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Abstract: The stability issue of critical shapes for shape op-
timization problems with the state function given by a solution to
the Neumann problem for the Laplace equation is considered. To
this end, the properties of the shape Hessian evaluated at critical
shapes are analysed. First, it is proved that the stability cannot
be expected for the model problem. Then, the new estimates for
the shape Hessian are derived in order to overcome the classical
two norms-discrepancy well know in control problems, Malanowski
(2001). In the context of shape optimization, the situation is similar
compared to control problems, actually, the shape Hessian can be
coercive only in the norm strictly weaker with respect to the norm
of the second order differentiability of the shape functional. In addi-
tion, it is shown that an appropriate regularization makes possible
the stability of critical shapes.
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1. Introduction

The classical theory of calculus of variations connects the stability of a critical
point of the functional E with the study of the second order derivative of E
at this point. It turns out that in shape optimisation, one has to restrict the
admissible family of domains to regular shapes, C1 or C2 for example, in order
to easily define the shape derivatives. Since many shape functionals are known
to attain the extremal values for smooth shapes, the use of the differential
optimisation theory is rather natural. The existence of an optimal shape can be
obtained either by solving the associated Euler equation, or by the compactness
argument combined with an additional regularity of the optimal shapes. An
additional question raised in connection with this approach is the following one,
on which we focus our attention. Usually, if the second order shape derivative
is considered at a critical point and, furthermore, the shape Hessian is non
negative, the Hessian is only coercive in a strictly weaker topology compared
with the topology for which the differentiability can be proved. This difficulty is
a general feature of optimisation problems in the infinite dimensional function
spaces setting, Malanowski (2001). In others words, the positivity of the Hessian
turns out to be a necessary condition for any critical shape to be only a stable
point i.e., to be a local strict minimum, but we can not know a priori if this
condition is also sufficient or not. That definition of stability is natural and it is
much stronger compared to any directional stability which would follow directly
from the posivity of the Hessian at the critical point. This difficulty is pointed
out by J. Descloux (1990) for the specific example i.e., for the minimization
of the Dirichlet energy functional in two dimensions. In such a case the state
function solves the Poisson equation with the Dirichlet boundary conditions.

This particular case has been studied by Dambrine and Pierre (2000), who
have shown that, in this case, the positivity of the second derivative is suffi-
cient to insure the stability of the critical point. Then, in Dambrine (2000),
the method has been extended to a wider class of problems by relaxing the re-
quired assumptions on the spatial dimension, the differential operator and the
functional. However, only the second order scalar elliptic equations with the
Dirichlet boundary conditions were considered. In the papers of Belov, Fuji
(1997) and Eppier (2000) the second order optimality conditions are also con-
sidered. In this work, we discuss the case of the Neumann boundary datum.
This type of boundary conditions increases the difficulty of the study.

For the sake of simplicity, we consider the following model problem. Let f
be a given function in C∞0 (Rd) such that∫

Rd

f = 0. (1)

Let α and v0 denote two non-negative real numbers, and d ≥ 2 be the space
dimension. We define the class Od as the family of all open bounded subsets Ω
of R with the boundaries ∂Ω such that
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(i) ∂Ω is a C3,α manifold of dimension d− 1,

(ii) supp(f) ⊂ Ω and ∂Ω ∩ supp(f) = ∅,

(iii) V(Ω) = v0,
where V is the restriction of the d-dimensional Lebesgue measure Ld to the
class Od. The C3,α topology on Od is considered in the paper. We explain later
on why this regularity is needed for the stability analysis. The deformation
fields V, used in the framework of the speed method, Soko lowski and Zolésio
(1992), are supposed to be sufficiently regular to preserve the admissible class
Od, actually V = C3,α(Rd,Rd) is the sufficient regularity assumption for our
purposes. Under the assumption (1) the Neumann problem −∆u = f in Ω,

∂nu = 0 on ∂Ω,
(2)

admits the regular solution uΩ, which is defined up to an additive constant. To
make the solution of (2) unique, we use the following normalisation condition∫

∂Ω

uΩ = 0 . (3)

We define the regularized energy shape functional Eσ on Od by

Eσ(Ω) =
1
2

∫
Ω

|∇uΩ|2 −
∫

Ω

fuΩ + σHd−1(∂Ω),

= −1
2

∫
Ω

|∇uΩ|2 + σHd−1(∂Ω).
(4)

where Hd−1 denotes the (d − 1)−Hausdorff measure, so that Hd−1(∂Ω) is the
perimeter of the smooth boundary ∂Ω, and σ ≥ 0 is the regularization param-
eter. Since the gradient of uΩ is uniquely defined, the energy functional Eσ is
well-defined on Od even without any normalisation condition imposed on the
state function uΩ. We adress in this paper the following precise issue:

The identification of the conditions required for the specific shape op-
timization problem which assure for the functional Eσ the existence
of a local strict maximum at the shape Ω∗ in the topology of Od.

Such a shape Ω∗ will be called a stable critical shape for the shape functional
Eσ.

To simplify the presentation, we will focuss our attention on the energy shape
functional E = E0, that is — the shape functional without the perimeter term
which is in fact a regularisation term. The results of this paper remain valid in
cases of both σ = 0 and σ > 0. We mainly consider the question of stability
of critical shapes and not the existence of optimal shapes. However, we do not
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know if any critical shape Ω∗ exists for σ = 0. We can even present some non
existence results which are given in Section 2.2. Let us point out that σ > 0 is
sufficient for the existence of an optimal shape.

Section 2 is devoted to the computation of the shape gradient DE of E
and to some remarks related to the topology of stable critical shapes. Actually,
we prove that in some situations the critical shapes, if any, are unstable. In
Section 3 the shape Hessian is evaluated at the critical shape and the question of
its definiteness is adressed. In particular, we prove that the situation described
above actually occurs. The second order shape differentiability of the functional
E is obtained in the C2,α norm, however, the coercivity of the second derivative
D2E at any critical shape can only be expected, when it is the case, in the norm
of the fractional Sobolev space H1/2 on the boundary. Section 4 is the main
part of this work, it includes the proof of the intermediate estimate∣∣e′′Θ(t)− e′′Θ(0)

∣∣∣ ≤ Cω(‖Θ− Id‖2,α)‖〈XΘ,n〉‖2
H1/2(∂Ω0) . (5)

Here, ω is a modulus of continuity; Θ is an arbitrary C2,α perturbation of the
identity Id in Rd and eΘ denotes the restriction of the energy shape functional E
to the specific path connecting Ω0 with Θ(Ω0). Such a path is constructed using
the flow of the given vector field XΘ. In other words, our construction is based
on the existence of the path, within the family of admissible shapes, connecting
the given shape Ω and its image obtained by the diffeomorphism Θ, the image
being denoted by Θ(Ω). The particular path can be parametrized by the family
of domains (Ωt)t∈[0,1] with Ω0 = Ω and Ω1 = Θ(Ω). For such a parametrization,
the function eΘ(t) = E(Ωt) is defined over the interval [0, 1]. We keep in our
notation the dependence on Θ to emphasize the following crucial fact that the
main estimate (5) is uniform with respect to Θ, for sufficiently small appropriate
norms of Θ. Section 5 is devoted to the study of Eσ, in particular, the existence
of a stable critical shape is proved. In Section 6, some of the formulae needed in
Section 4 are established. Now, we can state the main result of this work. We
denote by n the exterior unit normal vector field to the boundary of Ω0 ∈ Od.
H stands for the tangent hyperplane, in the space of deformation vector fields,
to the volume shape constraints at the shape Ω0.

