
Control and Cybernetics

vol. 32 (2003) No. 3

On diffused-interface models of shape memory alloys

by

Irena Paw low1 and Wojciech M. Zaja̧czkowski2

1 Systems Research Institute, Polish Academy of Sciences,
Newelska 6, 01-447 Warsaw, Poland

E-mail: pawlow@ibspan.waw.pl

2 current address: ICM Warsaw University, Pawińskiego 5a,
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Abstract: The paper surveys mathematical models of thermo-
mechanical evolution of shape memory alloys and related mathemat-
ical results. The survey is confined to so-called diffused-interface or
phase-field models based on Landau-Ginzburg free energy as a ther-
modynamic potential. It includes the well-known models due to
Falk, Frémond and Fried-Gurtin. The focus is on a three-dimen-
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such model the thermodynamical basis and the recent mathematical
results on its well-posedness are presented.
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1. Introduction

The ability of some metallic alloys to ”remember” certain predefined shapes
has been the focus of extensive studies since many years. Such alloys can be
deformed to a particular shape at some temperature, but after heating they
revert to their original shape. This phenomenon, known as shape memory
effect, is due to the ability of the material to change its lattice structure from
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a high symmetry phase (austenite) to a lower symmetry phase (martensite).
The change of structure, activated by stress or temperature, reflects the phase
transition in solid.

The goal of this paper is to review mathematical models of thermomechanical
evolution of shape memory alloys and related mathematical results.

As it is well-known there are two main approaches to describe phase tran-
sitions in continuum mechanics: the sharp interface and the diffused-interface
or phase-field theories, see e.g. Gurtin and Struthers (1990), Fried and Gurtin
(1994, 1999), Fried and Grach (1997), Šilhavý (1985).

In the first one the interface separating the coexisting phases is considered
as a two-dimensional surface of discontinuity of the first deformation gradi-
ent (strain), and in the second one the interface is treated as a thin three-
dimensional region where strain changes considerably but smoothly.

The first approach corresponds to a potential of Landau form based on an
order parameter, and the second one to a potential of Landau-Ginzburg form
involving order parameter and its gradient. The order parameter is an internal
quantity which characterizes the difference between the phases of the material.

In the present paper we shall confine ourselves to diffused-interface approach
based on Landau-Ginzburg free energy as a potential. Within this approach we
present the following one- and three-dimensional (1- and 3-D) models which
differ in the choice of the order parameter:

(i) 1-D Falk’s model (Falk, 1980, 1982, 1983, 1990) based on free energy de-
pending on the scalar sheer strain, temperature and sheer strain gradient;

(ii) 3-D generalization of Falk’s model based on the linearized strain tensor,
temperature and strain tensor gradient (see Paw low, 2000b, for thermody-
namical derivation, and Paw low and Żochowski, 2001, 2002, Paw low and
Zaja̧czkowski, 2002a, 2000b, for mathematical results);

(iii) 3-D Frémond’s model (Frémond, 1987, 1990, 2002) based on the phase
ratios, the linearized strain tensor, temperature and gradient of the strain
tensor trace;

(iv) 3-D isothermal Fried-Gurtin model (Fried and Gurtin, 1994) based on the
deformation gradient, a multicomponent order parameter and its gradient.

We focus our attention on the second class of models, for which we present
the corresponding thermodynamical framework. In discussing other models we
refer, whenever possible, to this framework. We mention that the Landau-
Ginzburg approach based on the strain tensor as an order parameter has been
used in Barsch and Krumhansl (1984, 1988) where physically justified 2-D elastic
and strain gradient energies have been proposed.

Our thermomechanical model, which constitutes a 3-D counterpart of Falk’s
model, is based on the elastic energy due to Falk and Konopka (1990). This
energy is a polynomial expansion up to sixth order with respect to the invariants,
i.e., certain combinations of the strain tensor components, with temperature-
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dependent coefficients. We mention that there are other elastic energy models
for shape memory materials, e.g., the model due to Ericksen (1986) is expressed
in terms of the right Cauchy-Green strain tensor in the form of a fourth order
polynomial with temperature-dependent coefficients. Such energy has been used
by Klouček and Luskin (1994) for numerical simulation of shape memory alloy
dynamics in 3-D, with temperature treated as a parameter.

For an account on modelling and mathematical aspects of shape memory
alloys, apart from the papers cited in the text, we refer to the monographs
by Brokate and Sprekels (1996) Chapter 4, 5, Frémond (2002) Chapter 13,
Frémond and Miyazaki (1996), Zheng (1995) Chapter 4. For comprehensive
references concerning the subject we refer to Sprekels (1990), Spies (1995),
Roub́ıček (1999), Bonetti (2001), Müller and Seelecke (2001), Bernardini (2001).
We mention also that recently a hysteresis operator approach has been applied
to model the dynamics of 1-D shape memory alloy, see Aiki and Kenmochi
(2001).

The plan of the paper is as follows:
In Section 2 we outline the 1-D Falk’s model and review briefly the results

concerning its well-posedness. We point out the methods based on parabolic
decomposition of the momentum balance which can be extended to the 3-D
case.

In Section 3 we outline the thermodynamically consistent constitutive equa-
tions for 3-D thermoelasticity models with free energy depending on strain ten-
sor, its gradient and absolute temperature. We derive the availability identity,
which provides the energy estimates for such class of models, and discuss a Lya-
punov relation.

In Section 4 we formulate a 3-D nonlinear thermoelasticity system repre-
senting a counterpart of 1-D Falk’s model. For such a system we present recent
results on global in time existence and uniqueness of solutions and comment on
difficulties in the mathematical treatment.

