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Abstract: An optimal control problem with quadratic cost
functional for the steady-state Navier-Stokes equations with no-slip
boundary condition is considered. Lipschitz stability of locally opti-
mal controls with respect to certain perturbations of both the cost
functional and the equation is proved provided a second-order suf-
ficient optimality condition holds. For a sufficiently small Reynolds
number, even global Lipschitz stability of the unique optimal control
is shown.
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1. Introduction

Optimization of incompressible viscous Newtonian fluid flows governed by the
Navier-Stokes system enjoys recently significant attention within the mathemat-
ical community and has important engineering applications. In this paper, we
confine ourselves to steady-state problems. The optimal control problem of this
sort was already studied in Bilić (1985), Bubák (2002), Burkardt and Peter-
son (1995), Casas 1995, Desai and Ito (1994), Gunzburger (1995), Gunzburger,
Hou and Svobodny (1991,1992), Lions (1983), Málek and Roub́ıček (1999) and
Roub́ıček (2002), but the relevant literature is much more extensive. Moreover,
the optimal control of the evolutionary Navier-Stokes system was treated, e.g.,
in Chebotarev (1993), Fattorini (1995,1999), Fattorini and Sritharan (1994),
Fursikov (2000), Gunzburger and Manservisi (1999), Hinze (1999), Hinze and
Kunisch (1998), Sritharan (1992, 2000), Temam (1995) and also in Lions (1983).



684 T. ROUBIČEK, F. TRÖLTZSCH

Our main goal is to investigate the stability of the optimal control prob-
lem under perturbations of both the cost functional and the state equation. In
nonconvex smooth optimization, this stability can only be expected if the solu-
tion satisfies a second-order sufficient optimality condition. Roughly speaking,
second-order sufficient conditions are necessarily satisfied at the optimal solu-
tion, if stability holds. For optimal control of ordinary differential equations, this
was addressed by Dontchev and Malanowski (1995), while the case of semilinear
elliptic and parabolic PDEs has been discussed by Malanowski and Tröltzsch
(1999,2000). In a more general setting, the problem of sensitivity analysis is
extensively studied in the book by Bonnans and Shapiro (2000), where second
order sufficient conditions are important as well.

To solve our problem, we perform a second-order analysis in two different
ways. In the first part of the paper, the solution is assumed to satisfy the
standard second-order sufficient optimality conditions (30)-(31). In the con-
text of flow problems without constraints on the controls, conditions of this
type have already been used by several authors. We only mention Desai and
Ito (1994), who used second-order conditions to investigate convergence of the
augmented-Lagrangean method, and Hinze (1999, 2001) who assumes second-
order conditions to prove the convergence of Newton- and SQP-methods. We
should mention that second-order sufficient optimality conditions are also nat-
ural assumptions to prove convergence of numerical algorithms and to derive
error estimates for numerical approximations of control problems.

In the second approach, following Málek and Roub́ıček (1999), we invoke
the increment formula (20) to obtain global stability. This increment formula
is equivalent to a second-order expansion of the objective functional. The
known regularity results for the Navier-Stokes system as well as for the lin-
earized Navier-Stokes system and for the adjoint system will systematically be
exploited. Essentially, to guarantee the above outlined global stability, we have
to assume a sufficiently viscous flow, i.e. a small Reynolds number, see the as-
sumptions (3) and (50) further on. Applications of flows with low Reynolds
numbers are polymer manufacturing processes or nanotechnology.

The scheme of the paper is the following. In Section 2, we specify the
optimal-control problem (P) we will deal with and recall some of its basic prop-
erties already known. In Section 4, we address the local Lipschitz stability
of locally optimal controls, states, and adjoint states with respect to certain
perturbations of both the cost functional and the equation. Here, we assume
standard second-order sufficient optimality conditions which are formulated,
together with first-order conditions, in Section 3. Finally, in Section 5 even
the global stability of the unique optimal control is shown provided that the
Reynolds number is sufficiently small.
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2. Problem formulation

Assuming Ω a bounded domain in Rn, n ≤ 3, with C2-boundary Γ, we will
deal with the following “velocity tracking” optimal control problem for flows
governed by the steady-state incompressible Navier-Stokes system:

(P)



Minimize J(u, f) :=
∫

Ω

1
2
|u− ud|2 +

γ

2
|f |2 dx (cost functional)

subject to (u · ∇)u− ν∆u +∇p = f on Ω, (state system)

div u = 0 on Ω, (incompressibility)

f(x)∈S(x) for a.a. x∈Ω, (control constraints)

u∈W 1,2
0 (Ω; Rn), p∈L2

0(Ω), f ∈L2(Ω; Rn),

where L2
0(Ω) := {p ∈ L2(Ω);

∫
Ω

p dx = 0}.
Here, the distributed force f represents the control and (u, p) is the state

response, where u is the velocity field, p is the pressure, while ud stands for a
given desired velocity profile. By ν > 0 we denote the fluid viscosity, which is
indirectly proportional to the Reynolds number.

The quadratic velocity-tracking cost functional J we use in (P) is a standard
option in flow control, see Gunzburger (1995) or Bilić (1985), Gunzburger and
Manservisi (1999). It has reasonable applicability and simplifies the analysis
considerably. Anyhow, (P) is obviously not a linear-quadratic problem because
of the bilinear convective term (u · ∇)u in the state equation.

As to the parameter γ, the desired velocity profile ud, and the set-valued
mapping S : Ω →→ Rn, we assume

γ ≥ 0, ud ∈ Lq(Ω; Rn), (1)
S measurable, closed- and convex-valued, (2)

sup |S(x)| ≤ ρ(x), ρ ∈ Lr(Ω),
N2N

2
4

ν2
‖ρ‖L2(Ω) < 1 , (3)

with q, r ≥ 2 to be specified later and with Np, p < 2n/(n − 2), denoting the
norm of the embedding W 1,2

0 (Ω; Rn) ⊂ Lr(Ω). The adjective “measurable” in
(2) has a standard meaning: for any open A ⊂ Rn, the set S−1(A) := {x ∈
Ω; S(x)∩A 6= ∅} is Lebesgue measurable. Examples for mappings S satisfying
(2) are

S(x) =
{
s ∈ Rn; |s| ≤ ρ(x)

}
(4)

or

S(x) =
{
s ∈ Rn; ai(x) ≤ si ≤ bi(x), i = 1, ..., n

}
(5)

with measurable radius ρ : Ω → R or measurable functions ai, bi : Ω → R.
Of course, (4) satisfies sup |S(x)| = ρ(x), see (3), while in case (5) one has to
assume max(|a(x)|, |b(x)|) ≤ ρ(x) to meet (3).
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In what follows, we denote the set of admissible controls by

Fad :=
{
f ∈L2(Ω; Rn); f(x)∈S(x) for a.a. x∈Ω

}
.

In L2(Ω, Rn) we introduce the scalar product (u, v) :=
∫
Ω

∑n
i=1 uividx, while

(ξ : ζ) :=
∫
Ω

∑n
i=1

∑n
j=1 ξijζijdx is the associated one in L2(Ω, Rn×n). For

convenience we recall the frequently used notation (u · ∇)u :=
∑n

k=1 uk
∂u
∂xk

.
Moreover, for u ∈ W 1,2

0 (Ω; Rn), (∇u)> is the matrix having the column vectors
∇u1, ...,∇un. It is common to use the trilinear form b : W 1,2(Ω; Rn)3 → R,

b(w, u, v) := ((w · ∇)u, v). (6)

It is known that b(w, u, v) = −b(w, v, u) if div w = 0 and the normal component
of w on Γ vanishes; here we will always have even w|Γ = 0. This property
immediately implies that b(w, v, v) = 0 holds under the same assumption.