Theorem 1.1 Let Ω0 ∈ Od be a critical shape of the energy functional E under
the volume constraint V(Ω) = v0, and let Λ∗ be the corresponding Lagrange
multiplier. If the shape Hessian D2LΛ∗(Ω0) of the Lagrangian LΛ∗ = E + Λ∗V
is negative definite, with the second order shape differential which satisfies the
following inequality

D2LΛ∗(Ω0)(V ,V ) ≤ −C‖〈V ,n〉‖2
H1/2(∂Ω0) (6)

for some C > 0 and for all fields V ∈ H, then Ω0 is a stable critical shape for
E in Od i.e., a local strict maximum of E at Ω0 occurs.
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Remark 1.1 We make an intensive use of the shape calculus theory without re-
calling all the details, we refer e.g., to the book by J. Soko lowski and J.P. Zolésio
(1992) and to the technical report by F. Murat and J. Simon (1977) where this
theory is presented in the case of speed method and perturbation of identity
method, respectively. We will use the speed method, but only with autonomous
vector fields V , for the shape sensitivity analysis. Since we deal only with regular
shapes, this assumption is not restrictive. We use the notations from Soko lowski
and Zolésio (1992). In particular, DE(Ω; V ) denotes the directional derivative
(Eulerian semi-derivative) of the energy functional E evaluated at the domain
Ω in the direction of the field V .

The validity of estimate (6) is discussed in Section 3. Note that Theorem
1.1 is an easy consequence of estimate (5). Using the Taylor formula along the
path Ωt, we have

E(1) = E(0) +
∫ 1

0

(1− t)e′′Θ(t)dt .

By the H1/2-coercivity assumption combined with (5) we have

e′′Θ(t) = e′′Θ(0)︸ ︷︷ ︸ + e′′Θ(t)− e′′Θ(0)︸ ︷︷ ︸,
≤ −C‖〈V ,n〉‖2

H1/2(∂Ω0)
≤ Cω(η)‖〈V ,n〉‖2

H1/2(∂Ω0)

Therefore, for η small enough, we get for all t ∈ [0, 1] :

e′′Θ(t) ≤ −C
2
‖〈V ,n〉‖2

H1/2(∂Ω0) < 0 ⇒ E(1) < E(0).

2. Shape derivatives and the resulting Euler equation

2.1. Shape gradients and the Euler-Lagrange equation

We use tangential differential operators, in particular, the tangential gradient
∇τ and the tangential divergence divτ (·). For the sake of simplicity, we omit in
our notation any explicit dependence of tangential operators on the boundaries
∂Ω or ∂Ωt. Under the regularity assumption (i), it is known (see Soko lowski
and Zolésio, 1992, section 2.29) that E is differentiable in Od and that

∀V ∈ V,∀Ω ∈ Od, DE(Ω; V ) = −
∫

Ω

〈∇u′,∇u〉 − 1
2

∫
∂Ω

|∇u|2〈V ,n〉,

where u′ denotes the shape derivative of the state function u = uΩ, solution
of the boundary value problem (see Proposition 3-2 in Soko lowski and Zolésio,
1992) −∆v = 0 in Ω,

∂nv = divτ (〈V ,n〉∇τu) on ∂Ω .
(7)
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We introduce the notation N := divτ (〈V ,n〉∇τu), used later on, especially in
Section 4.

Remark 2.1 An integration by parts leads to∫
∂Ω

divτ (〈V ,n〉∇τu) = −
∫

∂Ω

〈V ,n〉〈∇τu,∇τ 1〉.

The integral in the right hand side vanishes since ∇τ 1 = 0. It means that the
Neumann problem (7) fulfills the compability condition required for the boundary
datum, therefore, it is well posed.

Applying Green’s formula and the boundary conditions in (7), we obtain∫
Ω

〈∇u′,∇u〉 =
∫

∂Ω

u∂nu
′ −

∫
Ω

u∆u′ =
∫

∂Ω

u divτ (〈V ,n〉∇τu) ,

= −
∫

∂Ω

|∇τu|2〈V ,n〉 = −
∫

∂Ω

|∇u|2〈V ,n〉.

Therefore, the first order shape derivative of the energy functional is given by

∀V ∈ V,∀Ω ∈ Od, DE(Ω; V ) =
1
2

∫
∂Ω

|∇u|2〈V ,n〉. (8)

Note that we have obtained for the shape gradient an expression depending on
the state function uΩ, but independent of the shape derivative u′ of the state
function uΩ. This property is specific for the energy functionals and it is no
longer valid for any arbitrary elliptic shape functional, e.g., of the form

J(Ω) =
∫

Ω

g(x, uΩ,∇uΩ) ,

where g is a given smooth function. Anyway, we can expect that the conclusions
of Theorem 1.1 can be extended for functionals of the above form, as it is the
case of shape functionals for the Laplace equation with the Dirichlet boundary
conditions (see Dambrine, Pierre, 2000, and Dambrine, 2000).

In the presence of the condition (iii) the shape optimisation problem under
considerations is constrained. Hence, any critical point of shape functional solves
the Euler equation for the Lagrangian LΛ defined on the family Od by

LΛ(Ω) = E(Ω) + ΛV(Ω) with Λ ∈ R \ {0}. (9)

Therefore, the existence of a critical shape defined by solutions of the Euler
equation and denoted by Ω∗ requires the existence of the nontrivial multiplier
Λ∗ 6= 0 such that the Euler equation

∀V ∈ V, DLΛ∗(Ω; V ) = 0 (10)
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admits at least one solution in Od. The critical shape Ω∗ satisfies by definition

∀V ∈ V, DLΛ∗(Ω∗; V ) =
∫

∂Ω∗

[1
2
|∇uΩ∗ |2 + Λ∗

]
〈V ,n〉 = 0 .

Since the first order shape derivative vanishes (10) for all vector fields in V, the
critical shape Ω∗ implies the additional boundary condition

1
2
|∇uΩ∗ |2 + Λ∗ = 0 on ∂Ω∗. (11)

The function uΩ∗ solves the homogeneous Neumann problem, hence |∇uΩ∗ |2 =
|∇τuΩ∗ |2 holds on ∂Ω∗ and

1
2
|∇τuΩ∗ |2 + Λ∗ = 0 on ∂Ω∗. (12)

The Euler equation provides a simple characterisation of the boundary of any
critical shape Ω∗ as a geometrical domain, which has the property that the
overdetermined problem

−∆u = f in Ω∗,

∂nu = 0 on ∂Ω∗,

1
2 |∇τuΩ∗ |2 + Λ∗ = 0 on ∂Ω∗.

admits a solution.

2.2. Stability of domains determined by the Euler-Lagrange equa-
tion

We can deduce from the first order necessary optimality conditions further in-
formation on the topology of the optimal domain Ω∗ which is assumed to be a
stable critical shape.

Theorem 2.1 Assume that d = 2 or d = 3. If Ω∗ is a stable critical shape of Eσ

in the family Od, then any connected component of Ω∗ cannot be diffeomorphic
to the unit sphere Sd−1.