In Section 5 we outline Frémond’s model, show how it fits into our thermo-
dynamical framework, and review briefly the mathematical results.

In Section 6 we present the basic equations of Fried-Gurtin model and their
specific forms corresponding to some free energy models.

We use the following notation:

u,i = ∂u(x,t)
∂xi

, i = 1, . . . , n, ut = du(x,t)
dt , ε = (εij)i,j=1,...,n,

F,ε(ε, θ) = ∂F (ε,θ)
∂ε =

(
∂F (ε,θ)

∂εij

)
i,j=1,...,n

, F,θ(ε, θ) = ∂F (ε,θ)
∂θ .

The symbol (·)t denotes the material time derivative of the field (·). For simplic-
ity we use the same notation, u,i and ut, for variables corresponding to the first
order space and time derivatives. Whenever there is no danger of confusion, we
omit the function arguments. The specification of the range of tensor indices is
omitted, as well. Vectors and tensors are denoted by bold letters. The summa-
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tion convention over repeated indices is used. Moreover, for vectors a = (ai),
ã = (ãi) and tensors B = (Bij), B̃ = (B̃ij), A = (Aijkl) we write

a · ã = aiãi, B : B̃ = BijB̃ij ,

AB = (AijklBkl), BA = (BijAijkl),

|a| = (aiai)1/2, |B| = (BijBij)1/2.

Throughout the paper all derivatives are material (Lagrangian). The sym-
bols ∇ and ∇· denote the gradient and divergence with respect to the mate-
rial point x ∈ Rn : ∇a = (a,i), ∇a = (ai,j), ∇ · a = ai,i, ∇ · B = (Bij,j),
∇ ·A = (Aijkl,l).

2. Review of 1-D Falk’s model

The 1-D model due to Falk (1980, 1982, 1983, 1990) describes martensitic phase
transitions of the sheer type. The sheer strain ε = ux, where u denotes displace-
ment, is used as an order parameter distinguishing between different configura-
tions of the crystal lattice.

The Helmholtz free energy density f = f(ε, εx, θ), depending on strain
ε, strain gradient εx and absolute temperature θ, is assumed in the Landau-
Ginzburg form

f(ε, εx, θ) = f∗(θ) + F (ε, θ) +
κ
2

ε2
x, (1)

where

f∗(θ) = −cvθ log
(

θ

θ1

)
+ cvθ + c̃, F (ε, θ) = F1(ε, θ) + F2(ε),

F1(ε, θ) = α1(θ − θc)ε2, F2(ε) = −α2ε
4 + α3ε

6,

with positive physical constants θc, α1, α2, α3, κ, cv, θ1, and some constant c̃
immaterial from the point of view of differential equations.

The terms in (1) denote: f∗(θ) — thermal energy with thermal specific heat
cv, F (ε, θ) — elastic energy, κε2

x/2 — strain gradient energy. The elastic energy
is nonconvex multiwell function of ε with the shape strongly depending on θ.

The balance laws of linear momentum and energy in a wire of length 1 and
constant density % = 1 read

utt − σx + µxx = b, (2)
et + q0x − σεt − µεxt = g in ΩT = (0, 1)× (0, T ),

where T > 0 is final time, σ — shear stress, µ — couple stress, e — internal
energy, q0 — heat flux, b — distributed body force, g — distributed heat source.
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In addition to (2) the fields are required to comply with the second principle of
thermodynamics in the form of the Clausius-Duhem inequality

ηt +
(q0

θ

)
x
≥ g

θ
in ΩT , (3)

where η is the entropy density related to f and e by Gibbs relations

f = e− θη, η = −f,θ. (4)

It is straightforward to check (see Lemma 3.2) that in case of free energy f =
f(ε, εx, θ), the inequality (3) is satisfied for constitutive equations

σ = f,ε + σv, σv = νεt, µ = f,εx , (5)
q0 = −kθx,

where σv denotes viscous stress, ν ≥ 0 — viscosity coefficient, k > 0 — heat
conductivity. Using (5) in (2), and taking into account the particular form (1)
of f , we arrive at the system

utt − νuxxt + κuxxxx = (F,ε(ε, θ))x + b, (6)
c0(ε, θ)θt − kθxx = θF,εθ(ε, θ)εt + νε2

t + g in ΩT ,

where ε = ux, and

c0(ε, θ) = cv − θF,θθ(ε, θ)

denotes the specific heat. Clearly, for F linearly dependent on θ as in (1),
c0 = cv.

The system (6) is subject to initial conditions

u
∣∣
t=0

= u0, ut

∣∣
t=0

= u1, θ
∣∣
t=0

= θ0 in Ω,

and some boundary conditions.
The boundary value problems for (6) have been investigated under various

structural assumptions on F (ε, θ) in the cases κ = 0, ν > 0, or κ > 0, ν = 0,
or κ > 0, ν > 0. In all cases the mathematical analysis required a considerable
effort despite the 1-D setting. The positivity of one of the coefficinets ν or κ
played a regularizing role.

In case κ = 0, ν > 0 the global in time existence of solutions to (6) has been
studied by Niezgódka and Sprekels (1988), Hoffman and Zheng (1988), Zheng
and Sprekels (1988), Chen and Hoffmann (1994), Racke and Zheng (1997), Shen,
Zheng and Zhu (1999).