The solution (u, p) to the Navier-Stokes system in (P) is understood in the
weak sense. As p does not occur in J , we can advantageously use divergence-
free test functions to remove p from the weak formulation. For k = 1, 2, let us
introduce the state space

W k,2
0,DIV(Ω; Rn) :=

{
v∈W k,2

0 (Ω; Rn); div v = 0
}
. (7)

Definition 2.1 We call u ∈ W 1,2
0,DIV(Ω; Rn) a weak solution to the no-slip

boundary-value problem for the steady-state Navier-Stokes system in (P) if the
variational equation

((u · ∇)u, v) + ν(∇u : ∇v) = (f, v) ∀v∈W 1,2
0,DIV(Ω; Rn) (8)

is satisfied.

Testing (8) by v := u, the basic a-priori estimate

‖∇u‖L2(Ω;Rn×n) ≤
N2

ν
‖ρ‖L2(Ω) (9)

is easily obtained. Thanks to this, the following existence theorem can stan-
dardly be proved:

Theorem 2.1 (Galdi, 1994) Let the assumptions (2)-(3) be satisfied. Then,
for each f ∈ Fad, there exists a unique weak solution u =: u(f) of the state
equations according to Definition 2.1.

Moreover, the (nowadays standard) regularity result

‖u‖L∞(Ω;Rn) ≤ c ‖u‖W 2,2(Ω;Rn) ≤ C ≡ C(Ω, ‖ρ‖L2(Ω)) (10)

is known, see e.g. Constantin and Foias (1989) or Galdi (1994), Chapter VIII,
Theorem 5.2. The dependence of the solution u on f is Lipschitzian:
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Theorem 2.2 Let the assumptions (2)-(3) be satisfied and fi ∈ Fad be given,
i = 1, 2. There exists a constant C0 being independent of f1, f2 such that

‖u1 − u2‖W 1,2(Ω;Rn) ≤ C0 ‖f1 − f2‖L2(Ω;Rn) (11)

holds for the associated solutions ui of (8).

Proof. We test the variational equality (8) for u1 and u2 by v := u1 − u2 and
subtract the associated identities. Then, abbreviating shortly U ≡ u1 − u2, we
get

((u1 · ∇)u1 − (u2 · ∇)u2, U) + ν(∇U : ∇U) = (f1 − f2, U).

Write

((u1 · ∇)u1 − (u2 · ∇)u2, U) = ((u1 · ∇)U,U) + ((U · ∇)u2, U). (12)

Thanks to divu1 = 0 and u1|Γ = 0, the identity b(u1, U, U) = 0 holds and we
can estimate the nonlinear term by

((u1 · ∇)u1 − (u2 · ∇)u2, U) = −((U · ∇)u2, U)

≤ ‖∇u2‖L2(Ω;Rn×n)‖U‖2
L4(Ω;Rn) ≤

N2N
2
4

ν
‖ρ‖L2(Ω)‖∇U‖2

L2(Ω;Rn×n)

< ν‖∇U‖2
L2(Ω;Rn×n). (13)

Now, the Lipschitz estimate is easy to derive since the nonlinear term can be
absorbed by ν (∇U : ∇U).

Moreover, besides the (norm,norm)-continuity of the mapping f 7→ u(f) :
L2(Ω; Rn) → W 1,2

0,DIV(Ω; Rn) implied by Theorem 2.2, it is a standard exercise
to show also its (weak,norm)-continuity. Under our assumptions (2)–(3), Fad is
weakly compact in L2(Ω; Rn). Therefore, the existence of at least one globally
optimal pair (ū, f̄) for (P) follows by standard weak compactness arguments.
The uniqueness of ū will be investigated later in Section 5. However, for several
reasons we do not confine ourselves to globally optimal controls. Optimal control
theory essentially relies on first-order necessary optimality conditions forming
the so-called optimality system. The majority of optimization algorithms com-
putes solutions of that system. Due to the nonconvexity of our problem, not all
of these solutions are optimal, and second-order sufficient conditions are usually
verified to guarantee local optimality. For instance, second-order conditions can
be checked numerically.

Only in exceptional cases one is able to verify global optimality. Therefore,
it is natural to investigate the stability of single local solutions with respect to
perturbations rather than to restrict the analysis to global solutions. Since any
global solution is also a local one, this discussion is even more general. In view
of this, we will just assume that a locally optimal reference control f̄ is given
with the associated state ū.
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Remark 2.1 Without (3), we could get existence of the globally optimal pair
too, provided γ > 0 and provided we give up the natural requirement of a
unique response to a particular control. In this case, the argument is that J is
a coercive (with respect to the control) weakly lower-semicontinuous functional
on a closed graph of the pairs (u, f) satisfying (8).

3. First- and second-order optimality conditions

Consider a given locally optimal reference pair (f̄ , ū). We begin with recalling
the first-order necessary optimality conditions. Formally, they can be found
by applying the well-known Lagrange principle, where the state-equations are
eliminated by the Lagrange function

L(u, f, w) = J(u, f)− (f − (u · ∇u), w)− ν(∇u : ∇w), (14)

see (8). Obviously, for a fixed multiplier w ∈ W 1,2
0,DIV(Ω; Rn), the function

L(·, ·, w) : W 1,2
0,DIV(Ω; Rn) × L2(Ω; Rn) → R is quadratic and continuous, hence

it is a C2-function. According to the Lagrange principle, (f̄ , ū) should satisfy
the necessary optimality conditions for minimizers of L with respect to f ∈ Fad,
i.e. L′u(ū, f̄ , w)(u) = 0 for all u ∈ W 1,2

0,DIV(Ω; Rn) and L′f (ū, f̄ , w)(f − f̄) ≥ 0 for
all f ∈ Fad. The first relation leads to the adjoint system to the Navier-Stokes
equations linearized at u = ū,

−ν∆w + (∇u)>w − (u · ∇)w +∇π = ud − u, (15)
div w = 0 ,

for the so-called adjoint state w = w(u), which is associated with a given state
u. Notice that (∇u)>w − (u · ∇)w means

( ∑n
k=1(

∂uk

∂xi
wk − uk

∂wi

∂xk
)
)
i=1,...,n

.

Definition 3.1 Under a weak solution to the adjoint system (15) we under-
stand any w ∈ W 1,2

0,DIV(Ω; Rn) satisfying the integral identity

ν(∇w : ∇v)− ((u · ∇)w, v) + (w, (v · ∇)u) = (ud − u, v) (16)

for all v ∈ W 1,2
0,DIV(Ω; Rn).

Now we formulate the standard first-order necessary optimality conditions.
They were proven for the case without control constraints by Desai and Ito
(1994), for instance. This proof extends to control constraints by obvious mod-
ifications.