Proof. We prove the theorem by contradiction, and distinguish the cases of
d = 2 and d = 3. First, we fix the notation. Assume that the domain Ω∗ has
a finite number of connected components (Ωi)i∈{1,...,n}. The boundary of Ωi is
denoted by ∂Ωi. We assume that the connected component denoted by Ω1 is
diffeomorphic to Sd−1 and, in this way, we obtain a contradiction.

First, let us consider the bidimensional case. The boundary ∂Ω1 of Ω1 is a
single Jordan curve of the length L > 0. Hence, there exists a function γ of the
class C3,α([0, 2],R2) such that
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(γi) γ(0) = γ(L) ,

(γii) γ is one-to-one from [0, L) onto ∂Ω1,

(γiii) ∀s ∈ [0, L], ‖γ′(s)‖ = 1.

The tangential gradient of the solution is given by the derivative d
dsuΩ∗ (γ (s)).

Equation (11) implies that∣∣∣∣ ddsuΩ∗ (γ(s))
∣∣∣∣ =

√
−2Λ∗.

From the elliptic regularity theory it follows that the trace of the solution uΩ∗

on ∂Ω1 is continuous. Hence, there exists ε ∈ {−1, 1} such that

∀s ∈ [0, L],
d

ds
uΩ∗ (γ(s)) = ε

√
−2Λ∗.

Since uΩ∗ (γ (0)) = uΩ∗ (γ (L)), it follows that for any connected component

0 = uΩ∗ (γi (0))−uΩ∗ (γi (|∂Ωi|)) =
∫ |∂Ωi|

0

d

ds
uΩ∗ (γi (s)) ds = εi

√
−2Λ∗|∂Ωi|.

In other words, the Lagrange multiplier Λ∗ is trivial. Therefore, the volume
constraint can be ignored and the Euler-Lagrange equation (10) reduces to the
Euler equation

∀V ∈ V, DE(Ω∗; V ) = 0.

Moreover, we have on ∂Ω∗

∇uΩ∗ = 0 ⇒ uΩ∗ is constant on ∂Ω∗.

By the normalisation condition
∫

Ω∗
u = 0, this constant equals zero. Therefore,

Ω∗ is a C2,α domain such that for a function f there exists a solution of the
following problem

−∆u = f in Ω∗,

u = 0 on ∂Ω∗,

∂nu = 0 on ∂Ω∗.

(13)

We show that the solution uΩ∗ vanishes outside of the support of the right hand
side f . To this end, let us consider an open neighbourhood U of ∂Ω∗. By the
Holmgren unique continuation theorem there exists an open neighbourhood U
of ∂Ω∗ such that the local problem

−∆u = 0 in U,

u = 0 on ∂Ω∗,

∂nu = 0 on ∂Ω∗.

(14)
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admits a unique solution which is obviously the trivial solution u = 0. As U
can always be restricted in such a way that U ∩ supp(f) = ∅, the solution uΩ∗

vanishes outside of the support of the right hand side f . Let Ω ∈ O2 be such
that ∂Ω ⊂ U . Then, the open set U is as well a neighbourhood of ∂Ω and uΩ∗

solves also −∆u = f in Ω ,

∂nu = 0 on ∂Ω .

The Holmgren Theorem (see for example Courand and Hilbert, 1989, page 238)
provides the local uniqueness result for the state function since the C2-boundary
∂Ω∗ is not characteristic. In other words, uΩ∗ can be defined on the whole set
U and uΩ∗ vanishes identically on U . Therefore, for all admissible domains Ω
with ∂Ω ⊂ U , and Ω \ U = Ω∗ \ U , we have

E(Ω) = −1
2

∫
Ω

|∇uΩ∗ |2 = −1
2

∫
Ω\U

|∇uΩ∗ |2 = −1
2

∫
Ω∗
|∇uΩ∗ |2 = E(Ω∗).

Hence E is locally constant around Ω∗. Therefore, the critical shape Ω∗ is
unstable.

Let us now consider the tridimensionnal case. The same analysis remains
valid except for the way to justify the triviality of the Lagrange multiplier and
the regularity of ∂Ω∗. The first order necessary optimality condition for ∂Ω∗

takes the form

1
2
|∇τuΩ∗ |2 + Λ∗ = 0 on ∂Ω∗.

Therefore, ∇τuΩ∗ is a continuous vector field by the elliptic regularity theory,
which is tangent by definition. If we assume that Ω∗ is the image of a ball by a
given diffeomorphism, then the tangent vector field has to vanish at some point
of ∂Ω∗ as stated by the Hairy Sphere Theorem. On the other hand, the norm
of the vector ∇τuΩ∗(x) equals −2Λ∗ for x ∈ ∂Ω∗, and the norm |∇τuΩ∗ | is
constant on ∂Ω∗. Therefore, the norm equals zero everywhere on ∂Ω∗. By the
Holmgren theorem, uΩ∗ = 0 in an open neighbourhood of ∂Ω∗. We can conclude
in the same way as in dimension two that the critical shape Ω∗ is unstable. Note
that this argument is still valid if d = 2n+ 1, since the Hairy Sphere Theorem
holds in such a case.

In conclusion, we claim that the only possible topologies for Ω∗ in dimen-
sion 3 are domains with a smooth boundary of gender bigger or equal to one
such as e.g., a torus. We restrict our attention to the case of critical shapes
i.e., we assume that Ω∗ is a critical shape and evaluate the shape Hessian
D2LΛ∗(Ω∗; V ,V ).
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3. The sign of shape Hessian at critical shapes

As it is the case in the classical theory of calculus of variations, the local extremes
in constrained optimization problems imply the sign of the Hessian. We are
going to verify the sign of the Hessian D2LΛ(Ω∗; V ,V ) on the kernel H of the
constraints. Since the volume constraints are imposed, H is the kernel of DV
i.e.,

H =
{
V ∈ V,

∫
∂Ω∗

〈V ,n〉 = 0
}
. (15)

Now, we evaluate the shape Hessian D2LΛ(Ω∗; V ,V ).
First, we recall the useful lemma for derivation of the shape Hessian. Note

that the expression of the shape Hessian obtained via this lemma is not the
same as the canonical form given by the structure theorem at the critical point.
The form derived below is convenient to deal with for the stability analysis
performed in Section 4.

Lemma 3.1 Let Ω be a domain in O, V a deformation field in V and g be a
smooth function in C1(R2,R). Let J be a shape functional defined on O,

∀Ω ∈ O, J(Ω) =
∫

∂Ω

g〈V ,n〉.

Then J is differentiable on O in the direction V and, moreover, the first order
shape derivative is given by

∀Ω ∈ O, DJ(Ω; V ) =
∫

∂Ω

[
g′ + div

(
gV

)]
〈V ,n〉.

Proof. It is just a game between the Hadamard derivation Lemma and Green’s
formula. Actually, by Green’s formula, we have

J(Ω) =
∫

∂Ω

g〈V ,n〉 =
∫

Ω

div
(
gV

)
;

so an application of the Hadamard formula to the domain integral leads to

DJ(Ω; V ) =
∫

Ω

div
(
g′V

)
+ div

(
div

(
gV

)
V

)
.

This expression can be rewritten in the form of a boundary integral

DJ(Ω; V ) =
∫

∂Ω

[
g′ + div

(
gV

)]
〈V ,n〉.
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We recall the expression of the shape gradient for the volume constraints

DV(Ω; V ) =
∫

∂Ω

〈V ,n〉.

