Pol oscillator: state variables (left
column) and adjoint variables (right column) on the normalized time interval
[0, 1].

The linear equations Q̇ = −Qfx− f∗
xQ−Hxx in (41) yield the following ODEs:

Q̇11 = 2Q12(1 + 2x1x2) + 2ψ2x2,

Q̇12 = −(Q11 +Q12(1 − x2
1) +Q22(1 + 2x1x2) + 2ψ2x1,

Q̇22 = −2 (Q12 +Q22(1 − x2
1)).

(78)

In view of Theorem 4.4 we need to determine a solution Q(t) only in the interval
[τ1, t1] such that

D1(H) + (qk+)[ẋ]1 > 0, qk+ = ([ẋ]1)∗Q(τ1) − [ψ̇]1,

holds and the quadratic form ω0 in (53)–(55) is positive definite on the cone K0

defined in (28). Since ψ2(τ1) = 0 we get from (14)

D1(H) = −σ̇(τ1)[u]1 = 2 · ψ1(τ1) = 2 · 1.758128 > 0 .

Furthermore, in view of [ψ̇]1 = 0 we obtain the condition

D1(H) + ([ẋ]1)∗Q(τ1)[ẋ]1 = 2 · 1.758128 + 4Q22(τ1) > 0,
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i.e., we have to choose an initial value Q22(τ1) > −0.879064 . By Proposition
3.6, we have t̄1 = 0 for every element z̄ = (t̄1, ξ, x̄) ∈ K. Therefore, by (55)
we must check that the matrix B22 = 2β I2 − Q(t1) is positive definite on the
critical cone K0 defined in (28), i.e., on the cone

K0 = {(t̄1, v1, v2) | t̄1 = 0, x1(t1)v1 + x2(t1)v2 = 0} .

Thus, the variations (v1, v2) are related by v2 = −v1 x1(t1)/x2(t1). Evaluating
the quadratic form 〈(2β I2−Q(t1))(v1, v2), (v1, v2)〉 with v2 = −v1 x1(t1)/x2(t1),
we arrive at the test

c =

(
2β

(
1 +

(
x1

x2

)2
)

−
(
Q11 − 2

x1

x2
Q12 + (

x1

x2
)2Q22

))
(t1) > 0 .

A straightforward integration of the ODEs (78) using the solution data (77) and
the initial values Q11(τ1) = Q12(τ1) = Q22(τ1) = 0 gives the numerical results

Q11(t1) = 0.241897, Q12(t1) = −0.706142, Q22(t1) = 1.163448,

which yield the positive value c = 7.593456 > 0 . Thus, Theorem 4.4 asserts that
the bang–bang control characterized by (77) provides a strict strong minimum.

The alternative test for SSC is based on Proposition 3.7. The variational
system ẏ(t) = fx(t)y(t), y(τ1) = [ẋ]1, for the variation y = (y1, y2) leads to the
variational system

ẏ1 = y2, y1(τ1) = 0,
ẏ2 = −(1 + 2x12x2)y1 + (1 − x2

1)y2, y2(τ1) = 2,

for which we compute

y1(t1) = 4.929925 , y2(t1) = 1.837486 .

Note that the relationKx1(x(t1))y(t1) = 2(x1(t1)y1(t1)+x2(t1)y2(t1) = 0 holds.
By Proposition 3.7 we have to show that the quantity ρ in (39) is positive,

ρ = D1(H) − [ψ̇]1[ẋ]1 +

t1∫
τ1

(y(t))∗Hxx(t)y(t) dt + (y(t1))∗(βK)x1x1y(t1) > 0 .

Using [ψ̇]1 = 0 and (y(t1))∗(βK)x1x1y(t1) = 2β(y1(t1)2 + y2(t1)2), we finally
obtain

ρ = D1(H) + 184.550 > 0.
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6. Conclusion

We have studied second order sufficient conditions for optimal bang–bang con-
trols. The original form of these conditions as given in Osmolovskii (1995) and
Milyutin, Osmolovskii (1998) required that an associated quadratic form be
positive definite on the critical cone. A direct numerical verification of this test
can be carried out only in rather special cases. Therefore, the main objective of
this paper was to study several representations of the critical cone and transfor-
mations of the quadratic form such as to obtain a more practical second order
test. In particular, it was useful to compute elements of the critical cone as
variations of the state trajectory with respect to the switching points and initial
conditions. Moreover, by means of the solution to a linear matrix ODE, the
quadratic form could be converted to perfect squares. The second order test
has been successfully applied to three numerical examples representing differ-
ent types of control problems. More examples with applications of bang–bang
controls to nonlinear optics may be found in Kim (2002) and Kim et al. (2003).

After finishing this paper, we became interested in exploring the relations
between the SSC in Theorem 3.2 and in Agrachev, Stefani, Zezza (2001, 2002).
A careful study of the second order variations of state trajectories w.r.t. switch-
ing points reveals that the conditions in Theorem 3.2 and in Agrachev et al.
(2002) are indeed equivalent under the assumption α0 > 0. These results will
be reported in a future paper. The theoretical studies also showed that the
SSC in Agrachev et al. (2002) can be checked numerically by a suitable im-
plementation of the program NUDOCCCS of Büskens (1998). Together with
the methods in this article we have thus found several possibilities of testing
SSC. Another promising aspect is that the results of this study can be used in
the development of a theoretical and numerical sensitivity analysis for optimal
bang–bang controls.
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