Theorem 3.1 Let (1)-(3) hold, and let f̄ be a locally optimal control for (P)
with associated state ū = u(f̄). Then the variational inequality

(γf̄ − w̄, f − f̄) ≥ 0 ∀f ∈ Fad (17)

is satisfied for w̄ = w(ū) ∈ W 1,2
0,DIV(Ω; Rn) being the unique weak solution to the

adjoint equation (15) according to Definition 3.1.
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Let us only briefly sketch the existence and uniqueness of the adjoint state
w(u). Consider the adjoint variational equation (16) for a given u. Testing (16)
by v := w, we get

ν‖∇w‖2
L2(Ω;Rn×n) = −((w · ∇)u, w) + (ud − u, w)

≤ ‖w‖2
L4(Ω;Rn)‖∇u‖L2(Ω;Rn×n)

+ N4,2‖ud − u‖L2(Ω;Rn)‖w‖L4(Ω;Rn), (18)

where N4,2 is the norm of the embedding L4(Ω) ⊂ L2(Ω), from which we get
easily existence and uniqueness of w solving (16) provided that assumption (3)
holds. We should mention that even W 1,∞-regularity of the adjoint state,

‖∇w‖L∞(Ω;Rn×n) ≤ C1‖u− ud‖Lq(Ω;Rn) (19)

holds with C1 = C1(q) for all q > n. This result has been proved in Málek
and Roub́ıček (1999) provided that (1) is satisfied. For other (but weaker)
results concerning regularity of w see also Theorem 3.2 in Gunzburger, Hou and
Svobodny (1991).

Let us denote Φ(f) = J(f, u(f)). Recall that u = u(f) is unique under the
assumption (3). The following increment formula has been derived in a slightly
modified, relaxed form in Málek and Roub́ıček (1999):

Φ(f̃)− Φ(f) +
(
w − γf, f̃ − f

)
=

1
2
‖ũ− u‖2

L2(Ω;Rn)

+
γ

2
‖f̃ − f‖2

L2(Ω;Rn) −
(
((ũ− u)·∇)w, ũ− u

)
, (20)

where ũ = u(f̃), u = u(f), w = w(u). Up to the second-order terms on the
right-hand side, (20) gives immediately the directional derivative of Φ, namely
DΦ(f, h) = −(w−γf, h) hence the Gâteaux derivative of Φ, denoted by Φ′(f) ∈
L2(Ω; Rn)∗ ∼= L2(Ω; Rn), is given by Φ′(f) = γf − w.

It is more convenient, however, to consider the variational inequality (17) in
a formally different way: We know that Fad ⊂ L2(Ω; Rn) and w̄ ∈ L2(Ω; Rn).
Therefore, γf − w ∈ L2(Ω; Rn). Define the set

NFad(f̄) :=
{{

z∈L2(Ω; Rn); (z, f − f̄) ≤ 0 ∀f ∈Fad

}
if f̄ ∈ Fad

∅ if f̄ /∈ Fad,
(21)

which is the standard normal cone to Fad at f̄ . Then the variational inequality
(17) says that −Φ′(f̄) ∈ NFad(f̄), i.e. the negative Gâteaux derivative of Φ at
f̄ , identified with an L2-function, belongs to NFad . In other words,

γf̄ − w̄ + NFad(f̄) 3 0.

The variational inequality (17) can also be written as (w̄ − γf̄ , f̄) =
maxf∈Fad(w̄ − γf̄ , f) being equivalent to the pointwise condition

(w̄(x)− γf̄(x)) · f̄(x) = max
s∈S(x)

(w̄(x)− γf̄(x)) · s
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a.e. on Ω. In view of the convexity of S(x) and concavity of the Hamiltonian
Hw(x, s) := w(x) · s − γ

2 |s|
2 in the s-variable, this can be rewritten as the

pointwise maximum principle

Hw̄(x, f̄(x)) = max
s∈S(x)

Hw̄(x, s) (22)

for a.e. x ∈ Ω. Expressing the same fact in terms of minimization, f̄(x) is the
unique solution of

min
s∈S(x)

γ

2
|s|2 − s · w̄(x) = min

s∈S(x)

γ

2
|s− γ−1w̄(x)|2 + c.

Therefore, we have the important projection formula

f̄(x) = ProjS(x){γ−1w̄(x)}, (23)

where ProjS(x) denotes the projection operator from Rn to S(x).
For further purposes, we equivalently re-formulate the first-order optimality

conditions (8), (16), (17) as the abstract inclusion (generalized equation)

F(ū, w̄, f̄) + (0, 0, NFad(f̄)) 3 0, (24)

where NFad(f̄) is from (21) and the mapping F is defined by

[F(u, w, f)]1(v) := ((u · ∇)u− f, v) + ν(∇u : ∇v), (25a)
[F(u, w, f)]2(v) := ν(∇w : ∇v) + (w, (v · ∇)u)

− ((u · ∇)w − u + ud, v) (25b)
[F(u, w, f)]3 := γf − w. (25c)

The inclusion (24) is a condensed form of the first-order necessary optimality
conditions, i.e. of the optimality system.

Let us first discuss the right spaces between which F should be defined
to finally obtain the best stability results. Take (ū, w̄, f̄) satisfying (8), (16),
and (17). By the definition of Fad, we have f̄ ∈ L2(Ω; Rn). The fact that
ū ∈ W 1,2

0,DIV(Ω; Rn) solves (8) implies in particular ū ∈ W 2,2
0,DIV(Ω; Rn) due to

a well-known regularity result by Galdi (1994), Chapter VIII, Theorem 5.2,
provided Ω has a C2-boundary, as indeed assumed.

The adjoint equation (16) can equally be viewed as the Stokes system with
the right-hand side (ū · ∇)w̄ − (∇ū)>w̄ + ud − ū, which certainly belongs to
L2(Ω; Rn). So, w̄ ∈ W 1,2

0,DIV(Ω; Rn) solving (16) must belong to W 2,2
0,DIV(Ω; Rn)

due to the well-known regularity for Stokes systems, see Galdi (1994), Chap-
ter IV, Theorem 6.1. This justifies the definition of W 2,2

0,DIV(Ω; Rn)2×L2(Ω; Rn)
as the domain of F .

Let us now consider the range of F . The first two components of F define
the elements of W 1,2

0,DIV(Ω; Rn)∗, hence functionals. On W 2,2
0,DIV(Ω; Rn)2 we get

for the first component

[F(u, w, f)]1(v) = ((u · ∇)u− ν∆u− f, v),
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where (u · ∇)u − ν∆u − f ∈ L2(Ω; Rn), hence [F(u, w, f)]1 can be identified
with an L2-function. The same holds true for [F(u, w, f)]2. Notice that, despite
their simple structure, both functionals are only applied to the divergence free
test functions. Therefore, we consider F(u, w, f) as follows:

F : W 2,2
0,DIV(Ω; Rn)2 × L2(Ω; Rn) → L2,∗

0,DIV(Ω; Rn)2 × L2(Ω; Rn), (26)

where

L2,∗
0,DIV(Ω; Rn) :=

{
f ∈W 1,2

0,DIV(Ω; Rn)∗; ∃f̂ ∈ L2(Ω; Rn)

∀v ∈W 1,2
0,DIV(Ω; Rn) : 〈f, v〉 = (f̂ , v)

}
(27)

W 2,2
0,DIV(Ω; Rn) :=

{
v∈W 2,2(Ω; Rn); v|Γ = 0, div v = 0

}
. (28)

The space L2,∗
0,DIV(Ω; Rn) is the space of equivalence classes in L2(Ω; Rn) of

functions having the same rotation (in the distributional sense) and is naturally
normed by ‖f‖L2,∗

0,DIV(Ω;Rn) := inf f̂ ‖f̂‖L2(Ω;Rn), where the infimum is taken over

all f̂ occurring in (27) for f under consideration.