By application of Lemma 3.1, we get

D2V(Ω; V ,V ) =
∫

∂Ω

div
(
V

)
〈V ,n〉. (16)

More delicate is application of Lemma 3.1 to the shape derivative of the energy
functional DE(Ω,V ) since the appropriate element g is defined only on Ω. Such
a difficulty, which is common in the shape sensitivity analysis, does not imply
any change of the related result of the lemma given in Dambrine (2000). We
get

D2E(Ω; V ,V ) =
∫

∂Ω

〈∇u′,∇u〉〈V ,n〉+
1
2

∫
∂Ω

|∇u|2 div
(
V

)
〈V ,n〉

+
1
2

∫
∂Ω

〈∇|∇u|2,V 〉〈V ,n〉.
(17)

At the critical shape Ω∗, (11) holds and a straightforward computation leads to

D2LΛ(Ω∗; V ,V ) =
∫

∂Ω∗
〈∇u′,∇u〉〈V ,n〉+

1
2

∫
∂Ω∗
〈∇|∇u|2,V 〉〈V ,n〉. (18)

Since |∇u|2 is constant on ∂Ω∗ by (11), we have 〈∇|∇u|2,V 〉 = ∂n|∇u|2〈V ,n〉.
As expected from the structure of the shape Hessian at a critical point, only the
normal component of V is present in the second order shape derivative of the
Lagrangian evaluated at Ω∗.

Now, the sign of Hessian is investigated on the hyperplane H. Let us split
the Hessian computed in (17) into two parts, which are analysed separately,

A(t) =
∫

∂Ωt

〈∇|∇u|2,V 〉〈V ,n〉, (19)

B(t) =
∫

∂Ωt

〈∇u′,∇u〉〈V ,n〉. (20)

First, we consider A(0). The normal derivative ∂n|∇u|2 is related to the
geometry of ∂Ω∗ as it is expressed in the following lemma.

Lemma 3.2 Let K denote the Gauss curvature on ∂Ω∗. Then, we have

∂n|∇u|2 = 2 t(∇τu) K ∇τu,

furthermore, there exist two constants κmin and κmax such that

κmin |Λ∗| ‖〈V ,n〉‖L2(∂Ω∗) ≤
1
2
A(0) ≤ κmax |Λ∗| ‖〈V ,n〉‖L2(∂Ω∗).
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Proof. The derivation of the above formula and of the estimates is based on
computations in local coordinates. Let M be a given point on ∂Ω∗. There exists
an orthogonal coordinate system in R3 such that locally around M = (0, 0, 0),
∂Ω∗ admits the parametrisation z = f(x, y) where f is chosen in such a way
that f(0, 0) = fx(0, 0) = fy(0, 0) = 0. On ∂Ω∗, u is given by u

(
x, y, f(x, y)

)
and

the Neumann boundary condition leads to

〈∇u,n〉 =
1√

1 + f2
x + f2

y


ux

uy

uz

 .


−fx

−fy

1


=

uxfx + uyfy − uz√
1 + f2

x + f2
y

= 0 on ∂Ω∗. (21)

Whence uxfx+uyfy−uz = 0 on ∂Ω∗, in particular, uz(M) = 0. We differentiate
(21) with respect to x and y. Taking the values at M = (0, 0, 0) leads to{

fxxux + fxyuy = uzx,

fxyux + fyyuy = uzy.
(22)

We want to compute ∂n|∇u|2, that is

〈∇|∇u|2,n〉 =
2√

1 + f2
x + f2

y


uxuxx + uyuyx + uzuzx

uxuxy + uyuyy + uzuzy

uxuxz + uyuyz + uzuzz

 .


−fx

−fy

1

 .

For the point M , we get from (22)

〈∇|∇u|2,n〉 =
2√

1 + f2
x + f2

y

[
ux

(
fxxux + fxyuy

)
+ uy

(
fxyux + fyyuy

)]
,

=
2√

1 + f2
x + f2

y

(
ux uy

) fxx fxy

fxy fyy

 ux

uy

 ,

=2 t(∇τu) K ∇τu.

By compactness of ∂Ω∗, the extremal eigenvalues of the continuous Gauss cur-
vature K on ∂Ω∗ attain the minimal and maximal values κmin and κmax, re-
spectively. The constants κmin and κmax are determined by the minimal and
the maximal values of the algebraic curvatures of arcs traced on ∂Ω∗. Moreover,
(11) relates the norm of ∇τuΩ∗ to the Lagrange multiplier Λ∗ so that

2|Λ∗|κmin ≤t (∇τuΩ∗) K ∇τuΩ∗ ≤ 2|Λ∗|κmax.
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Remark 3.1 We cannot completely determine the quantity 〈∇|∇u|2,n〉 as we
know only two conditions for ∇u on ∂Ω∗ so it is not sufficient to determine the
three unknown coordinates. The situation is different for the Dirichlet boundary
datum, we refer e.g., to Descloux (1990) for details.

Now, we turn our attention to the term B(0). The main characteristic of
this term is that it is negative, so it has a sign.

Lemma 3.3 There exists a constant C > 0 depending only of Ω∗ such that

∀V ∈ H, B(0) ≤ − C ‖〈V ,n〉‖2
H1/2(∂Ω∗) . (23)

Proof. Since ∂nu = 0, then

B(0) =
∫

∂Ω∗
〈∇τu

′,∇τu〉〈V ,n〉

and an integration by parts leads to

B(0) = −
∫

∂Ω∗
u′ divτ (∇τu〉〈V ,n〉) = −

∫
∂Ω∗

u′∂nu
′.

Using the Green’s formula we obtain∫
∂Ω∗

u′∂nu
′ −

∫
Ω∗
u′∆u′ =

∫
Ω∗
|∇u′|2 ,

thus, B(0) = −‖u′‖2
H1

0 (Ω∗)
. Since u′ solves (7), the elliptic regularity for weak

solution implies the first inequality below

‖u′‖H1(Ω∗) ≤ C1‖∂nu
′‖H−1/2(∂Ω∗) ≤ C2‖〈V ,n〉∇τu‖H1/2(∂Ω∗)

≤ C3‖〈V ,n〉‖H1/2(∂Ω∗)

and we can justify the second and the third inequalities as follows. Since divτ (·)
is a linear and continuous mapping from H1/2(∂Ω∗) into H−1/2(∂Ω∗), the sec-
ond inequality holds. The third inequality can be deduced from the auxiliary
multiplier lemma proved in Dambrine (2000) for the space H1/2(∂Ω∗)×C1(∂Ω∗).
The lemma can be used, since, from the elliptic regularity theory it follows that
∇τu is C1 on ∂Ω∗. Obviously, the constants C1, C2 and C3 depend on the
geometrical attributes of the optimal shape Ω∗.

Conclusion. The sign of the Hessian D2LΛ(Ω∗; V ,V ) depends only of the
geometry of Ω∗. It is clear that the geometrical constraints to be satisfied
(see Theorem 2.1) are relatively strong, whence we are unable at the moment to
present an explicit and simple example of the critical shape for which assumption
(6) is verified. However, we have shown in this section that the principal term
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of shape Hessian, that is B(0), is non-positive. Therefore, it seems reasonable
to assume the existence of a critical point Ω∗ for the energy functional such that
the necessary condition of non-negativity of D2LΛ(Ω∗; V ,V ) is fulfilled.