The last two references address also the question of asymptotic behaviour
as time tends to infinity. We emphasise that in view of κ = 0 (no interfacial
structure) the framework of these papers allows the strain ε to belong to L∞.

For recent results concerning general thermovisco-elasticity systems related
to (6), including, in particular shape memory alloys, we refer e.g. to Watson
(2000), Qin (2001).
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In case of κ > 0, ν = 0 the system (6) has been studied by Sprekels (1989),
Zheng (1989), Sprekels and Zheng (1989), Aiki (2000). We point out that the
analysis in Sprekels (1989) required restrictive growth conditions on F (ε, θ) with
respect to θ, which excluded the physically relevant case in (1). This assumption
has been removed in Zheng (1989), where F (ε, θ) has been admitted in the
standard form (1) but −f∗(θ) has been assumed to grow at least quadratically
in θ. Finally, the latter assumption has been removed in Sprekels and Zheng
(1989) by means of deriving more delicate estimates. Then Aiki (2000) addresses
the existence and uniqueness of weak solutions.

In case of κ > 0, ν > 0 the system (6) has been studied by Żochowski (1992),
Hoffmann and Żochowski (1992 a,b) in the 1-D and 2-D cases. In these refer-
ences the analysis has been based on the parabolic decomposition of momentum
equation (6)1.

The same type of decomposition has been applied for the 3-D model in
Paw low and Żochowski (2000, 2002) (see Section 4). In case of boundary con-
ditions

u = 0, uxx = 0 on ST = {0} × (0, T ) ∪ {1} × (0, T ),

it is easy to see that (6)1 splits into the following two systems:

wt − βwxx = (F,ε(ε, θ))x + b in ΩT ,
w

∣∣
t=0

= u1 − αu0xx in Ω,
w = 0 on ST ,

(7)

and

ut − αuxx = w in ΩT ,
u
∣∣
t=0

= u0 in Ω,
u = 0 on ST ,

(8)

where α, β are numbers satisfying α + β = ν , αβ = κ , 0 < 2
√

κ ≤ ν.
We point out that in the papers cited above a priori estimates on solutions

depend on the time horizon T , therefore do not admit the asymptotic analysis
as T →∞.

The study of system (6) in case κ > 0, ν > 0 has been continued in Sprekels,
Zheng and Zhu (1998), Sprekels and Zheng (1998), where the global existence,
uniqueness, the asymptotic behaviour of solution as time T → ∞, and the
existence of a compact maximal attractor has been established.

The analysis in these papers is based on different type of parabolic decompo-
sition of (6)1 by means of the transformation due to Pego (1987) and Andrews
(1980):

p(x, t) =

x∫
1

ut(y, t)dy. (9)



On diffused-interface models of shape memory alloys 635

In view of (9),

εt = pxx in ΩT , (10)

and system (6) (b = 0, g = 0) can be recast as

pt − νpxx = −κεxx + F,ε(ε, θ),
c0θt − kθxx = θF,εθ(ε, θ)pxx + νp2

xx in ΩT .

The transformation (9) has been also applied in the previously discussed case
κ = 0, ν > 0 in Racke and Zheng (1997), Shen, Zheng and Zhu (1999). We point
out that in all the papers, mentioned above, concerning asymptotic behaviour
of solutions, the main tool was the basic lemma due to Shen and Zheng (1993).

We mention that the transformation (9) has been generalized to many space
dimensions by Rybka (1992, 1997) to study isothermal viscoelasticity system,
see also Swart and Holmes (1992).

System (6) with κ > 0, ν > 0, has been also investigated from the point of
view of so-called state-space approach by means of expressing it as a semilinear
Cauchy problem in an appropriate Hilbert space, see Speis (1994, 1995), Morin
and Spies (1997).

Finally, we mention that there exists an extensive literature concerning the
control problems for 1-D Falk’s model where distributed or boundary inputs
are used to control the system behaviour. We refer, e.g., to Hoffmann and
Sprekels (1987), Sprekels (1989b), Brokate and Sprekels (1991), Soko lowski and
Sprekels (1994), Bubner, Soko lowski and Sprekels (1998). Control problems for
a special 2-D model of a plate activated by shape memory reinforcements have
been considered by Żochowski (1992), Hoffmann and Tiba (1997), Hoffmann
and Żochowski (1998). Recently, control problem for 3-D counterpart of Falk’s
model has been studied in Paw low and Żochowski (2002b).

3. Thermodynamical framework of diffused-interface mod-
els with strain tensor as an order parameter

Let Ω ⊂ Rn, n = 2 or 3, be a bounded domain with a smooth boundary S,
occupied by a body in a reference configuration. Let u = (ui) denote the
displacement vector, θ > 0 — the absolute temperature, and

ε = ε(u) =
1
2

(∇u+∇uT )

be the linearized strain tensor.
We outline the field equations for thermodynamically consistent thermoelas-

ticity models governed by Landau-Ginzburg free energy

f = f(ε(u),∇ε(u), θ). (11)

We confine our attention to small strain approximation, that is, the assumption
of infinitesimal displacement gradient.
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Assuming constant mass density (% = 1), the balance laws of linear momen-
tum and internal energy read:

utt −∇ · S = b, (12)
et +∇ · q − S : εt = g in ΩT = Ω× (0, T ),

where S denotes the referential (first Piola-Kirchhoff) stress tensor, e — internal
energy, q — energy flux, and εt = ε(ut) — the strain rate tensor, and b —
external body force.