Lemma 3.1 The mapping F is of class C1.

Proof. On W 2,2
0,DIV(Ω; Rn), we know that

〈[F(u, w, f)]1, v〉 = ((u · ∇)u− ν∆u− f, v)

for all v ∈ W 1,2
0,DIV(Ω; Rn), and (u · ∇)u − ν∆u − f ∈ L2(Ω; Rn). The mapping

(u, f) 7→ −ν∆u − f is linear and continuous. The same holds true for the
embedding of L2(Ω; Rn) into W 1,2

0,DIV(Ω; Rn)∗. Therefore, the linear part of [F ]1
is trivially of class C1. Its nonlinear part can be identified with the convective
term B(u) := b′(u, u, ·), i.e. in the classical formulation B(u) := (u · ∇)u, and
we find

B(u + ũ)−B(u) = (ũ · ∇)u + (u · ∇)ũ + (ũ · ∇)ũ =: B(u)′ũ + r2(ũ),

where the second-order remainder term ‖r2(ũ)‖L2(Ω;Rn) = o
(
‖ũ‖W 2,2

0,DIV(Ω;Rn)

)
.

The Fréchet-differentiability of B is shown. By injection into W 1,2
0,DIV(Ω; Rn)∗,

this yields the differentiability of the nonlinear part of [Fr]1.
As to the continuity of the differential of [F ]1, it suffices to show

the continuity of the mapping u 7→ B′(u) from W 2,2
0,DIV(Ω; Rn) to

L(W 2,2
0,DIV(Ω; Rn), L2,∗

0,DIV(Ω; Rn)). Let ui be given, i = 1, 2, and abbreviate
again U = u1 − u2. Even Lipschitz continuity follows from the estimate

‖B′(u1)−B′(u2)‖L(W 2,2
0,DIV(Ω;Rn),L2,∗

0,DIV(Ω;Rn))

= sup
‖ũ‖

W
2,2
0,DIV(Ω;Rn)

≤1

‖(ũ · ∇) U + (U · ∇)ũ‖L2,∗
0,DIV(Ω;Rn)

≤ sup
‖ũ‖

W
2,2
0,DIV(Ω;Rn)

≤1

‖(ũ · ∇) U + (U · ∇)ũ‖L2(Ω;Rn) ≤ C‖∇U‖L2(Ω;Rn)
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with a suitable C = C(Ω). The component [F ]′2 is considered analogously, while
the continuity of [F ]′3 is obvious by linearity.

In the context of optimization, the definition of F is justified by the following
assertion.

Lemma 3.2 The optimality system f̄ ∈ Fad, (8), (16), (17) is equivalent to
(24).

Proof. Let (ū, w̄, f̄) satisfy the optimality system (8), (16), and (17). Then, ū
and w̄ are weak solutions of the state equation and adjoint equation. Moreover,
they have the regularity W 2,2

0,DIV(Ω; Rn). Therefore, [F(ū, w̄, f̄)]i = 0 holds for
i = 1, 2. Moreover, the variational inequality implies [F(ū, w̄, f̄)]3+NFad(f̄) 3 0.
Altogether, the inclusion (24) is fulfilled.

Conversely, if (24) is satisfied by (ū, w̄, f̄), then we obtain from its third
component NFad(f̄) 6= ∅, hence f̄ ∈ Fad. By definition of NFad(f̄), the varia-
tional inequality follows immediately. Moreover, the first two components are
equivalent to the weak formulations of the state- and adjoint equations. Thus,
(ū, w̄, f̄) solves the optimality system f̄ ∈ Fad, (8), (16), and (17).

In order to perform a second-order analysis, we need the second order deriva-
tive of the Lagrange function. The second differential of L(·, ·, w) at a point
(u, f), denoted as L′′(u, f, w) : [W 1,2

0,DIV(Ω; Rn)× L2(Ω; Rn)]2 → R, is given by

L′′(u, f, w)[(u1, f1), (u2, f2)] = (u1, u2) + γ(f1, f2)
+

(
(u1 · ∇)u2, w

)
+

(
(u2 · ∇)u1, w

)
.

It is symmetric and independent of (u, f). We obtain the estimate∣∣L′′(u, f, w)[(u1, f1), (u2, f2)]
∣∣ ≤

≤
(
N2

2 + 2 N2
4 ‖∇w‖L2(Ω;Rn)

)
‖u1‖W 1,2(Ω;Rn)‖u2‖W 1,2(Ω;Rn)

+γ‖f1‖L2(Ω;Rn)‖f2‖L2(Ω;Rn),

expressing the boundedness of the quadratic form L′′(u, f, w), which is even
uniform with respect to all w under consideration. If L′′(u, f, w) is restricted
to the diagonal of [W 1,2

0,DIV(Ω; Rn) × L2(Ω; Rn)]2, which is what we will need,
we simply write L′′(u, f, w)(ũ, f̃)2 := L′′(u, f, w)[(ũ, f̃), (ũ, f̃)]. By b(ũ, ũ, w) =
−b(ũ, w, ũ), this restricted second differential takes the form

L′′(u, f, w)(ũ, f̃)2 = ‖ũ‖2
L2(Ω;Rn) + γ‖f̃‖2

L2(Ω;Rn) − 2((ũ · ∇)w, ũ). (29)

This complies with the increment formula (20). The standard second-order
sufficient optimality condition is:



Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations 693

Definition 3.2 We say that a second-order sufficient optimality condition,
briefly (SSC), is satisfied at (ū, f̄ , w̄) if there is δ > 0 such that the coerciv-
ity condition

L′′(ū, f̄ , w̄)(u, f)2 ≥ δ‖f‖2
L2(Ω;Rn) (30)

holds for all (u, f) solving the Navier-Stokes system linearized at (ū, f̄):

((u · ∇)ū, v) + ((ū · ∇)u, v) + ν(∇u : ∇v) = (f, v) (31)

for all v∈W 1,2
0,DIV(Ω; Rn) .

Proposition 3.1 Let (3) hold, and let (ū, f̄ , w̄) satisfy the first-order necessary
conditions f̄ ∈ Fad, (8) and (16) with ū and f̄ substituted for u and f , together
with the second-order sufficient condition (SSC). Then (ū, f̄) is locally optimal
with respect to the topology of W 1,2

0,DIV(Ω; Rn)× L2(Ω; Rn).