The second remark is fundamental from the point of view of stability analysis
Even if the Hessian D2LΛ(Ω∗; V ,V ) is anticoercive, the related inequality holds
only for the H1/2 norm and cannot be expected to be valid in the stronger norm
of the differentiability, which is actually the C2 norm. We are in the situation
indicated by J. Descloux and have to find a remedy for this difficulty in order to
perform the stability analysis. Therefore, we are going to prove the key estimate
(5) which allows for positive results in the stability analysis.

4. Proof of the stability estimate (5)

In this section, we fix the critical shape Ω0 of E and a constant η > 0 which
defines the maximal size in the norm C2,α of the perturbations which deforms
the shape Ω0. Let Θ denote an arbitrary diffeomorphism, an element of the
ball with the centre IR3 and of the radius η. We show in this section that the
condition D2LΛ(Ω0; V ,V ) ≥ c‖V ‖2

H1/2(∂Ω0)
implies the strict inequality for the

energy functional E(Ω0) < E(Θ(Ω0)).
The method proposed in Dambrine and Pierre (2000) and developed in

Dambrine (2002) consists of the geometrical part with the construction of a
path Ω(t) connecting the critical shape Ω0 with the target shape Θ(Ω0), all ele-
ments of the path belonging to the family of domains with the fixed volume v0.
Such a construction is accomplished using the flow ΦΘ,t of the particular vector
field XΘ, with the intermediate shapes Ω(t) given by the image ΦΘ,t(Ω0) of the
shape Ω0. We consider the restriction of the shape functional to this path, that
is

eΘ(t) = E
(
Φt(Ω0)

)
. (24)

Then, the variations of the second derivative e′′Θ(t) of eΘ with respect to the
variable t can be estimated and the following result is established.

Proposition 4.1 There exists the modulus of continuity ω and the number η0

such that for all η ∈ (0, η0) and each volume preserving diffeomorphism Θ with
‖Θ− IdRd‖3,α ≤ η,∣∣e′′Θ(t)− e′′Θ(0)

∣∣∣ ≤ Cω(η)‖〈XΘ,n〉‖2
H1/2(∂Ω0) , (25)

for all t ∈ [0, 1].

For the proof of Proposition 4.1, the arguments used for the Dirichlet prob-
lem in Dambrine and Pierre (2000) are adapted. We start with necessary prelim-
inaries. The results of geometrical nature, which we use throughout the paper,
are only reported. For the complete proofs we refer the reader to Dambrine
(2000) in the bidimensional case and to Dambrine (2002) in the general case.
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Preliminaries on the path construction within the family of admissi-
ble shapes. To simplify the notation, the dependence on Θ is not indicated
whenever Θ is fixed, which is the case in the second part of the section. How-
ever, in the first part of the section we indicate the dependence on Θ, since we
establish the uniform estimates with respect to Θ. As it is shown in Dambrine
(2002), the sufficient conditions for the existence of a local strict minimum for
energy functionals can be established by a construction of some specials paths
within the admissible family of shapes. We use the same vector fields as those
exploited in Dambrine (2002). We recall that, once an initial shape Ω0 and an
admissible perturbation Θ are chosen, then there exists the normal vector field
XΘ such that

• the flow ΦΘ,t of the field XΘ at t = 1 maps Ω0 onto Θ(Ω0)
• the field XΘ is divergence-free,
• XΘ = mn̆, where n̆ = ∇d∂Ω0/‖∇d∂Ω0‖ is an unitary extension of the nor-

mal field, and d∂Ω0 denotes the signed distance function to the boundary
∂Ω0.

Moreover, the family ΦΘ,t enjoys the following properties proved in Dambrine
(2002).

Proposition 4.2 (Variations of geometrical attributes) There exists a constant
C > 0 such that for all t ∈ [0, 1]:

1. ‖DΦΘ,t − Id‖L∞ + ‖D2ΦΘ,t‖L∞ ≤ ‖ΦΘ,t − IdRd‖2,α;
2. ‖DΦ−1

Θ,t − Id‖L∞ + ‖D[DΦ−1
Θ,t]‖L∞ ≤ C‖ΦΘ,t − IdRd‖2,α;

3. Let J(t) be the Jacobian det
(
DΦΘ,t‖t(DΦΘ,t)−1n0‖

)
. Then

‖J(t)− 1‖L∞(∂Ω0) ≤ C‖ΦΘ,t − IdRd‖2,α,

‖J(t)− 1‖C1(∂Ω0) ≤ C‖ΦΘ,t − IdRd‖2,α;
(26)

4. If nt denotes the unitary outer normal vector field on ΦΘ,t(∂Ω0),

‖nt ◦ ΦΘ,t − n0‖C1(∂Ω0) ≤ C‖ΦΘ,t − IdRd‖2,α . (27)

5. Moreover, if Θ has the C3-regularity and satisfies ‖Θ− IdRd‖3 ≤ 1/2,
then we have the following estimate

‖nt ◦ ΦΘ,t − n0‖C2(∂Ω0) ≤ C‖ΦΘ,t − IdRd‖3 . (28)

Proposition 4.2 recalls the classical results valid for all smooth vector fields
used for deformation of the initial shape. On the contrary, the following state-
ment is specific for the chosen field XΘ = mn̆, since it can be verified by simple
calculations. Such a result is required, at least for technical reasons. It is not
clear at the moment if conditions (29) can be relaxed for the problem under
considerations.
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Proposition 4.3 (Properties of XΘ) There is a constant C dependent only of
Ω0 such that

∀t ∈ [0, 1],


∥∥m ◦ ΦΘ,t −m

∥∥
L2(∂Ω0)

≤ C‖m‖L2(∂Ω0)‖Θ− Id‖2,α,∥∥m ◦ ΦΘ,t −m
∥∥

H1/2(∂Ω0)
≤ C‖m‖H1/2(∂Ω0)‖Θ− Id‖2,α,∥∥m ◦ ΦΘ,t −m

∥∥
H1(∂Ω0)

≤ C‖m‖H1(∂Ω0)‖Θ− Id‖2,α

(29)

where m is given by m = 〈XΘ, n̆〉.

In the previous works on the optimality conditions, the piecewise estimate up
to the boundary of the second order derivatives of the state function along the
path were required. Such estimates can be provided by the classical Schauder
theory for the Dirichlet problem. Now, we mimic the same argument for the
Neumann problem. We introduce the necessary notation and definitions. The
inverse transport operator is denoted by ΨΘ,t = (ΦΘ,t)−1, which allows for
working in the fixed domain setting, here the initial domain is Ω0. This creates
an additional difficulty, i.e., the transported solution ut = ut ◦ ΦΘ,t (see below
for the definition) does not solve any pure Neumann problem for the Laplacian.
Instead, ut solves the boundary value problem for the perturbed operator L(t).
We have the explicit form of the operator L(t),

L(t)v =
[ n∑

i=1

n∑
j=1

∂iΨα
Θ,t∂jΨβ

Θ,t

]
︸ ︷︷ ︸ ∂

2
α,βv +

[ n∑
i=1

∂2
i,iΨ

α
Θ,t

]
︸ ︷︷ ︸ ∂αv ,

= aα,β(t) ∂2
α,βv + bβ(t) ∂αv .