The corresponding thermodynamically consistent constitutive relations for
e, S and q have been established in Paw low (2000b). In order to construct
theory with first order strain gradient free energy f it is necessary to admit as
constitutive variables not only the strain tensor ε, its higher gradients ∇Mε,
M ∈ N, and absolute temperature θ (or, by duality, entropy η or internal energy
e) but also the strain rate tensor εt. By assuming such constitutive dependence
and exploiting the entropy inequality with multipliers it has been proved in the
above mentioned reference that the constitutive dependence of f is restricted to
the variables as in (11), e and η are linked by the Gibbs relations (4), and S, q
are defined by

S =
δf

δε
+ θ(h− f,∇ε)∇

(
1
θ

)
+ Sv, (13)

q = q0 + q1, q1 = −εth,

where δf/δε denotes the first variation of f with respect to ε, given by

δf

δε
= f,ε −∇ · f,∇ε.

A third order tensor h = (hijk) is an arbitrary constitutive quantity. It is not
constrained by the second principle but, as conventional, required to be frame
indifferent. The presence of such quantity is characteristic for phase transition
models with first order gradient free energy (Alt and Paw low, 1996). It con-
tributes to nonstationary energy and entropy fluxes associated with evolving
non-zero width phase interfaces.

In (13), q1 denotes a nonstationary energy flux. Furhermore, Sv is the
viscous stress tensor and q0 is the heat flux which are subject to the dissipation
inequality

εt :
(
Sv

θ

)
+∇

(
1
θ

)
· q0 ≥ 0 for all fields u, θ. (14)

The standard examples of constitutive equations for Sv and q0 are Hooke’s and
Fourier’s laws:

Sv = νAεt, q0 = −k∇θ, (15)
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where ν > 0 is the viscosity, k > 0 the heat conductivity, and A = (Aijkl) the
fourth order elasticity tensor

Aε(u) = λtrε(u)I + 2µε(u), (16)

with I = (δij) identity tensor and λ, µ Lamé constants.
The thermodynamical compatibility of relations (13), (14) is assured by the

following

Lemma 3.1 (Paw low, 2000b) The solutions of system of balance laws (3.2) with
constitutive relations (13), (14) satisfy the entropy inequality

ηt +∇ ·ψ = εt :
(
Sv

θ

)
+∇

(
1
θ

)
· q0 +

g

θ
≥ g

θ
for all u, θ, (17)

where η is the entropy obeying Gibbs relations (4), and ψ is the entropy flux
given by

ψ = ψ0 +ψ1, ψ0 =
1
θ
q0, ψ1 =

1
θ
εt(f,∇ε − h). (18)

For special selection

h = f,∇ε, (19)

the constitutive equations for S, q and ψ become

S =
δf

δε
+ Sv, q = q0 + q1, q1 = −εtf,∇ε, (20)

ψ = ψ0 +ψ1, ψ0 =
1
θ
q0, ψ1 = 0.

Is is straightforward to check that for such constitutive equations, for Sv, q0

defined by (15) and f by (11) the system (12) in 1-D case is identical to Falk’s
model (2), (5). We note also that the third order tensor f,∇ε = (f,εij,k

) repre-
sents the couple stress.

The mathematical results reported in Section 4 concern system (12) with h
specified by (19). For discussion of other choices of h, for example h = 0, and
the related field equations we refer to Paw low (2000b). Here, we present the
general properties of the system (12) with the constitutive equations (20). First,
for further convenience, we collect the equivalent forms of energy equation in
this system.

Lemma 3.2 Consider system (12) with constitutive equations satisfying (20)
and (14). Then the energy equation (12)2 admits the following equivalent for-
mulations:

et +∇ · (q0 − εtf,∇ε)− S : εt = g, (21)
θηt +∇ · q0 − S

v : εt = g,

c0θt +∇ · q0 = θf,θε : εt + θf,θ∇ε : ∇εt + Sv : εt + g,
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where

c0 = −θf,θθ, (22)

and e, η obey the Gibbs relations (4).

Proof. The equivalence of (21)1 and (21)2 follows in view of the identity

et −∇ · (εtf,∇ε)− S : εt

= (θηt + f,ε : εt + f,∇ε : ∇εt)
− ((∇ · f,∇ε) : εt + f,∇ε : ∇εt)
− (f,ε −∇ · f,∇ε + Sv) : εt = θηt − Sv : εt,

where we have used that, by virtue of Gibbs relations,

θηt = et + f,θθt − f,t = et − f,ε : εt − f,∇ε : ∇εt.

Clearly, the equivalance of (3.11)2 and (3.113 results from the identity

θηt = −θf,θε : εt − θf,θ∇ε : ∇εt + c0θt.

Now we present the availability identity for the system (12) with constitutive
equations satisfying (20), (14). In mathematical analysis such identity provides
energy estimates.

Lemma 3.3 For solutions of system (12) with (20), (14) the following identity
is satisfied

d

dt

∫
Ω

(
e +

1
2
|ut|2 − θ̄η

)
dx (23)

+
∫
S

[
−(Sn) · ut − n · (εtf,∇ε) +

(
1− θ̄

θ

)
n · q0

]
dS

+
∫
Ω

[
∇

(
θ̄

θ

)
· q0 +

θ̄

θ
εt : Sv

]
dx

=
∫
Ω

[
b · ut +

(
1− θ̄

θ

)
g

]
dx for t ∈ (0, T ),

where θ̄ = θ̄(x) > 0 is a given function, and n denotes the unit outward normal
to S.