Sketch of the proof. By Casas and Tröltzsch (2002), eqs. (4.11)-(4.12), the
condition (30)-(31) yields Φ′′(f̄)(f, f) ≥ δ1‖f‖2

L2(Ω;Rn) for some δ1 > 0 and for
all f ∈ L2(Ω; Rn). Moreover, the mapping (u, f, w) 7→ L′′(u, f, w) is continuous.
This follows from the estimate∣∣∣[L′′(u1, f1, w1) − L′′(u2, f2, w2)][(ũ1, f̃1), (ũ2, f̃2)]

∣∣∣
=

∣∣(ũ1 · ∇ũ2),W ) + (ũ2 · ∇ũ1),W )
∣∣

≤ 2‖∇W‖L2(Ω;Rn×n)‖ũ1‖L4(Ω;Rn)‖ũ2‖L4(Ω;Rn)

≤ 2N2
4 ‖W‖W 1,2(Ω;Rn)‖ũ1‖W 1,2(Ω;Rn)‖ũ2‖W 1,2(Ω;Rn)

where we abbreviated W := w1 − w2. This continuity is inherited also by
Φ′′(·)(f, f), so that we can conclude that f̄ is locally optimal for Φ with
respect to the norm of L2(Ω; Rn). The continuity of the state mapping
f 7→ u : L2(Ω; Rn) → W 1,2

0,DIV(Ω; Rn) yields the claimed local optimality of
(ū, f̄).

In this paper, we will not apply Proposition 3.1. Instead, we shall directly
use the condition (SSC) to obtain our result on Lipschitz stability. Therefore,
we have only briefly sketched the proof.

Remark 3.1 Often, in the literature, a seemingly stronger condition is used
instead of (30), namely

L′′(ū, f̄ , w̄)(u, f)2 ≥ δ1(‖f‖2
L2(Ω;Rn) + ‖u‖2

W 1,2(Ω;Rn)) (32)

for all (u, f) satisfying (31); where δ1 > 0 is fixed again. Yet, this is equivalent to
(30) provided the linear mapping f 7→ u : L2(Ω; Rn) → W 1,2

0,DIV(Ω; Rn), u being
the solution to (31), is bounded. This can be seen by the following arguments:
Let N = N(ū, f̄) denote the norm of this mapping. Then δ‖f‖2

L2(Ω;Rn) =
1
2δ‖f‖2

L2(Ω;Rn) + 1
2δ‖f‖2

L2(Ω;Rn) ≥
1
2δ‖f‖2 + 1

2N−1δ‖∇u‖2
L2(Ω;Rn). Hence one
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can take δ1 = max(2, 2N)−1δ. Here, by putting v := u in (31), we can estimate
explicitly

N ≤ N2

ν −N2
4 ‖∇ū‖L2(Ω;Rn)

≤ νN2

ν2 −N2
4 N2‖ρ‖L2(Ω)

< +∞ (33)

where the estimate (9) for ū and the assumption (3) have been used, too.

Remark 3.2 The condition (30) implicitly requires γ > 0.

4. Local stability analysis of (P)

Let us now address the main focus of the paper, i.e. the stability of a locally
optimal reference pair (ū, f̄) of the original problem (P). To be more specific,
for a perturbation parameter ε ≡ (εq, εu, εf ) ∈ L2(Ω; Rn)2 × Lr(Ω; Rn), we
consider the perturbed optimization problem

(Pε)



Minimize J(u, f) :=
∫

Ω

1
2
|u− ud|2 − u · εu +

γ

2
|f |2 − f · εf dx

subject to (u · ∇)u− ν∆u +∇p = f + εq on Ω,

div u = 0 on Ω,

u∈W 1,2
0 (Ω; Rn), p∈L2

0(Ω), f ∈Fad.

As an example, one can think about a perturbation of the desired profile ud, say
ud + ed, which is obviously equivalent to considering the original ud but taking
εu = ed.

The first-order optimality conditions for (Pε), written in the condensed form
of the inclusion (24), now read

F(ū, w̄, f̄) + (0, 0, NFad(f̄)) 3 (εq, εu, εf ). (34)

To investigate the stability of locally optimal pairs, we rely on a deep stability
result by Robinson (1980) formulated for generalized equations covering, in
particular, also our inclusion (24). Let us briefly recall some definitions that are
basic to understand this theorem. We consider the generalized equation

0 ∈ F (z) + N(z), (35)

where F : Z → Y is a mapping of class C1 between two Banach spaces Z and
Y , while N : Z → 2Y is a set-valued mapping with a closed graph. Let z̄ be
a solution of (35). The generalized equation (35) is said to be strongly regular
at the point z̄, if there are open balls BZ(z̄, ρZ) := {z ∈ Z; ||z − z̄||Z ≤ ρZ}
and BY (0, ρY ) := {ε ∈ Y ; ||ε||Y ≤ ρY } such that, for all ε ∈ BY (0, ρY ), the
linearized and perturbed generalized equation

ε ∈ F (z̄) + F ′(z̄)(z − z̄) + N(z) (36)

admits a unique solution z = z(ε) in BZ(z̄, ρZ) and the mapping ε 7→ z(ε) from
BY (0, ρY ) to BZ(z̄, ρZ) is Lipschitz continuous.
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Proposition 4.1 (Robinson, 1980, here modified.) Let z̄ be a solution of the
generalized equation (35), and assume that (35) is strongly regular at z̄. Then
there are open balls BZ(z̄, ρZ) and BY (0, ρY ) such that, for all ε ∈ BY (0, ρY ),
the perturbed generalized equation

ε ∈ F (z) + N(z) (37)

has a unique solution z = z(ε) in BZ(z̄, ρZ), and the mapping ε 7→ z(ε) from
BY (0, ρY ) to BZ(z̄, ρZ) is Lipschitz continuous.

This result enables us to investigate a simpler inclusion arising from (34) by
linearization of F around the locally optimal triple (ū, w̄, f̄), i.e. the inclusion

F(ū, w̄, f̄) + F ′(ū, w̄, f̄)(u− ū, w − w̄, f − f̄)
+(0, 0, NFad(f)) 3 (εq, εu, εf ). (38)

In view of the definition (25) of F and of the fact that (ū, w̄, f̄) satisfies (24),
in classical formulation it represents the optimality system

−ν∆u + (u · ∇)ū + (ū · ∇)u +∇p = f + (ū · ∇)ū + εq, (39a)
div u = 0

−ν∆w + (∇ū)>w − (ū · ∇)w +∇π = ud − u + ((u− ū) · ∇)w̄ (39b)

− (∇(u− ū))>w̄ + εu,

div w = 0 ,

(γf − w − εf , f̃ − f) ≥ 0 ∀f̃ ∈ Fad. (39c)

Lemma 4.1 Let (1)-(3) hold and suppose that the triple (ū, w̄, f̄) satisfies the
first-order necessary optimality conditions together with the second-order suf-
ficient optimality conditions (SSC). Then, for any ε ∈ L2(Ω; Rn)3, the lin-
earized inclusion (38) admits a unique solution (uε, wε, fε) and the mapping
ε 7→ (uε, wε, fε) : L2(Ω; Rn)3 → W 2,2(Ω; Rn)2 × L2(Ω; Rn) is Lipschitz continu-
ous.

Proof. The generalized equation (38) represents the first-order optimality con-
ditions for the perturbed linear-quadratic problem

(PLQ
ε )



Minimize J(u, f) :=
∫

Ω

(1
2
|u− ud|2 +

γ

2
|f |2

−((u− ū) · ∇)w̄ · (u− ū)− εu ·u− εf ·f
)

dx

subject to (u · ∇)ū + (ū · ∇)u− ν∆u +∇p = f + (ū · ∇)ū + εq,

div u = 0 on Ω,

u∈W 1,2
0,DIV(Ω; Rn), p∈L2

0(Ω), f ∈Fad.
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This problem represents a certain linear-quadratic approximation of the problem
(Pε) at the fixed locally optimal pair (ū, f̄) with w̄ = w̄(ū) solving the adjoint
equation (15). Hence, in fact, (PLQ

ε ) depends also on (ū, f̄). However, this
dependence will not be explicitly indicated, since (ū, f̄) is kept fixed.

