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Abstract: The problem considered in the paper can be de-
scribed as follows. We are given a continuous mapping from one
metric space into another which is regular (in the sense of met-
ric regularity or, equivalently, controllability at a linear rate) near
a certain point. How small may be an additive perturbation of the
mapping which destroys regularity? The paper contains a new proof
of a recent theorem of Dontchev-Lewis-Rockafellar for linear pertur-
bations of maps between finite-dimensional Banach spaces and an
exact estimate for Lipschitz perturbations of maps between com-
plete metric spaces.
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1. Introduction

We start with a brief informal description of the problems to be dealt with in
the paper. Suppose we have an equation F (x) = y (or an inclusion y ∈ F (x)
with F being a set-valued operator). Let S(y) be the collection of solutions
of the equation depending on the right-hand side parameter y. One of the
important and often asked questions is how to check that the set of solutions does
not change sharply under a minor change of the parameter. A Lipschitz-type
behavior of the solution set is often considered satisfactory. Properly formulated,
it leads to the concept of the pseudo-Lipschitz, or Aubin property (a precise
definition will be given later).

An elementary but very important fact is that a reformulation of this prop-
erty in terms of the mapping F leads to the concept of metric regularity, one of
the most fundamental in nonsmooth and, generally, nonlinear analysis.

Let X and Y be complete metric spaces, and let F : X ⇒ Y be a set-valued
mapping of which we shall always assume that Gr F = {(x, y) : y ∈ Gr F}, the
graph of F , is a closed set. We shall denote the distance in either space by the
same symbol d(·, ·); this should not cause any confusion as the content of the



544 A. D. IOFFE

parenthesis always explains to which space this applies. Given (x̄, ȳ), it is said
that F is metrically regular near (x̄, ȳ) if there are K > 0, ε > 0 such that

d(x, F−1(y)) ≤ Kd(y, F (x)),

provided d(x, x̄) < ε, d(y, ȳ) < ε. The lower bound of all suchK is called the rate
(or the norm) of metric regularity of F near (x̄, ȳ) and is denoted RegF (x̄, ȳ).

In case of a single-valued mapping we slightly change the terminology and
notation and say that F is metrically regular near x̄ and write RegF (x̄).

The concept of metric regularity acquired this final form after decades of
developments whose starting points were the Banach-Schauder open mapping
theorem and the Ljusternik-Graves theorem on local openness of smooth maps
with surjective derivatives. Each of these theorem can be interpreted as a the-
orem on metric regularity of corresponding maps. We refer to Ioffe (2002) for a
detailed historical discussion.

The relationship of metric regularity to local solvability and Lipschitz sta-
bility of solutions of equations or inclusions can be stated in an equally general
setting. Namely, it is said that F covers (or is open) at a linear rate near (x̄, ȳ) if
there are r > 0, ε > 0 such that whenever d(x, x̄) < ε, d(y, ȳ) < ε, the inclusion

B(y, rt) ⊂ F (B(x, t))

holds for all sufficiently small t.
The upper bound of such r is called the rate of covering of F near (x̄, ȳ) and

is denoted SurF (x̄, ȳ).
Furthermore, F is said to be pseudo-Lipschitz (or to have the Aubin property)

near (x̄, ȳ) if there are K > 0 and ε > 0 such that for any y of a neighborhood
of ȳ the function d(y, F (·)) satisfies the Lipschitz condition with constant not
exceeding K in the ε-ball around x̄.1 The lower bound of such K is the Aubin
constant of F near (x̄, ȳ).

The fact of a principal importance is that all three concepts are equivalent
in the following sense: F is metrically regular near (x̄, ȳ) at the rate K if and
only if it is open near (x̄, ȳ) with the rate K−1 and if and only if the inverse
mapping F−1 is pseudo-Lipschitz near (ȳ, x̄) with constant K. The proof of
this equivalence, which is rather a simple reformulation of the definitions can
be found in Ioffe (2002).