(30)

We use the simplified notation for Dt = tDΦ−1
Θ,t, and for the transported

gradient

Dt∇ut = ∇(ut ◦ ΦΘ,t). (31)

If ut solves the problem −∆v = f in Ωt ,

〈∇v,n(t)〉 = 0 on ∂Ωt ,
(32)

then the transported solution ut solves the following boundary value problem −L(t)v = f ◦ ΦΘ,t in Ω0 ,

〈Dt∇v,n(t) ◦ ΦΘ,t〉 = 0 on ∂Ω0 .
(33)
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The normal derivative corresponding to the Neumann boundary condition on
∂Ωt is changed into a oblique derivative condition in the direction tDtn(t)◦ΦΘ,t

on ∂Ω0. Since n(t)◦Φt = Dtn/‖Dtn‖, the vector field can be expressed in terms
of the outward normal field n on ∂Ω0,

tDtn(t) ◦ ΦΘ,t =
tDtDtn

‖Dtn‖
= ‖Dtn‖ B(t) n ,

see Section 6 for the definition of B(t).
The first result we need is a uniform estimate in C2,α along the path, of the

transported state function.

Lemma 4.1 There exists a constant η0 > 0, which depends only of Ω0, and a
constant C = M(f), which depends only of η0, such that for each diffeomorphism
Θ with the norm bounded ‖Θ − IdR2‖2,α ≤ η0 and for all t ∈ [0, 1], we have
‖ut‖2,α,Ω0

≤M(f).

Proof. We adapt the proof given in Dambrine and Pierre (2000) to the case of
the Neumann boundary conditions. First, we introduce the perturbed boundary
value problem (Pε,Θ,t) defined by −∆u+ εu = f in Ωt,

∂nu = 0 on ∂Ωt.
(34)

Let uε denote the solution of the above equation, by (34) it follows that∫
Ωt

uε =
1
ε

∫
Ωt

f = 0.

It means that for uε the Poincaré inequality can be used, and there exists a
constant CP , which depends only on the diameter of Ωt, and can be chosen
uniformly with respect to Θ and t, such that

‖uε‖L2(Ωt) ≤ CP ‖∇uε‖L2(Ωt). (35)

We also introduce the transported solution ut
ε = uε ◦ ΦΘ,t which solves −L(t)v + εv = f ◦ ΦΘ,t in Ω0,

〈Dt∇v,n(t) ◦ ΦΘ,t〉 = 0 on ∂Ω0.
(36)

There exists the lower bound λ, uniform with respect to Θ and t, such that

λ|ξ|2 ≤ aα,β(t)ξαξβ .
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From the definitions given in (4.2) and by Proposition 4.2(2), the coefficients
aα,β and bβ are bounded and there exists a constant M such that

‖aα,β(t)‖0,α,Ω0
, ‖bβ(t)‖0,α,Ω0

≤M.

We also have to check that the co-normal direction n(t) is non tangential on
the boundary of Ω0 for t ∈ [0, 1]. This can be deduced from the properties of
the normal vectors since

〈n(t),n〉 = 1− 〈n− n(t),n〉 ≥ θmin > 0.

This a direct application of Proposition 4.2. We use the Schauder estimate
(see Gilbarg and Trudinger, 1983) to get the existence of a constant C =
C(d, α, λ, θmin,Ω0) such that

‖ut
ε‖2,α,Ω0

≤ C
[
‖ut

ε‖L∞(Ω0) + ‖f‖0,α

]
. (37)

Note that by the assumption on the support of f , there is no need to precise
the domain where the Hölder norm of f is considered. We use the classical
argument to find an upper bound for weak solutions of an elliptic equation (see
Gilbarg and Trudinger, 1983) and get

‖ut
ε‖L∞(Ω0) ≤ C

[
‖f‖Lq(Ω0) + ‖ut

ε‖L2(Ω0)

]
.

One has now by the change of variable formula and the upper bound on DΦΘ,t

that

‖ut
ε‖2

L2(Ω0) ≤
∫

Ωt

(
uε

)2∣∣D(ΦΘ,t)−1
∣∣ ≤ C‖uε‖2

L2(Ωt)

After having multiplied (34) by uε, an integration by parts leads to

‖∇uε‖2
L2(Ωt) + ε‖uε‖2

L2(Ωt) =
∫

Ωt

fuε

and we obtain

‖∇uε‖2
L2(Ωt) ≤ ‖f‖L2(Ωt) ‖uε‖L2(Ωt).

From the Poincaré inequality, one gets

‖uε‖2
L2(Ωt) ≤ CP ‖f‖L2(Ωt) ‖uε‖L2(Ωt) ⇒ ‖uε‖L2(Ωt) ≤ CP ‖f‖L2(Ωt)

hence we can deduce the estimate independent of ε

‖ut
ε‖2,α,Ω0

≤M(f),
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where M(f) is a constant that depends only on M and η. We pass to the limit
with ε→ 0 and obtain the required estimate

‖ut‖2,α,Ω0
≤M(f) .

Then, we can conclude, in the same way as in Dambrine and Pierre (2000),
by the compactness of the embedding of the space C2,α(Ω0) into C2(Ω0) that

ω(η) := sup
t∈[0,1],‖Θ−IdRd‖2,α≤η

‖ut − u0‖C2(Ω0) → 0 with η ↘ 0.

This means that the function ω is a modulus of continuity. The resulting con-
tinuity in C2(Ω0) of the transported state function is given in the following
proposition.

Proposition 4.4 There exists a modulus of continuity ω such that for all Θ
with ‖Θ− IdRd‖2,α ≤ η and all t in [0, 1] one has

‖ut − u0‖C2(Ω0) ≤ ω(η). (38)

Using the previous result on the shape differentiability of the functional
E, we can deduce easily that eΘ is twice differentiable, with the second order
derivative of the form

e′′Θ(t) =
1
2

∫
∂Ωt

〈∇|∇u|2,V 〉〈V ,n〉+
∫

∂Ωt

〈∇u′,∇u〉〈V ,

=
1
2
A(t) +B(t).

We have the simplified expression, since by construction div
(
XΘ

)
= 0.

Analysis of A(t)−A(0). First, we recall the definition of A,

A(t) =
∫

∂Ωt

m2〈∇|∇u|2, n̆〉〈n̆,n(t)〉.

Whence

A(t)−A(0) =
∫

∂Ω0

m̃2〈Dt∇|Dt∇ut|2,n〉〈n,n(t)◦Φt〉J(t)−m2〈∇|∇u0|2,n〉.

Let us denote
c1(t) := 〈Dt∇|Dt∇ut|2,n〉,

c2(t) := 〈n,n(t) ◦ Φt〉,

c3(t) := J(t).
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We can conclude as in Dambrine and Pierre (2000), for i = 1, 2, 3 we verify that

|ci(t)| ≤ C and |ci(t)− ci(0)| ≤ Cω(η) .

Then, Proposition 4.3 and simple calculations show,

|A(t)−A(0)| =
∣∣ ∫

∂Ω0

m̃2Π3
i=1ci(t)−m2Π3

i=1ci(0)
∣∣ ≤ Cω(η)‖m‖2

L2(∂Ω0). (39)

Analysis of B(t)−B(0). First, we rewrite the term B(t) in the same way as
in the proof of Lemma 3.3, hence

B(t) =
∫

Ωt

|∇u′(t)|2 ,

where u′(t) solves −∆v = 0 in Ωt,

∂nv = divτ (〈XΘ,n〉∇τu) := N(0) on ∂Ωt.