The second-order condition (30) with (u, f) satisfying (31) just says that,
disregarding the affine term (u, f) 7→ (ū · ∇)w̄ · u + (u · ∇)w̄ · ū− (ū · ∇)w̄ · ū−
ud·u−εu·u−εf ·f included in the cost functional and the fixed term (ū·∇)ū+εq in
the right-hand side of the linearized Navier-Stokes equation, the problem (PLQ

ε )
has a quadratic and positive definite cost functional. Note that this fixed right-
hand-side term, however, cannot change this fact because it only shifts the affine
manifold containing all (u, f) satisfying (31), and similarly the affine perturba-
tion of the quadratic functional cannot break its positive definiteness. This
positive definiteness is even uniform with respect to ε. Therefore, (30)–(31) en-
sures the existence and uniqueness of (uε, wε, fε) solving (PLQ

ε ) or, equivalently,
solving (38).

Let us now investigate the Lipschitz continuity of the mapping ε 7→ (uε, fε) :
L2(Ω; Rn)3 → L2(Ω; Rn)2. To this aim, we take two vectors of perturbation
parameters εi ≡ (εu

i , εf
i , εq

i ), i = 1, 2, and write shortly ui, wi, and fi instead
of uεi

, wεi
, and fεi

. To shorten the formulas below, we might use the following
shorthand notation U := u1 − u2, F := f1 − f2, Ef := εf

1 − εf
2 , W := w1 − w2,

and Π := π1 − π2.
Now write (39c) for εf = εf

i and fi, i = 1, 2,

(γf1 − w1 − εf
1 , f2 − f1) ≥ 0,

(γf2 − w2 − εf
2 , f1 − f2) ≥ 0.

Adding these two inequalities, in view of our notation we get

−(γF −W − Ef , F ) ≥ 0, hence (40)
γ‖F‖2

L2(Ω;Rn) ≤ (W,F ) + (Ef , F ). (41)

Subtracting the perturbed state equation (39a) in the weak formulation for
εq = εq

1 from that for εq = εq
2, and testing it by W , we get

(W,F ) = ν(∇U :∇W ) + ((U ·∇)ū, W ) + ((ū·∇)U,W )− (Eq,W ). (42)

Next we subtract the adjoint equation (39b), for u = u2, εu = εu
2 , from that for

u = u1, εu = εu
1 , and obtain

−ν∆W +(∇ū)>W − (ū ·∇)W +∇Π = −U +(U ·∇)w̄− (∇U)>w̄+Eu. (43)

Testing it by U , in view of the formula

((∇u)>w, v) = −((v · ∇)w, u) = −b(v, w, u),

which is valid for all v, u, w ∈ W 1,2
0,DIV(Ω; Rn), we get

ν(∇W : ∇U) = ((ū · ∇)W,U)− ((U · ∇)ū, W )
+(Eu − U,U) + 2((U · ∇)w̄, U). (44)
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Inserting (44) into (42), we find

(W,F ) = −‖U‖2
L2(Ω;Rn) + (Eu, U)− (Eq,W ) + 2((U · ∇)w̄, U).

Thus, (41) together with the assumed second-order sufficient optimality condi-
tion, applied in the form (32) with L′′ from (29), enable us to estimate

δ1

(
||F ||2L2(Ω;Rn) + ||U ||2W 1,2(Ω;Rn)

)
≤ L′′(ū, f̄ , w̄)(U,F )2

= γ‖F‖2
L2(Ω;Rn) + ‖U‖2

L2(Ω;Rn) − 2((U · ∇)w̄, U)

≤ (Eu, U)− (Eq,W ) + (Ef , F )

≤ N2
2

2δ2
‖Eu‖2

L2(Ω;Rn) +
δ2

2
‖U‖2

W 1,2(Ω;Rn)

+
N2

2

2δ3
‖Eq‖2

L2(Ω;Rn) +
δ3

2
‖W‖2

W 1,2(Ω;Rn)

+
1

2δ2
‖Ef‖2

L2(Ω;Rn) +
δ2

2
‖F‖2

L2(Ω;Rn) (45)

with δ1 > 0 from (32) and with arbitrarily small δ2 > 0 and δ3 > 0.
The equation (43) is nothing more than an adjoint equation with unknown

W = w1 − w2 and right-hand side −U + (U · ∇)w̄ − (∇U)>w̄ + Eu depending
linearly on U = u1 − u2 and Eu = εu

1 − εu
2 . We know that this solution depends

Lipschitz continuously on the right hand side. For instance, this result can be
verified by testing (43) with W . Therefore, we obtain

‖W‖2
W 1,2(Ω;Rn) ≤ C(‖U‖2

W 1,2(Ω;Rn) + ‖Eu‖2
L2(Ω;Rn)). (46)

Of course, we now take δ2 and δ3 in (45) small enough, which enables us to
absorb all the right-hand-side terms with U and F in the left-hand side of (45);
e.g. we can take δ2 ≤ δ1 and δ3 < δ1/C. This gives the Lipschitz continuity of
ε 7→ (uε, fε) : L2(Ω; Rn)3 → W 1,2(Ω; Rn)× L2(Ω; Rn).

Now, the Lipschitz continuity of ε 7→ wε : L2(Ω; Rn)3 → W 1,2(Ω; Rn) imme-
diately follows from (46). From (39a) one can see that

−ν∆U +∇P = G(i), div U = 0, (47)

with G(i) := F + Eq − (U · ∇)ū− (ū · ∇)U . We can estimate

‖G(i)‖L2(Ω;Rn) ≤ ‖F‖L2(Ω;Rn) + ‖Eq‖L2(Ω;Rn)

+‖U‖L6(Ω;Rn)‖∇ū‖L3(Ω;Rn×n)

+‖ū‖L∞(Ω;Rn)‖∇U‖L2(Ω;Rn×n). (48)

By the regularity (10) of ∇ū, we have the L2-estimate of G(i) in terms of the
assumed L2-estimate of Eq and the already proved L2-estimates of F and ∇U .



698 T. ROUBIČEK, F. TRÖLTZSCH

Notice that U ∈ W 1,2(Ω; Rn) ⊂ L6(Ω; Rn) and ū ∈ W 2,2(Ω; Rn), hence ∇ū ∈
L6(Ω; Rn×n) ⊂ L3(Ω; Rn×n).

Then, using the W 2,2-regularity for the Stokes system (47), see Galdi
(1994), Chapter IV, Theorem 6.1, we get the Lipschitz continuity of ε 7→ uε :
L2(Ω; Rn)3 → W 2,2(Ω; Rn).

Similarly, (39b) shows that

−ν∆W +∇Π = G(ii), div W = 0, (49)

with G(ii) := −(∇ū)>W + (ū · ∇)W − U + (U · ∇)w̄ − (∇U)>w̄ + Eu. Now,
by the regularity of both ū and w̄, we have the L2-estimate of G(ii) in terms of
the assumed L2-estimate of Eu and the already proved L2-estimates of ∇U and
∇W . Then, using the W 2,2-regularity, but now for the Stokes system (49), we
get the Lipschitz continuity of ε 7→ wε : L2(Ω; Rn)3 → W 2,2(Ω; Rn).