Proof. Multiplication of (21)2 by θ̄/θ (it is assumed that θ > 0) and integration
over Ω yields the identity for the entropy

d

dt

∫
Ω

θ̄ηdx−
∫
Ω

∇
(

θ̄

θ

)
· q0dx +

∫
S

n · q0

θ̄

θ
dS (24)

−
∫
Ω

θ̄

θ
εt : Svdx =

∫
Ω

θ̄

θ
gdx.
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Next, integration of (21)1 over Ω yields the identity for the internal energy

d

dt

∫
Ω

edx +
∫
S

[n · q0 − n · (εtf,∇ε)] dS −
∫
Ω

S : εtdx =
∫
Ω

gdx. (25)

Furthermore, by multiplying (12) by ut and integrating over Ω we get the iden-
tity for the kinetic energy

d

dt

∫
Ω

1
2
|ut|2dx +

∫
Ω

S : εtdx−
∫
S

(Sn) · utdS =
∫
Ω

b · utdx. (26)

By adding (25) and (26) we obtain the identity for the total energy

d

dt

∫
Ω

(
e +

1
2
|ut|2

)
dx +

∫
S

[−(Sn) · ut − n · (εtf,∇ε) + n · q0]dS

=
∫
Ω

(b · ut + g)dx. (27)

Finally, subtracting (24) from (27) yields (23).

In view of the dissipation inequality (14), if external sources vanish

b = 0, g = 0,

if boundary conditions on S imply that

(Sn) · ut = 0, n · (εtf,∇ε) = 0, n · q0 = 0,

and if θ̄ = const > 0, identity (23) implies the Lyapunov relation

d

dt

∫
Ω

(
e +

1
2
|ut|2 − θ̄η

)
dx ≤ 0,

where the function under the integral is known as the equilibrium free energy.

4. 3-D counterpart of Falk’s model and its well-posedness

Let A = (Aijkl) be the elasticity tensor given by (16), where Lamé constants
λ, µ are specified below in assumption (A2). We recall that A satisfies the
following symmetry conditions:

Aijkl = Ajikl, Aijkl = Aijlk, Aijkl = Aklij .

Moreover, let Q stand for the second order differential operator of linearized
elasticity, defined by

u 7→ Qu = ∇ · (Aε(u)) = µ∆u+ (λ + µ)∇(∇ · u). (28)
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Correspondingly, the operator Q2 = QQ is given by

u 7→ Q2u = µ∆(Qu) + (λ + µ)∇(∇ · (Qu)).

The Landau-Ginzburg free energy (11) is assumed in the form

f(ε(u),∇ε(u), θ) = f∗(θ) + F (ε(u), θ) +
κ0

8
|Qu|2, (29)

with f∗(θ) as in (1).
The special form of strain gradient term with constant κ0 > 0 is chosen for

the sake of mathematical analysis.
The meaning of the quantities in (29) is the same as in (1). The representa-

tive model of the elastic energy F (ε, θ) is due to Falk and Konopka (1990):

F (ε, θ) =
3∑

i=1

a2
i (θ)J2

i (ε) +
5∑

i=1

a4
i (θ)J4

i (ε) +
2∑

i=1

a6
i (θ)J6

i (ε), (30)

where ak
i (θ) are experimentally determined material coefficients, and Jk

i (ε) are
crystal invariants in the form of k-th order polynomials in εij . In particular, for
CuAlNi alloy Falk and Konopka (1990) have proposed

ak
i (θ) = αk

i + α̃k
i (θ − θc), k = 2, 4, (31)

a6
i (θ) = α6

i ,

with constants

α2
1, α

2
2, α

2
3 > 0, α̃2

1 = 0, α̃2
2 > 0, α̃2

3 < 0,

α4
1, α

4
4, α

4
5 < 0, α4

2, α
4
3 > 0, α̃4

1 > 0, α̃4
2 = α̃4

3 = α̃4
4 = α̃4

5 = 0,

α6
1, α

6
2 > 0, θc > 0.

Here, in contrast to elastic energy F (ε, θ) in Falk’s model (1), not only second
order, a2

i , but also fourth order coefficient a4
1 are dependent on temperature.

We consider the system of balance laws (12) governed by free energy (29),
with constitutive equations for S, q given by (20), and for Sv, q0 by (15). In
such a case

f,∇ε = (f,εpq,r
) =

κ0

4
((Qu)iAirpq) =

κ0

4
(Apqri(Qu)i) =

κ0

4
AQu,

∇ · f,∇ε =
κ0

4
(Apqriεri(Qu)) =

κ0

4
Aε(Qu),

δf

δε
= F,ε(ε, θ)− κ0

4
Aε(Qu),

q1 = −κ0

4
εt(AQu).



On diffused-interface models of shape memory alloys 641

Inserting the above equations into (12) leads to the following system, which is
a 3-D generalization of the Falk’s model (6):

utt − νQut +
κ0

4
Q2u = ∇ · F,ε(ε, θ) + b, (32)

c0(ε, θ)θt − k∆θ = θF,θε(ε, θ) : εt + ν(Aεt) : εt + g (33)

in ΩT = Ω× (0, T ), where

c0(ε, θ) = cv − θF,θθ(ε, θ). (34)

The above system is considered with the following initial and boundary condi-
tions

u
∣∣
t=0

= u0, ut

∣∣
t=0

= u1 in Ω, (35)

u = 0, Qu = 0 on ST = S × (0, T ), (36)

θ
∣∣
t=0

= θ0 in Ω, (37)

n · ∇θ = 0 on ST , (38)

where n is the unit outward normal to S.
The initial boundary value problem (32)–(38) has been studied under various

structural assumptions in Paw low and Żochowski (2000, 2002a, b), Paw low and
Zaja̧czkowski (2002a, b).