After the transport of the domain integral to the critical domain Ω0, we get the
difference (the Jacobian DΦt ≡ 1 since XΘ is divergence-free)

B(t)−B(0) =
∫

Ω0

|Dt∇(ut)′|2 − |∇u′(0)|2 (40)

where (ut)′ := u′(t) ◦ Φt and solves −L(t)v = 0 in Ω0,

〈∇v, ‖Dtn‖ B(t) n〉 = N(t) on ∂Ωt ,

with N(t) defined below, we refer to Section 6 for a justification of the transport
formulae (49), (50) and for the definitions of the functions α(x, t) and β(x, t)),

N(t) := α(x, t)m̃+ 〈β(x, t),∇m̃〉. (41)

What is important here is not the exact form of the functions α and β, the
computation of the functions is postponed to the end of the section, but the
structure and the regularity of both functions. The classical arguments of elliptic
regularity can be used to show that α is C1,α while β is C2,α. Now, we use the
classical elliptic estimates :

‖(ut)′‖H1(Ω0) ≤ C‖N(t)‖H−1/2(∂Ω0)

≤ C
[
‖α(x, t)m̃‖H−1/2(∂Ω0) + ‖〈β(x, t),∇m̃〉‖H−1/2(∂Ω0).

We now use the following product estimate deduced, by duality, from the H1/2×
C1 multiplier lemma of Dambrine and Pierre (2000).
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Lemma 4.2 (Multiplier-product estimate H−1/2 × C1 )
If ψ ∈ H−1/2(∂Ω0) ∩ C0(∂Ω0) and f ∈ C1, then there exist a constant C(Ω0)
such that

‖fψ‖H−1/2(∂Ω0) ≤ C(Ω0)‖f‖C1(∂Ω0)‖ψ‖H−1/2(∂Ω0). (42)

Proof. If ψ is C0, then by definition

‖fψ‖H−1/2(∂Ω0) = sup
‖ϕ‖

H1/2(∂Ω0)
≤1

∫
∂Ω0

fψϕ.

Therefore, for all ϕ ∈ H1/2(∂Ω0) with ‖ϕ‖H1/2(∂Ω0) = 1, the duality scalar
product is well defined and bounded,

〈fψ, ϕ〉 =
∫

∂Ω0

fψϕ =
∫

∂Ω0

ψfϕ ,

≤ ‖ψ‖H−1/2(∂Ω0)‖fϕ‖H1/2(∂Ω0) ,

≤ ‖ψ‖H−1/2(∂Ω0)C(Ω0)‖f‖C1(∂Ω0)‖ϕ‖H1/2(∂Ω0)

which implies (42).

Remark 4.1 Note that the corresponding C0 lemma is not true (at least, cannot
be shown as easily), because the dual estimation does not have any sense. The
product of a continuous function with an element of H1/2(∂Ω0) has no reason
to belong to the trace space H1/2. That is why we consider only C3,α shapes.

Then, we use Lemma 4.2 to show that

‖(ut)′‖H1(Ω0) ≤ C
[
‖α(x, t)‖C1‖m̃‖H−1/2(∂Ω0) + ‖β(x, t)‖C1‖∇m̃‖H−1/2(∂Ω0) ,

≤ C
[
‖α(x, t)‖C1‖m̃‖H−1/2(∂Ω0) + ‖β(x, t)‖C1‖m̃‖H1/2(∂Ω0) ,

≤ C‖m̃‖H1/2(∂Ω0) .

We are going to verify∣∣(ut)′ − u′0
∣∣ ≤ Cω(η)‖m̃‖H1/2(∂Ω0) . (43)

The difference v = (ut)′ − u′0 solves the equation

−L(t)((ut)′ − u′0) = L(t)u′0 = (L(t)−∆)u′0 .

The boundary condition is a little bit more difficult to get since the direction of
derivation is different, hence

〈∇((ut)′ − u′0), ‖Dtn‖ B(t) n〉 = N(t)− 〈∇u′0, ‖Dtn‖ B(t) n〉︸ ︷︷ ︸,
〈∇u′0, n〉+ 〈∇u′0, (‖Dtn‖ B(t)− Id)n〉

= [N(t)−N(0)]− 〈∇u′0, [‖Dtn‖ B(t)− Id]n〉.
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From Proposition 4.2 it follows that

‖〈∇u′0, [‖Dtn‖ B(t)− Id]n〉‖H−1/2(∂Ω0) ≤ Cω(η)‖m‖H1/2(∂Ω0) .

On the other hand

N(t)−N(0) = α(x, t)m̃− α(x, 0)m+ 〈β(x, t),∇m̃〉 − 〈β(x, 0),∇m〉,
= [α(x, t)− α(x, 0)]m̃+ α(x, 0)[m̃−m]

+ 〈[β(x, t)− β(x, 0)],∇m̃〉+ 〈β(x, 0),∇[m̃−m]〉.

From the latter expression, we can deduce by (45) and using Proposition 4.3
that

‖N(t)−N(0)‖H−1/2(∂Ω0) ≤ Cω(η)‖m‖H1/2(∂Ω0) .

As in Dambrine and Pierre (2000) and Dambrine (2000), we get easily that

‖[L(t)−∆]u′0‖H−1(Ω0) ≤ Cω(η)‖m‖H1/2(∂Ω0) .

We conclude from the classical estimates in Sobolev spaces that

‖(ut)′ − u′0‖H1(Ω0) ≤ C
[
‖[L(t)−∆]u′0‖H−1(Ω0)+

‖〈∇((ut)′ − u′0), ‖Dtn‖ B(t) n〉‖H−1/2(∂Ω0)

]
,

≤ C ω(η)‖m‖H1/2(∂Ω0)

Therefore, we deduce from (40) that∣∣B(t)−B(0)
∣∣∣ ≤ Cω(η)‖m‖2

H1/2(∂Ω0). (44)

Computation of α and β: Finally, we determine the expressions for α(x, t)
and β(x, t). From (49), the transported tangential gradient is given by(

∇τ ,tu(t)
)
◦ Φt = Dt∇ut − 〈∇ut,B(t)n〉Dtn .

Hence, we get with D2
tt = DDt and µ :=

[
〈XΘ,n(t)〉

]
◦ Φt = m̃〈n,n(t) ◦ ΦΘ,t〉

that ∇(µ◦φ) = DΦt(∇µ)◦Φt. We make use of the formula Dav = aDv+v t∇a
to obtain

D
[(
〈XΘ,n(t)〉∇τ ,tu(t)

)
◦ Φt

]
=

[
Dt∇ut − 〈∇ut,B(t)n〉Dtn

]
t∇µ+ µD

[
Dt∇ut − 〈∇ut,B(t)n〉Dtn

]
=

[
Dt∇ut − 〈∇ut,B(t)n〉Dtn

]
t∇µ+ µ

[
−Dtn

t∇
(
〈∇ut,B(t)n〉

)
+ D2

tt∇ut + (Dt)2D2ut − 〈∇ut,B(t)n〉(D2
ttn + DtDn)

]
.
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We then use (50), and the equality Tr
(
vt
1v2

)
= 〈v1,v2〉, to get

N(t) = 〈∇µ, (Dt)2∇ut〉 − 〈∇ut,B(t)n〉〈∇µ, (Dt)2n〉
+ µTr

(
D2

tt∇ut + (Dt)2D2ut
)

− µ〈∇ut,B(t)n〉
[
Tr

(
D2

ttn + DtDn
)]
− µ〈∇〈∇ut,B(t)n〉,Dtn〉

−
[
〈∇µ,n〉

[
〈Dt∇ut,B(t)n〉 − 〈∇ut,B(t)n〉〈Dtn,B(t)n〉

]
− µ

(
〈Dtn,B(t)n〉〈∇〈∇ut,B(t)n〉,n〉+ 〈(D2

tt∇ut)n,B(t)n〉

+ 〈(Dt)2D2utn,B(t)n〉

− 〈∇ut,B(t)n〉〈(D2
ttn + DtDn)n,B(t)n〉

)]
.