Proposition 4.2 Suppose that the assumptions of Lemma 4.1 are fulfilled.
Then the generalized equation (24) is strongly regular at (ū, w̄, f̄).

Proof. In view of the definition of strong regularity, this is a direct conclusion
of Lemma 4.1.

Now we apply Robinson’s implicit function theorem to the generalized equa-
tion (24) and obtain the main result of this section, where we write for conve-
nience Y := L2(Ω; Rn)3 and Z := W 2,2(Ω; Rn)2 × L2(Ω; Rn):

Theorem 4.1 Let (3) hold and suppose that the triple (ū, w̄, f̄) satisfies the
first-order necessary optimality conditions together with the second-order suffi-
cient optimality conditions (SSC). Then there exist ρi > 0, i = 1, 2, such that,
for all ε ∈ BY (0, ρ1), the perturbed inclusion (34) in the ball BZ((ū, w̄, f̄), ρ2)
admits a unique solution (uε, wε, fε) and the mapping ε 7→ (uε, wε, fε) :
BY (0, ρ1) → BZ((ū, w̄, f̄), ρ2) is Lipschitz continuous.

This stability result refers to solutions of the perturbed inclusion (34). It does
not automatically guarantee that these are local solutions of (Pε). To have this,
we need that (uε, wε, fε) satisfy a second order sufficient optimality condition.
It is a nontrivial but standard exercise to show that the second order condition
(SSC) is stable under small perturbations of (ū, w̄, f̄) (notice that also the lin-
earized equation is shifted by the perturbation). The continuity estimate of L′′

is the main tool to do this. Therefore, we only state the following result and
skip its proof.

Corollary 4.1 Under the assumptions of Theorem 4.1, there is 0 < ρ̃1 ≤ ρ1,
such that for all ε ∈ BY (0, ρ̃1) the perturbed optimal control problem (Pε) has
a unique local solution (uε, fε) in BZ((ū, w̄, f̄), ρ2).

Since W 2,2(Ω; Rn) is continuously embedded into C(Ω), this implies L∞-
Lipschitz stability of the optimal state and adjoint state with respect to per-
turbations in L2, while stability of optimal controls is only shown in L2.
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If, however, the perturbation εf varies in Lr, 2 < r ≤ ∞, then also Lr-
stability of the controls can be expected. To formulate this result, we put
Yr := L2(Ω; Rn)2 × Lr(Ω; Rn) and Zr := W 2,2(Ω; Rn)2 × Lr(Ω; Rn).

Corollary 4.2 Theorem 4.1 remains true, if Zr and Yr are substituted for Z
and Y , respectively, for all 2 < r ≤ ∞.

Proof. Adapting formula (23) to the perturbed case (39c), we can immediately
see that

fε(x) = ProjS(x){γ−1(wε(x)− εf (x))}

holds for a.a. x ∈ Ω. With the notation of the proof of Lemma 4.1, this implies

|F (x)| ≤
∣∣ProjS(x){γ−1(w1(x)− εf

1 (x))} − ProjS(x){γ−1(w2(x)− εf
2 (x))}

∣∣
≤ C

∣∣W (x)− Ef (x)
∣∣ ≤ C

(
‖W‖C(Ω) + |Ef (x)|

)
for a.a. x ∈ Ω, since the projection mapping is Lipschitz continuous on Rn. In
view of Theorem 4.1, we continue by

|F (x)| ≤ C (‖E‖L2(Ω;Rn)3 + |Ef (x)|),

which in turn implies

‖F‖Lr(Ω;Rn) ≤ C (‖Eq‖L2(Ω;Rn) + ‖Eu‖L2(Ω;Rn) + ‖Ef‖Lr(Ω;Rn)).

Stability results of this type are of particular interest for the convergence
analysis of numerical methods. For instance, the convergence of Lagrange-
Newton-SQP methods can be proved by the Kantorovich-Newton theorem for
generalized equations provided that they are strongly regular. In our case,
strong regularity is given by Lemma 4.1. Moreover, Lipschitz stability of opti-
mal solutions is interesting in itself and can be used to answer other questions
of optimal control theory.

5. Global analysis of (P)

In this section, we show that Lipschitz continuity can be obtained without
assuming a second-order sufficient optimality condition. Instead, we proceed
under the condition, pointed out already in Málek and Roub́ıček (1999), that

Nq
N2

ν
‖ρ‖L2(Ω) + Nq,n‖ud‖Lq(Ω;Rn) ≤

1
2C1

− η (50)

with η ≥ 0 being a tolerance (allowing us to distinguish the case η = 0), Nq

again denoting the norm of the embedding W 1,2(Ω) ⊂ Lq(Ω) while Nq,n is the
norm of the embedding Lq(Ω) ⊂ Ln(Ω) and C1 is from (19). For given ud and
ρ, the condition (50) requires ν to be sufficiently large or, in other words, the
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Reynolds number to be sufficiently small. As the fluid is usually given with its
viscosity ν, we rather need a sufficiently small driving force (i.e. being restricted
by ρ) and desired velocity profile ud, as (50) indeed expresses. See Bubák (2002)
for quantitative analysis of these aspects.

This condition (50) causes that the last term in (20) is dominated by the
term 1

2‖ũ− u‖2
L2(Ω;Rn) because of the following estimate:

(((ũ−u) · ∇)w, ũ− u) ≤ ‖∇w‖L∞(Ω;Rn×n)||ũ− u||2L2(Ω;Rn)

≤ C1‖u− ud‖Ln+ε(Ω;Rn)||ũ− u||2L2(Ω;Rn)

≤ C1

(
‖u‖Ln+ε(Ω;Rn) + ‖ud‖Ln+ε(Ω;Rn)

)
||ũ− u||2L2(Ω;Rn)

≤ C1

(
Nq

N2

ν
‖ρ‖L2(Ω) + Nq,n‖ud‖Lq(Ω;Rn)

)
||ũ− u||2L2(Ω;Rn); (51)

compare (9) and (19).
Then, as γ ≥ 0, Φ is convex on Fad and the 1st-order optimality condition

(17) is even sufficient for global optimality, as already observed in Málek and
Roub́ıček (1999), one can deduce even more:

Proposition 5.1 Let (1)-(3) hold. If γ = 0 but (50) holds with η > 0, then
the optimal state ū is unique while the optimal control f̄ is unique only up to
rotation-free functions, i.e. modulo the linear space {∇p; p ∈ W 1,2(Ω)}. If
γ > 0 and (50) holds (possibly with η = 0), then the optimal control f̄ as well
as the optimal state ū are unique and satisfy the second-order condition (31).

Proof. The increment formula (20), together with the calculation (51), yield
the estimate (Φ′(f1) − Φ′(f2), f1 − f2) ≥ C1η||u1 − u2||2L2(Ω;Rn). Hence, the
optimal ū must be unique. Then, as f̄ satisfies (8), it is determined uniquely,
but only up to ∇p for p ∈ W 1,2(Ω) arbitrary (such that f̄ + ∇p ∈ Fad, of
course). Indeed, by Green’s formula, (f̄ +∇p, v) = (f̄ , v)− (p, div v) = (f̄ , v) if
tested by v ∈ W 1,2

0,DIV(Ω; Rn) so that the control f̄ +∇p has the same effect as
f̄ for γ = 0.