The main structural assumption has been concerned with the behaviour of
the elastic energy F (ε, θ) as a function of θ. Namely, in all the above papers
F (ε, θ) has been assumed to satisfy growth condition

|F (ε, θ)| ≤ c + cθs|ε|K1

for large values of θ and εij , with exponents 0 < s < 1 and 0 < K1 < ∞ linked
by an appropriate relation.

Under such condition the specific heat coefficient c0(ε, θ), by definition, con-
tains the nonlinear contribution −θF,θθ(ε, θ). The presence of such nonlinearity
causes essential difficulties in the mathematical analysis of the problem. They
are related to the necessity of deriving Hölder bounds on ε and θ in application
of the classical parabolic theory.

In Paw low and Żochowski (2002a) the problem (32)–(38) has been studied
in the 3-D case, by means of the Leray-Schauder fixed point theorem, under
structural simplification of energy equation (33). The simplification consisted
in neglecting the nonlinear term in c0(ε, θ), that is, by setting

c0(ε, θ) = cv = const > 0.

The reference Paw low and Zaja̧czkowski (2002a) generalizes Paw low and
Żochowski (2002a) by removing the above mentioned simplification. However,
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the proof of existence result in that reference is intrinsically two-dimensional,
based on Sobolev’s imbeddings and interpolation inequalities in 2-D.

The subsequent paper of Paw low and Zaja̧czkowski (2002b) offers a different
proof of a priori estimates which, with the help of the Leray-Schauder fixed point
theorem, allows for the establishment of existence of solutions in the 2-D and
3-D cases.

The proof of a priori estimates consists in recursive improvement of energy
estimates with the help of Sobolev’s imbedding theorems and the regularity
theory of parabolic systems. The key estimates are L∞(ΩT )-norm bound and
Hölder-norm bound for a solution of heat conduction equation (33) with non-
linear specific heat c0(ε, θ).

In all above mentioned references the idea of the existence proof is similar
to that in Żochowski (1992), where 1-D Falk’s model has been considered. It
is based on parabolic decomposition of (32) and the application of the Leray-
Schauder fixed point theorem. The elasticity system (32) admits the decom-
positon into two parabolic systems, for vector field w:

wt − βQw = ∇ · F,ε(ε, θ) + b in ΩT , (39)
w

∣∣
t=0

= w0 ≡ u1 − αQu0 in Ω,

w = 0 on ST ,

and for vector field u:

ut − αQu = w in ΩT , (40)
u

∣∣
t=0

= u0 in Ω,

u = 0 on ST ,

where α, β are numbers satisfying

α + β = ν, αβ =
κ0

4
.

Further on, we assume the condition 0 <
√κ0 ≤ ν, which assures that α, β ∈

R+. Systems (39), (40) are coupled with problem (33),(37), (38) for θ.
We present now the existence and uniqueness results for the problem (32)–

(38) proved in Paw low and Zaja̧czkowski (2002b). First we list the assumptions:

(A1) Domain Ω ⊂ Rn, n = 2 or 3, with the boundary of class C4. The C4-
regularity is needed in order to apply the classical regularity theory for parabolic
systems.

(A2) The coefficients of the operator Q satisfy

µ > 0, nλ + 2µ > 0.

These conditions assure the following properties:
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(i) Coercivity and boundedness of the algebraic operator A:
c|ε|2 ≤ (Aε) : ε ≤ c̄|ε|2,

where
c = min{nλ + 2µ, 2µ}, c̄ = max{nλ + 2µ, 2µ}.

(ii) Strong ellipticity of the operator Q (see Paw low and Żochowski, 2002a).
Thanks to this property the following estimate holds true

c‖u‖W 2
2(Ω)

≤ ‖Qu‖L2(Ω) for {u ∈W 2
2(Ω)| u|S = 0}.

(iii) Parabolicity in the general (Solonnikov) sense of system (32) (see Paw low
and Żochowski (2002a)).

The subsequent assumption concerns the structure of elastic energy.

(A3) Function F (ε, θ) : S2 × [0,∞) → R is of class C3, where S2 denotes the
set of symmetric second order tensors in Rn. We assume the splitting

F (ε, θ) = F1(ε, θ) + F2(ε),

where F1 and F2 are subject to the following conditions:

(A3-1) Conditions on F1(ε, θ)
(i) Concavity with respect to θ

−F1,θθ(ε, θ) ≥ 0 for (ε, θ) ∈ S2 × [0,∞). (41)

(ii) Nonnegativity
F1(ε, θ) ≥ 0 for (ε, θ) ∈ S2 × [0,∞).

(iii) Boundedness of the norm
‖F1‖C3(S2×[0,∞)) < ∞.

(iv) Growth conditions. There exist a positive constant c and numbers
s,K1 ∈ (0,∞) such that

|F1(ε, θ)| ≤ c(1 + θs|ε|K1),
|F1,ε(ε, θ)| ≤ c(1 + θs|ε|K1−1),
|F1,εε(ε, θ)| ≤ c(1 + θs|ε|K1−2),
|F1,θε(ε, θ)| ≤ c(1 + θs−1|ε|K1−1),
|F1,θθ(ε, θ)| ≤ c(1 + θs−2|ε|K1),
|F1,θθε(ε, θ)| ≤ c(1 + θs−2|ε|K1−1)

for large values of θ and εij , where admissible ranges of s and K1 are given
by

0 < s <
n + 1

2n
=

{
3/4 if n = 2
2/3 if n = 3,

0 < K1 < 1+
qn

2

[
n + 2

2n
+

1
n(n + 1)

]
=

{
any finite number if n = 2
15/4 if n = 3.
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Moreover, in case of K1 > 1 the numbers s and K1 are linked by the equality
2sn

n + 1
+

4n(K1 − 1)
qn(n + 2)

= 1 +
2

(n + 1)(n + 2)
.