In view of this fact, it seems to be convenient to have an umbrella word
to refer to the three properties when there is no need to specify one of them.
The term first order regular seems to be a suitable candidate. However, to
simplify the terminology, we adopt in this paper the following convention, a

1This amounts to saying that

F (u)
\

B(ȳ, ε) ⊂ {y : d(y, F (x)) ≤ Kd(x, u)}

provided d(x, x̄) < ε, d(u, x̄) < ε.
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sort of return to the terminology used in the 1970s, which will allow us to use
the most convenient of the three equivalent properties whenever necessary:

Convention: A set-valued mapping will be called regular near (x̄, ȳ) if it has
the three equivalent properties.

Now let us return to the main question we are going to discuss: how the
regularity property can be affected by perturbations of the mapping. Suppose
now that Y is a Banach space and we perturb F by adding to it a certain
single-valued mapping H. What can be said about regularity of the perturbed
mapping F + H? The following fundamental theorem was proved by Miljutin
in 1980 (see Dimitruk, Miljutin, Osmolovskii, 1980).

Theorem 1.1. Let X be a complete metric space, let Y be a Banach space, let
F : X → Y be a (single-valued mapping) defined in a neighborhood of x̄ ∈ X
which is regular near x̄ with SurF (x̄) = r. Let H : X → Y be another mapping
also defined in a neighborhood of x̄ and satisfying there the Lipschitz condition
with constant L < r. Then F +H is regular near x̄ and

Sur(F +H)(x̄) ≥ r − L.

This result remains valid (with only a slight modification of the proof) for
the case when F is a set-valued mapping and, with a somewhat greater effort,
when H is also a set-valued mapping and the Lipschitz constant relates to the
Hausdorff metric in the space of closed subsets of Y (see Ioffe, 2000). 2

Surprisingly, the natural question whether this lower estimate is precise was
not discussed till very recently when Dontchev, Lewis, Rockafellar (2002) showed
that at least in two cases, when both X and Y are finite dimensional Banach
spaces and when X is also a Banach space and the mapping F is positively
homogeneous of degree one (that is, when F (λx) = λF (x) for all λ > 0), (a)
the lower bound of Lipschitz constants of operators H such that F + H is not
regular is precisely SurF (x̄, ȳ) and (b) moreover, in either case the lower bound
is realized by linear maps of rank one.

These results provide a partial answer to the question and, in turn, in an
equally natural way, lead to further questions of whether it is possible to extend
the results to broader classes of set-valued mappings. As far as part (b) is con-
cerned, the answer is generally negative (although recently Mordukhovich, 2003,
described a class of set-valued mappings from a Banach space into IRn for which
(b) holds). Already in the case of X = Y = H, a Hilbert space, and F single-
valued the lower bound of Sur(F +A)(x̄) over all linear mappings A with norms
equal or smaller that L ≤ SurF (x̄) can be strictly greater than SurF (x̄) − L.

2To be precise: the results quoted, as stated, deal with global rather than local regularity.
However the reduction to local results is straightforward in each case. For an independent
proof of the local version of Miljutin’s theorem see e.g. Ioffe (1987).
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An example of such F , even having reasonably good differentiability properties,
was given in Ioffe (2002).

The final result of this paper (Theorem 4.1) shows that (a) is valid for
arbitrary single-valued mappings from metric into normed spaces, that is to
say, that the lower estimate in the theorem of Miljutin is exact on the class of
locally Lipschitz perturbations. The question of whether or not a similar fact is
valid for set-valued mappings remains open.

We also give a new proof of (b) for set-valued mappings between finite di-
mensional spaces based not on the powerful machinery of subdifferential calculus
(see e.g. Ioffe, 2002, for connections between subdifferential calculus and the
three regularity properties) but rather on simpler calculations involving prop-
erties of the so-called slope which is the simplest and the most precise tool to
characterize the regularity property. We start by discussing necessary properties
of slope in the next section.

2. Slope and the regularity criterion

In this section we formulate the principal local regularity criteria for set-valued
mappings. This criterion is based on the concept of slope introduced in 1980 by
De Giorgi-Marino and Tosques (1980).