If γ > 0, then (50) implies uniform convexity of Φ on L2(Ω; Rn), hence the
uniqueness of f̄ and hence also of ū is obvious.

Furthermore, note that (50) also ensures that (30) holds even for any (u, f).
In particular, it holds for those (u, f) which satisfy (31).

Note that, in view of the automatic validity of the second-order condition
(30), Proposition 3.1 says that any admissible (u, f) satisfying the 1st-order
optimality conditions is automatically locally optimal. This is, however, not a
surprising effect as we already proved that (50) guarantees even much more,
namely that this (u, f) is even the unique globally optimal pair.

Let us now investigate the Lipschitz stability of this globally optimal pair,
denoted by (u, f), under the perturbations of the cost functional involved in
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(Pε), i.e. we confine ourselves to ε = (0, εu, εf , ), considering εq ≡ 0. By an
appropriate modification of (34), the 1st-order optimality condition for (Pε) is
now

F(u, w, f) + (0, 0, NFad(f)) 3 (0, εu, εf ). (52)

Let us mention for convenience that (52), in its classical formulation, represents
the following system:

−ν∆u + (u · ∇)u +∇p = f, (53a)
div u = 0 .

−ν∆w + (∇u)>w − (u · ∇)w +∇π = u− ud + εu, (53b)
div w = 0 ,

∀f̃ ∈ Fad : (w − γf, f̃ − f) ≤ (εf , f̃ − f). (53c)

Assuming again (1) with q > n and (50), the triple (u, f, w) solving (52) is
determined uniquely.

Lemma 5.1 Let (1) hold with q > n, let (2) and (3) be satisfied, and assume that
also (50) holds with η > 0. Then the mapping (εu, εf ) 7→ (f, u) : L2(Ω; Rn)2 →
L2(Ω; Rn)2 is Lipschitz continuous.

Proof. We take again two vectors of perturbation parameters εi ≡ (0, εu
i , εf

i ),
i = 1, 2, and denote by (ui, fi, wi), i = 1, 2, the corresponding optimal solution
fi, the optimal velocity ui, and the adjoint velocity wi to (Pεi). We subtract
(53c), written for εf = εf

1 with f̃ = f2, from (53c) for εf = εf
2 with f̃ = f1.

This gives again (41). Subtracting the perturbed state equations (53a) in the
weak formulation (see (8)) for ε = ε1 from that for ε = ε1, and testing it by
W := w1−w2, we get the following expression for the first right-hand-side term
in (41):

(W,F ) = ((u1 · ∇)u1 − (u2 · ∇)u2,W ) + ν(∇U : ∇W ). (54)

Here, we adopt again the shorthand notation U := u1 − u2, F := f1 − f2, etc,
used in the proof of Lemma 4.1. Subtracting the perturbed adjoint equations
(53b) in the weak formulation (see (16)) for ε = ε1 from that for ε = ε2, and
testing it by U , we get

ν(∇W : ∇U)− ((u1 · ∇)w1, U) + (w1, (U · ∇)u1)
+((u2 · ∇)w2, U)− (w2, (U · ∇)u2) = −(U + Eu, U). (55)

Comparing (55) with (54), after using several times the Green formula in the
form ((u · ∇)v, w) = −((u · ∇)w, v) and performing an algebraic manipulation,
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we get

(W,F ) = −||U ||2L2(Ω;Rn) − (Eu, U)
+((u1 · ∇)u1 − (u2 · ∇)u2,W ) + ((u1 · ∇)w1, U)
−(w1, (U · ∇)u1)− ((u2 · ∇)w2, U) + (w2, (U · ∇)u2).

= −||U ||2L2(Ω;Rn) − (Eu, U) + ((U · ∇)W,U)

≤ −||U ||2L2(Ω;Rn) +
1
4δ
||Eu||2L2(Ω;Rn)

+δ||U ||2L2(Ω;Rn) + ||∇W ||L∞(Ω;Rn)||U ||2L2(Ω;Rn). (56)

The assumption (50) with η > 0 implies, like in (51), that ||∇W ||L∞(Ω;Rn) ≤
||∇w1||L∞(Ω;Rn) + ||∇w2||L∞(Ω;Rn) ≤ 1− C1η < 1, so that (56) yields (W,F ) ≤
C||Eu||2 for some C = C(η). Moreover, the second term in the right-hand side
of (41) can be estimated as

(Ef , F ) ≤ 1
4δ
||Ef ||2L2(Ω;Rn) + δ||F ||2L2(Ω;Rn), (57)

so that the last term can be absorbed in the left-hand side of (41) if δ > 0 is
small enough. Moreover, the term −||U ||2L2(Ω;Rn) in (56), if put to the left-hand
side, gives the claimed estimate for U .

The (L2, L2)-Lipschitz continuity of U obtained in Lemma 5.1 can further
be improved:

Lemma 5.2 Under the same assumptions as in Lemma 5.1, the mapping
(εu, εf ) 7→ u : L2(Ω; Rn)2 → W 1,2

0,DIV(Ω; Rn) is Lipschitz continuous.

Proof. In the same notation as in the previous proof, we get from (54) used
with U instead of W the following estimate

ν||∇U ||2L2(Ω;Rn×n) = ((u2 · ∇)u2 − (u1 · ∇)u1, U) + (F,U)

≤ N2N
2
4

ν
||ρ||L2(Ω)‖∇U‖2

L2(Ω;Rn×n)

+
N2

4δ
||F ||2L2(Ω;Rn) + δ||∇U ||2L2(Ω;Rn×n), (58)

see also (13). From the assumption (3), for δ > 0 sufficiently small, one gets the
Lipschitz continuity as claimed.

Proposition 5.2 Under the same assumptions as in Lemma 5.1, the mapping
(εu, εf ) 7→ u : L2(Ω; Rn)2 → W 2,2

0,DIV(Ω; Rn) is Lipschitz continuous.

Proof. Subtracting (53a) written for i = 1 and 2, we get

−ν∆U +∇P = F + (u2 · ∇)u2 − (u1 · ∇)u1 =: G, (59)
div U = 0 .
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Using the regularity (10), one can estimate the right-hand side of (59) as

||G||L2(Ω;Rn) = ||F − (U · ∇)u2 − (u1 · ∇)U ||L2(Ω;Rn)

≤ ||F ||L2(Ω;Rn) + ||U ||L6(Ω;Rn)||∇u2||L3(Ω;Rn×n)

+ ||u1||L∞(Ω;Rn)||∇U ||L2(Ω;Rn×n)

≤ ||F ||L2(Ω;Rn) + N3N6||U ||W 1,2(Ω;Rn)||u2||W 2,2(Ω;Rn)

+ c||u1||W 2,2(Ω;Rn)||U ||W 1,2(Ω;Rn) (60)

with c from (10). As we can assume u1 and u2 ranging a bounded set in
W 2,2(Ω; Rn), by Lemmas 5.1 and 5.2, we have the Lipschitz continuity of the
mapping (Eu, Ef ) 7→ G : L2(Ω; Rn)2 → L2(Ω; Rn). Then, by the W 2,2-regularity
of the Stokes system, see Galdi (1994), Chapter IV, Theorem 6.1, occurring on
the left-hand side of (59), we get the claimed assertion.
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