Here, qn is the Sobolev exponent for which the imbedding of W 1
2 (Ω) into Lqn

(Ω)
is continuous, i.e., qn = 2n/(n − 2) for n ≥ 3 and qn is any finite number for
n = 2.
Concerning the part F2(ε) we impose:

(A3-2) Conditions on F2(ε)
(ı) Nonnegativity

F2(ε) ≥ 0 for ε ∈ S2.

(ii) Boundedness of the norm
‖F2‖C2(S2) < ∞.

(iii) Growth conditions
|F2(ε)| ≤ c(1 + |ε|K2),
|F2,ε(ε)| ≤ c(1 + |ε|K2−1),
|F2,εε(ε)| ≤ c(1 + |ε|K2−2)

for large values of εij , where

0 < K2 ≤ 1 +
qn(n + 4)

4n
=

{
any finite number if n = 2
9/2 if n = 3.

We point out the consequences of assumption (A3), which are of importance
in the proof of existence of solutions. In view of (A3-1) (i), the coefficient c0(ε, θ)
is bounded from below

0 < cv ≤ c0(ε, θ) for (ε, θ) ∈ S2 × [0,∞).

Moreover, (A3-1) (iii) and (iv) imply that the bounds on the coefficient c0(ε, θ)
and its derivatives with respect to ε and θ are independent of θ, more precisely,

|c0(ε, θ)|, |c0,θ(ε, θ)| ≤ c(1 + |ε|K1),

|c0,ε(ε, θ)| ≤ c(1 + |ε|max{0,K1−1}) for (ε, θ) ∈ S2 × [0,∞).

From (A3-1) (i) and (ii) it follows that

F1(ε, θ)− θF1,θ(ε, θ) ≥ 0 for (ε, θ) ∈ S2 × [0,∞)

what, according to Gibbs relations (4), means that the internal energy corre-
sponding to F1 is nonnegative. Furthermore, owing to (A3-2) (i),

(F1(ε, θ)− θF1,θ(ε, θ)) + F2(ε) ≥ 0 for (ε, θ) ∈ S2 × [0,∞),

what means that the internal energy is nonnegative. This bound is of importance
in derivation of energy estimates.

We are looking for the solution in the Sobolev space

V (p, q) = {(u, θ)| u ∈W 4,2
p (ΩT ), θ ∈ W 2,1

q (ΩT ), n + 2 < p ≤ q < ∞}.
The assumptions on the source terms and data correspond to this space.
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(A4) Source terms satisfy

b ∈ Lp(ΩT ), n + 2 < p < ∞,

g ∈ Lq(ΩT ), n + 2 < q < ∞, and g ≥ 0 a.e. in ΩT .

Initial data satisfy

u0 ∈W 4−2/p
p (Ω), u1 ∈ W 2−2/p

p (Ω), n + 2 < p < ∞,

θ0 ∈ W 2−2/q
q (Ω), n + 2 < q < ∞, and θ∗ ≡ min

Ω
θ0 > 0.

Moreover, initial data are supposed to satisfy compatibility conditions for the
classical solvability of parabolic problems.

Before formulating the existence result we give an example of the function
F1(ε, θ) which satisfies the structure assumptions (A3-1) (i)–(iv). This example
is motivated by the Falk-Konopka energy model (30), (31).

Example 4.1 Let

F1(ε, θ) =
N∑

i=1

F̃1i(θ)F̃2i(ε),

with functions F̃1i ∈ C3([0,∞)) given by

F̃1i(θ) =

 θ for 0 ≤ θ ≤ θ1

ϕi(θ) for θ1 < θ < θ2

θsi for θ2 ≤ θ < ∞.

Here N ∈ N , 0 < si < s < 1, θ1, θ2 are numbers satisfying 0 < θ1 < θ2,
siθ

si−1
2 < 1, and functions ϕi are nondecreasing, concave such that F̃1i ∈

C3([0,∞)). Moreover, functions F2i ∈ C3(S2) are supposed to satisfy

F̃2i(ε) ≥ 0,

|F̃2i(ε)| ≤ c(1 + |ε|K1),
|F̃2i,ε(ε)| ≤ c(1 + |ε|max{0,K1−1}),

|F̃2i,εε(ε)| ≤ c(1 + |ε|max{0,K1−2})

for all ε ∈ S2, where numbers s and K1 are subject to conditions specified in
(A3-1) (iv).

Under the above formulated assumptions the following holds true:

Theorem 4.1 (Paw low and Zaja̧czkowski, 2002b). Let assumptions (A1)–(A4)
be satisfied and the coefficients κ0, ν fulfil the condition

0 <
√

κ0 ≤ ν.
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Then, for any T > 0 there exists a solution (u, θ) to problem (32)–(38) in the
space V (p, q), such that

‖u‖W 4,2
p (ΩT )

≤ c(T ), ‖θ‖W 2,1
q (ΩT ) ≤ c(T ),

with a positive constant c(T ) depending on the data of the problem and T a,
a ∈ R+. Moreover, there exists a positive finite number ω, satisfying

[g + ν(Aεt) : εt] exp(ωt) + [ωc0(ε, θ) + F,θε(ε, θ) : εt]θ∗ ≥ 0 in ΩT ,

such that

θ ≥ θ∗ exp(−ωT ) in ΩT .