Definition 2.1. Let X be a metric space, and let f be a function on X with
values in (−∞,∞] which is finite at x. The quantity

|∇f |(x) = lim sup
u→x
u 6=x

(f(x)− f(u))+

d(x, u)

is called the slope of f at x.
The meaning of this concept is very simple: this is just the highest speed of

decrease of the function from the given point. Slope also can be considered the
quantitative measure of the qualitative concept of calmness due to Clarke and
Rockafellar.

If X is a Banach space and f is Fréchet differentiable at x, then |∇f |(x) =
‖f ′(x)‖ (that is, the slope coincides with the norm of the derivative). More
generally, if f is uniformly directionally differentiable, that is — if the directional
derivative f ′(x;h) exists for any h and t−1(f(x+ th)− f(x)− f ′(x;h)) goes to
zero uniformly on the unit ball as t→ 0, then

|∇f |(x) = [ inf
‖h‖=1

f ′(x;h)]− = sup
‖h‖=1

[f ′(x;h)]−,

where α− = max{0,−α}. For a lower semicontinuous function on a finite dimen-
sional space slopes are completely defined by the lower Hadamard directional
derivative:

f−(x;h) = lim inf
h′→h
t↘0

t−1(f(x+ th′)− f(x)).
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For such functions the value of the slope is defined as in the formula above with
f ′ replaced by f−.

We turn now to the general regularity criterion for set-valued maps, stated
in terms of slopes. Let X, Y be metric spaces. With every F : X ⇒ Y we
associate the following family of functions on X × Y :

ϕy(x, v) =
{
d(y, v), if v ∈ F (x);
∞, if v 6∈ F (x).

In other words,

ϕy(x, v) = d(y, v) + χGr F (x, v),

the second term in the sum being the indicator of Gr F , that is the function
equal to zero on Gr F and infinity outside.

We shall also consider the following family of α-distances in X × Y :

dα((x, v), (u,w)) = d(x, u) + αd(v, w),

and by ∇α we shall denote the slopes of functions on X×Y with respect to the
α-distance, so that

|∇αf |(x, v) = lim sup
(u,w)→(x,v)
(x,u)6=(u,w)

(f(x, v)− f(u,w))+

dα((x, v), (u,w))
.

Theorem 2.1. (Ioffe, 2000). Let X and Y be complete metric spaces, let F :
X ⇒ Y be a set-valued mapping with nonempty closed graph and let (x̄, ȳ) ∈
Gr F . Let finally

m(α) = lim inf
(x,y,v)→(x̄,ȳ,ȳ)

y 6=v

|∇αϕy|(x, v).

Then

SurF (x̄, ȳ) ≥ m(α)
1− αm(α)

.

Moreover, the equality actually holds if Y is a Banach space.
Implicit in this theorem is that, in case of a Banach Y , αm(α) < 1 for any

α and m(α) → SurF (x̄, ȳ) as α→ 0.
We refer to Ioffe (2000, 2001) for an explanation how all known subdifferen-

tial regularity criteria follow from the theorem.
The criterion assumes a nicer form if F has the property that the functions

ψy = d(y, F (·))

are lower semicontinuous for all y (or at least for all y of a neighborhood of ȳ).
This is always the case if both X and Y are finite dimensional Banach spaces.
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Theorem 2.2. (Ioffe, 2000) If in addition to the assumptions of Theorem 1.1,
the functions ψy are lower semicontinuous for all y of a neighborhood of ȳ, then

SurF (x̄, ȳ) ≥ lim inf
(x,y)→(x̄,ȳ)

y 6∈F (x)

|∇ψy|(x).

Moreover, the equality holds if Y is a Banach space.

Remark 2.1. The assumption that Y is a Banach space is not necessary for
the equality to hold in both theorems. This is also true if Y is a metric space
with the the following approximate geodesic property: for any y1, y2 ∈ Y and
any ε > 0 there is a y such that d(y, yi) ≤ (1/2)d(y1, y2) + ε (see Ioffe, 2001).