By the chain rule, ∇µ = m̃DΦt∇〈n,n(t) ◦ Φt〉+ 〈n,n(t)〉DΦt∇m̃, as a result

α(x, t) = 〈DΦt∇〈n,n(t) ◦ Φt〉,
[
(Dt)2∇ut + 〈∇ut,B(t)n〉(Dt)2n

+
[
〈∇ut,B(t)n〉〈Dtn,B(t)n〉 − 〈Dt∇ut,B(t)n〉

]
n

]
〉

+〈n,n(t)〉
[
Tr

(
D2

tt∇ut + (Dt)2D2ut
)

+ 〈∇ut,B(t)n〉

Tr
(
D2

ttn + DtDn
)
− 〈∇〈∇ut,B(t)n〉,Dtn〉

+
(
〈Dtn,B(t)n〉〈∇〈∇ut,B(t)n〉,n〉+ 〈(D2

tt∇ut)n,B(t)n〉

+〈(Dt)2D2utn,B(t)n〉

−〈∇ut,B(t)n〉〈(D2
ttn + DtDn)n,B(t)n〉

)]
β(x, t) = 〈n,n(t) ◦ Φt〉Dt

[
(Dt)2∇ut − 〈∇ut,B(t)n〉(Dt)2n

+
[
〈∇ut,B(t)n〉〈Dtn,B(t)n〉 − 〈Dt∇ut,B(t)n〉

]
n

]
.

The important observation is that α(x, t) and β(x, t) are C1 functions and there
exists C > 0 such that for all t ∈ [0, 1]

‖α(x, t)‖C∞ , ‖β(x, t)‖C1 ≤ C , (45)
‖α(x, t)− α(x, 0)‖C∞ , ‖β(x, t)− β(x, 0)‖C1 ≤ Cω(η) .

To prove this, we observe that the inequalities in (45) are stable under the
multiplication and the addition (see Dambrine, 2000). This means that if α1

and α2 satisfy (45) then it is also the case for the product α1.α2 and the sum
α1 + α2. Hence, (45) follows from Propositions 4.2 and 4.4.

5. Analysis of the energy functional Eσ

Shape derivatives of the perimeter. We recall without proofs some clas-
sical results on the functional P(Ω) = Hd−1(∂Ω). This functional P is twice
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differentiable with the shape derivatives given by

DP(Ω; V ) =
∫

∂Ω

H〈V ,n〉,

D2P(Ω; V ,V ′) =∫
∂Ω

〈∇τ 〈V ,n〉,∇τ 〈V ′,n〉+ 〈V ,n〉〈V ′,n〉
[
H2 − Tr

(t
DnDn

)]
+

∫
∂Ω

H
[
V τ .Dn.V ′

τ + n.DV .V ′
τ + n.DV ′.V τ

]
.

(46)

Here, H denotes the mean curvature of ∂Ω. An important property proved in
Dambrine (2000) is the estimate for the second order variation D2P(Ω; V ,V ),
similar to (5). The estimate takes the form

|P ′′
Θ(t)− P ′′

Θ(0)| ≤ ω(‖Θ− Id‖2,α)‖〈V ,n〉‖H1(∂Ω). (47)

Euler equation for Eσ. From the results of Section 2 and (46), we obtain
that any critical shape Ω∗

σ, which minimizes the functional Eσ over the class of
domains with fixed volume, v0 satisfies the following Euler-Lagrange equation

1
2
|∇τuΩ∗σ |+ σH + Λ∗ = 0. (48)

We remark that the perimeter term in Eσ suppresses the argument used for the
cancellation of the Lagrange multiplier Λ∗. Therefore, there is no obstruction
for the existence of the stable critical shapes.

6. Transport of differential operators

This section is devoted to the justification of the formulae we have used in the
paper for the transport of tangential differential operators. The starting point
is the formula (31) valid for the gradient. Following Soko lowski and Zolésio
(1992), one can deduce the formula for the tangential gradient. We introduce
the notation. Let ρ denote a C2 function defined on Rd and let A be a C2

vector field. Assume that ∂Ω is a C2 manifold. Suppose that V is a C2 vector
field, and let Φt be the flow of V , with ∂Ωt = Φt(∂Ω). We denote by ρt (resp.
At) the restriction of ρ (resp. A) to ∂Ωt. Let ∇τ ,t (resp. divτ ,t (·)) denote
the tangential gradient (resp. divergence) on ∂Ωt. The tangential gradient is
defined as

∇τ ,tρt := ∇ρ− 〈∇ρ,n(t)〉n(t).

Moreover, we know that
(∇ρ) ◦ Φt = Dt∇(ρ ◦ Φt),

n(t) ◦ Φt =
Dtn

‖Dtn‖
.



On stability analysis in shape optimisation 527

Therefore, we have

(∇τ ,tρt) ◦ Φt = Dt∇(ρ ◦ Φt)− 〈Dt∇(ρ ◦ Φt),
Dtn

‖Dtn‖
〉

Dtn

‖Dtn‖
,

= Dt

[
∇(ρ ◦ Φt)− 〈∇(ρ ◦ Φt),

tDtDtn

‖Dtn‖2
〉n

]
.

We follow the notations of Soko lowski and Zolésio (1992) and set

B(t) =
tDtDt

‖Dtn‖2
.

B(t) is a symmetric matrix function such that B(0) is the identity and 〈B(t)n,n〉
= 1 for all t and all Θ. Note also that the leading part of the transported differ-
ential operator L(t) is given by the matrix A(t) =

(
aα,β(t)

)
defined in (30), and

is related to B(t) by A(t) = ‖Dtn‖2B(t). Therefore, we obtain the following
formula for the transported tangential gradient:

(∇τ ,tρt) ◦ Φt = Dt∇(ρ ◦ Φt)− 〈∇(ρ ◦ Φt),B(t)n〉Dtn . (49)

The tangential divergence is defined by

divτ ,t (At) := div
(
A

)
− 〈DAn(t),n(t)〉.

Hence, we get

(divτ ,t (At)) ◦Φt = Tr
(
DΦ−1

t D (A ◦Φt)
)
− 〈D (A ◦Φt)

Dtn

‖Dtn‖
,

Dtn

‖Dtn‖
〉.

We have obtained the formula for the transport of the tangential divergence:

(divτ ,t (At)) ◦ Φt = Tr
(

tDtD (A ◦Φt)
)
− 〈D (A ◦Φt) n,B(t)n〉. (50)
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