Remark 2.2. Both functions ϕy and ψy, as functions of y, satisfy the Lipschitz
condition with constant 2 (for the fixed values of arguments).

Remark 2.3. The rates of surjection and metric regularity as well as the values
and slopes of ψy of course depend on specific choice of distances in X and Y .
A simple calculation shows however, that small change of a norm results in a
small change of the rates and the slopes.

3. The finite dimensional case.

In this section we shall apply Theorem 2.2 to prove the following result which
is equivalent to the mentioned theorem of Dontchev, Lewis, Rockafellar (2002).

Theorem 3.1. Let X and Y be finite dimensional Banach spaces, let F : X ⇒ Y
be a set-valued mapping from X into Y with closed graph which is regular near
(x̄, ȳ) ∈ Gr F and SurF (x̄, ȳ) = r > 0. Then for any positive ρ ≤ r there is
a linear operator A : X → Y of rank one with norm equal to ρ and such that
Sur(F +A)(x̄, ȳ +Ax̄) = r − ρ.

The theorem proved in Dontchev, Lewis, Rockafellar (2002) corresponds
to the case ρ = r. The proof given in Dontchev, Lewis, Rockafellar (2002)
is based on the finite dimensional subdifferential regularity criterion for set-
valued mappings, see Mordukhovich (1993), which reduces the problem to non-
singularity of the coderivative at a given point (where “nonsingularity” of a
homogeneous set-valued mapping means that the distance from zero to any
value of the mapping is not smaller than the norm of the argument times a fixed
constant). An obvious observation is that non-singularity of a homogeneous
mapping can be destroyed by an addition of a rank one linear operator. The
criterion is one of the most advanced results of finite dimensional nonsmooth
analysis. We give below an alternative proof of the theorem which does not
need any reference to subdifferential calculus.

We precede the proof with with a lemma which gives important information
about slopes.
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Lemma 3.1. Let X be a finite dimensional Banach space with smooth norm, and
let f be a lower semicontinuous function on X. Suppose that |∇f |(x) = r > 0.
Then, for any ε > 0 there are w ∈ X, r′ > 0 an x∗ ∈ X∗ such that ‖x−w‖ < ε,
‖x∗‖ = 1, r′ ≤ r + ε and

f(u) + r′〈x∗, u〉+ ε‖u− w‖ ≥ f(w)

for all u in a neighborhood of w.
Proof. By the definition of slope for any δ > 0 the function f(u)+(r+δ)‖u−x‖
attains a local minimum at x.

Given an ε > 0, we choose a δ ∈ (0, ε), e.g. δ = ε/2, and find a σ < δ to
make sure that

f(u) + (r + δ)‖u− x‖ > f(x)

if ‖u− x‖ ≤ σ, x 6= u.
Next, we choose K > 0 and p > 1 for which the following inequality holds:

r + δ ≤ Kσp−1 <
r + ε

p
.

This is clearly possible as δ < ε.
Consider the function

g(u) = f(u) +K‖u− x‖p,

Then

g(u) = f(u) +Kσp−1‖u− x‖ > g(x) = f(x)

if ‖u−x‖ = σ. It follows that g(u) attains a local minimum at a certain w with
‖w − x‖ < σ. Clearly w 6= x. Indeed, as the norm is smooth and p > 1, the
function ‖ · ‖p is smooth and its derivative at zero is zero. Therefore, w = x
would mean that |∇f |(x) = |∇g|(x) = 0, contrary to the assumption.

The derivative of ‖ · ‖p at w can thus be written in the form p‖w−x‖p−1x∗,
where ‖x∗‖ = 1 and 〈x∗, w − x〉 = ‖w − x‖. We have for u close to w:

g(w) ≤ g(u) = f(u)+K‖u−x‖p = f(u)+K‖w−x‖p−1〈x∗, u−w〉+o(‖u−w‖).

The proof is completed by setting r′ = Kp‖w − x‖p−1 ≤ Kpσp−1 < r + ε.

Remark 3.1. The lemma easily extends to spaces with Gâteaux differentiable
renorms (or even to spaces with a Lipschitz Gâteaux differentiable bump) with
the help of one of the variational principle of Borwein-Preiss.
Proof of Theorem 3.1.

1. It follows from Remark 2.3 in the preceding section that we only need
to prove the theorem under the additional assumption that the norm in Y is
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strictly convex and smooth. Indeed, let ‖ · ‖n be a sequence of smooth strictly
convex norms in Y converging to ‖ · ‖. Let rn be the corresponding rate of
covering by F near (x̄, ȳ) and let An be a rank one linear operator X → Y
whose norm (corresponding to the n-th norm in Y ) is ρn → ρ. We can assume
that An converge to a certain operator A which will obviously be of rank one
and whose ‖ · ‖-norm is ρ. By Remark 2.3 the rates of covering of F + A near
(x̄, ȳ+Ax̄) corresponding to the n-th norms converge to Sur(F +A)(x̄, ȳ+Ax̄).
On the other hand, by Miljutin’s theorem, the rates of covering of F + A and
F +An (at the corresponding points) corresponding to the n-th norm differ by
at most ‖A−An‖n.

2. For a finite dimensional space the functions d(y, F (·)) are automatically
lower semicontinuous if the graph of F is closed, so we can apply Theorem 2.2.
It follows that |∇yψ|(x) > 0 for all (x, y) 6∈ Gr F of a neighborhood of (x̄, ȳ),
and in any neighborhood of (x̄, ȳ) we can find an (x, y) such that |∇ψy|(x) is
arbitrarily close to r. By Lemma 3.1 the latter implies the existence of sequences
(xn) → x̄, (yn) → ȳ, (rn) → r, (εn) ↘ 0 and x∗n such that yn 6∈ F (xn), ‖x∗n‖ = 1
and for any n

d(yn, F (u)) + rn〈x∗n, u− xn〉+ εn‖u− xn‖ ≥ d(yn, F (xn)) (1)

for all u of a neighborhood of xn.
Let vn ∈ F (xn) be the closest to yn in F (xn). We can assume without loss of

generality that vn is the unique closest point to yn in F (xn). Indeed, otherwise
we can replace yn by αnyn + (1 − αn)vn with αn → 1. As the norm in X is
strictly convex, vn becomes a unique closest point to yn after the replacement.

For each n consider two complementary sets:

Pn = {u : d(yn, F (u)) ≥ d(yn, F (xn)) + ρ‖u− xn|};

Qn = {u : d(yn, F (u)) < d(yn, F (xn)) + ρ‖u− xn‖}.

The second set meets any neighborhood of xn at infinitely many points as
the slope of d(yn, F (·)) is positive. For any u ∈ Qn, u 6= xn choose a v(u) ∈ F (u)
such that ‖yn − v(u)‖ = d(yn, F (u)). We claim that

u ∈ Qn, u→ xn, v ∈ F (u), d(yn, F (u)) = ‖v − yn‖ ⇒ v → vn. (2)

Indeed, let w be any limiting point of such v. Clearly, w ∈ F (xn) as F is
closed-graph. Therefore

d(yn, F (xn)) ≤ ‖yn − w‖ ≤ lim sup
u→xn
u∈Qn

d(yn, F (u)) ≤ d(yn, F (xn)) (3)

which proves the claim as vn is the unique closest point to yn in F (xn).
3. Set hn = ‖vn − yn‖−1(vn − yn). We may assume that hn converge to a

certain h and x∗n converge to a certain x∗, both being vectors of norm one. Set
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for x ∈ X
Ax = ρ〈x∗, x〉h,
F̂ (x) = F (x) +Ax,
ŷn = yn +Axn.

Then A is a rank one linear operator of norm ρ.
We have

d(ŷn, F̂ (xn)) = d(yn +Axn, F (xn) +Axn) = d(yn, F (xn)). (4)

If u ∈ Pn, then (as ‖A‖ ≤ ρ)

d(ŷn, F̂ (u)) ≥ d(yn, F (u))− ‖A‖‖u− xn‖ ≥ d(yn, F (xn)). (5)

Let on the other hand u ∈ Qn be sufficiently close to xn. Let v(u) ∈ F (u) be
such that ‖v(u)+Anu−ŷn‖ = d(ŷn, F̂ (u)). Let finally y∗n(u) satisfy ‖y∗n(u)‖ = 1,
〈y∗n(u), v(u)− yn〉 = ‖v(u)− yn‖. Then, by (1)

d(ŷn, F̂ (u)) = d(yn, F (u) +A(u− xn)) = ‖v(u) +A(u− xn)− yn‖
≥ 〈y∗n(u), v(u) +A(u− xn)− yn)〉
= ‖v(u)− yn‖+ 〈y∗n(u), A(u− xn)〉
≥ d(yn, F (u)) + ρ〈y∗n(u), h〉〈x∗n, u− xn〉
≥ d(yn, F (xn))− εn‖u− xn‖ − rn〈x∗n, u− xn〉

+ρ〈y∗n(u), h〉〈x∗n, u− xn〉.

Comparing this with (4), we get

d(ŷn, F̂ (u))+εn‖u−xn‖+rn〈x∗n, u−xn〉−ρ〈y∗n(u), h〉〈x∗, u−xn〉 ≥ d(ŷn, F̂ (xn))
(6)

We have seen that v(u) → vn when u→ xn. As the norm in X is smooth, it
follows that y∗n(u) → y∗n where ‖y∗n‖ = 1 and 〈y∗n, vn − yn〉 = ‖vn − yn‖. Hence
by the definition of h, 〈y∗n, h〉 → 1 as n→∞. Finally, x∗n → x∗. Therefore, (6)
implies that there are qn → r − ρ such that

d(ŷn, F̂ (u)) + qn‖u− xn‖ ≥ d(ŷn, F̂ (xn))

for u ∈ Qn sufficiently close to xn. Together with (5) this implies that the
slope of d(ŷn, F̂ (·)) at xn is not greater than qn and therefore by Theorem 2.2
SurF̂ (x̄) ≤ r − ρ. But by Miljutin’s theorem the opposite inclusion also holds.

4. A general robustness estimate

In this section we show that for single-valued continuous mappings from metric
spaces into normed spaces the lower estimate given by Miljutin’s theorem is
precise in the class of locally Lipschitz perturbations.
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Let us say that F : X → Y is a Lipschitz rank one mapping on an open
set U if in a neighborhood of any point of U it can be represented (up to a
diffeomorphism of the range space Y ), in the form

F (x) = ξ(x)y,

where ξ is a real valued function satisfying the Lipschitz condition in the neigh-
borhood.

Theorem 4.1. Let X be a metric space, let Y be a Banach space, and let F :
X → Y be a continuous mapping which is regular near x̄ ∈ X with SurF (x̄) =
r̄ > 0. Then, for any 0 < ρ ≤ r̄ there is a mapping H : X → Y which is a
Lipschitz rank one mapping with Lipschitz constant ρ and such that Sur(F +
H)(x̄) = r̄ − ρ.
Proof. Step 1. Take a z 6= F (x̄) and set ϕ(x) = ‖F (x) − z‖. Suppose that for
a certain x sufficiently close to x̄, |∇ϕ|(x) = r. At the first step of the proof
we shall show that, given a δ > 0, there is a Lipschitz rank one mapping Hx

with Lipschitz constant ρ, such that the slope of ψx(·) = ‖F (·) +Hx(·)− z‖ at
x satisfies |∇ψx|(x) = (r − ρ)+ and Hx(u) = 0 if d(x, u) ≥ δ.

To this end we first note that, as x is sufficiently close to x̄, we can be
sure that r > 0 (by the main regularity criterion) and F (x) 6= z. Set ȳ =
[ϕ(x)]−1(F (x)− z) and define

aλ = inf{〈y∗, ȳ〉 : ‖y∗‖ = 1, 〈y∗, v〉 = ‖v‖ for some v with ‖ȳ − v‖ < λ}.

Clearly, aλ ↗ 1 as λ→ 0.
As |∇ϕ|(x) = r,

‖F (u)− z‖ ≥ ‖F (x)− z‖ − rd(u, x) + o(d(u, x)). (7)

and there is a sequence (un) → x such that

‖F (un)− z‖ − ‖F (x)− z‖ = rd(un, x) + o(d(un, x)). (8)

Take a small positive δ, set

µ(t) = max{0,min{t, 2δ − t}}

and define Hx as follows:

Hx(u) = ρµ(d(u, x))ȳ.

Then the Lipschitz constant of Hx is ρ and Hx(u) = 0 if u = x or d(u, x) ≥ 2δ.
We have for a y∗ such that ‖y∗‖ = 1 and 〈y∗, F (u)− z〉 = ‖F (u)− z‖

ψx(u)− ψx(x) = ‖F (u) +Hx(u)− z‖ − ‖F (x)− z‖
≥ 〈y∗, F (u) +Hx(u)− z〉 − ‖F (x)− z‖
= 〈y∗, F (u)− z〉 − ‖F (x)− z‖+ ρµ(d(u, x))〈y∗, ȳ〉
≥ ‖F (u)− z‖ − ‖F (x)− z‖+ ρaλµ(d(u, x)),
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where λ = ‖F (u)− F (x)‖.
If d(u, x) < δ, then µ(d(u, x)) = d(u, x) and therefore in view of (7) (and

since aλ → 1 as u→ x)

ψx(u)− ψx(x) ≥ −(r − ρ)d(u, x) + o(d(u, x) ≥ −(r − ρ)+d(u, x) + o(d(u, x)).

This means that |∇ψx|(x) ≤ (r − ρ)+.
On the other hand, for the un of (8) we have (as aλ ≤ 1)

ψx(un)− ψx(x) ≤ ‖F (un)− z‖+ ‖H(un)‖ − ‖F (x)− z‖
≤ −rd(un, x) + ρd(un, x) + o(d(un, x)),

which shows that the slope of ψx is not smaller than (r − ρ)+.
Step 2. We can now complete the proof of the theorem. As SurF (x̄) = r̄,

there is are sequences (xn) → x̄ and (yn) → F (x̄) such that (yn 6= F (xn) and)
|∇ϕ|(xn) = rn → r̄. We shall consider two cases.

(A) xn = x̄ for infinitely many indices n. In this case we can assume that
xn = x̄ for all x and |∇ϕ(x̄)| = r̄. Then the mapping Hx̄ gives the desired
result.

(B) For all (sufficiently large) n, xn 6= x̄. In this case we may assume that
all xn are different. In other words,

σn = min
k 6=n

‖xn − xk‖ > 0, ∀ n.

Clearly σn → 0 as n→∞.
By Step 1 for any n there is a rank one Lipschitz mapping Hn with Lipschitz

constant ρ such that
(a) Hn(xn) = 0;
(b) Hn(x) = 0 , if ‖x− xn‖ > σn/3 ;
(c) |∇ψn|(xn) = (rn − ρ)+, where ψn(x) = ‖F (x) +Hn(x)− yn‖.

It follows from (b) that the supports of Hn do not meet: if Hn(x) 6= 0, Hm(u) 6=
0, then x 6= u. Therefore the mapping

H(x) =
∞∑
1

Hn(x)

is well defined, is rank one Lipschitz and its Lipschitz constant in a neighborhood
of x̄ is ρ. By Miljutin’s theorem, Sur(F+H) ≥ r̄−ρ. On the other hand, setting
ψy(x) = ‖F (x) +H(x)− y‖, we get from (b) and (c):

lim
n→∞

|∇ψyn
|(xn) = |∇ψn|(xn) → r̄ − ρ,

and by the main regularity criterion, Sur(F +H)(x̄) ≤ r̄ − ρ.
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