The second theorem concerns the uniqueness of solutions.

Theorem 4.2 (Paw low and Zaja̧czkowski, 2002a). Let the assumptions of The-
orem 4.1 be satisfied and in addition suppose that
(A5)

F (ε, θ) : S2 × [0,∞) is of class C4, and g ∈ L∞(ΩT ).

Then the solution (u, θ) ∈ V (p, q) to problem (32)–(38) is unique.

We comment briefly on the main steps of the existence proof.
In order to apply the Leray-Schauder fixed point theorem we make use of

the parabolic decomposition (39), (40). We introduce a solution map T (τ, ·) :
V (p, q) → V (p, q), with parameter τ ∈ [0, 1], corresponding to decomposed
elasticity system (39), (40), and problem (33), (37), (38) for θ. In the subsequent
steps we check the assumptions of the Leray-Schauder fixed point theorem,
i.e., the following properties of the solution map: the complete continuity, the
uniform equicontinuity with respect to the parameter, a priori bounds for a fixed
point and the uniqueness property for the parameter τ equal to zero.

The central, most difficult part of the proof is constitute by a priori bounds
for a fixed point. Their derivation requires a lot of technical work. Here the
central steps concern:

— proof of the positivity of temperature within the assumed class of solutions;

— energy estimates;

— procedure of recursive improvement of energy estimates;

— proof of the crucial L∞(ΩT ) – estimate on θ; the idea consists in deriving
a bound in Lr(ΩT ) – norm and passing to the limit with r →∞;

— proof of the Hölder continuity of θ; to this end, we apply the method pre-
sented in Ladyzhenskaya, Solonnikov and Ural’tseva (1967), which consists
in showing that θ ∈ B2(ΩT ,M, γ, r, δ, κ);

— application of the classical parabolic theory.
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The proof of Theorem 4.2 is based on direct comparison of two solutions to
problem (32)–(38) corresponding to the same data. Thanks to the regularity of
solutions it is possible to derive energy estimates for the difference of solutions
and next, with the help of Gronwall’s inequality, to conclude the uniqueness.

5. 3-D Frémond’s model

The Frémond model (Frémond, 1987, 1990, 1996) is based on the Landau-
Ginzburg free energy of the form

f̃ = f̃(ε,∇ε, θ, β̃) =
3∑

i=1

βifi(ε,∇ε, θ) + θĨB(β̃), (42)

where ε is the linearized strain tensor, θ — absolute temperature, β̃ = (β1, β2, β3)
— vector representing local ratios of two martensitic, β1, β2, and the austenitic
phase, β3.

The density is assumed constant % = 1. The free energies fi of the individual
phases are given by

f1 = f1(ε,∇ε, θ) = −cvθ log θ +
1
2
ε : (Aε) +

κ
2
|∇trε|2 − α(θ)trε, (43)

f2 = f2(ε,∇ε, θ) = −cvθ log θ +
1
2
ε : (Aε) +

κ
2
|∇trε|2 + α(θ)trε,

f3 = f3(ε,∇ε, θ) = −cvθ log θ +
1
2
ε : (Aε) +

κ
2
|∇trε|2 − l

θ∗
(θ − θ∗),

where cv denotes thermal specific heat, A — rigidity matrix defined by (16),
κ — positive coefficient, θ∗ — critical temperature, l — latent heat of the
austenite-martensite phase transition, α(θ) — function proportional to the ther-
mal expansion coefficient, nonnegative, nonincreasing and vanishing for temper-
atures above the Curie temperature θC > θ∗. Furthermore, θĨB(β̃) represents
a mixture energy, where

ĨB(β̃) :=
{

0 if β̃ ∈ B,

+∞ if β̃ 6∈ B,

is the indicator function of the closed convex set

B := {β̃ ∈ R3| 0 ≤ βi ≤ 1, i = 1, 2, 3,
3∑

i=1

βi = 1}.

We point out that free energy (42), in contrast to (29), is convex in ε. The strain
gradient term is a special case of that in (29) (viz., operator Q with µ = 0).

Upon elimination of β3 the free energy f̃ takes the form

f(ε,∇ε, θ,β) = f0(ε,∇ε, θ,β) + θIT (β), (44)
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where

f0 = β1(f1 − f3) + β2(f2 − f3) + f3

stands for a smooth part of f , β = (β1, β2), and IT (·) denotes the indicator
function of the triangle

T = {β ∈ R2| β1 ≥ 0, β2 ≥ 0, β1 + β2 ≤ 1}.

The field equations in terms of u, θ and β = (β1, β2) are (Frémond, 1990, Colli,
Frémond and Visintin, 1990, Frémond and Miyazaki, 1996):

utt −∇ · (λtrεI + 2µε+ α(θ)(β2 − β1)I) + κ∇ · (∆trεI) = b, (45)
(cv − θα,θθ(θ)trε(β2 − β1))θt − k∆θ − θα,θ(θ)trεt(β2 − β1)
−l(β1 + β2)t + (α(θ)− θα,θ(θ))trε(β2 − β1)t = g,

−γ∂t

(
β1

β2

)
+

(
α(θ)trε− l(θ − θ∗)/θ∗

−α(θ)trε− l(θ − θ∗)/θ∗

)
∈ ∂IT (β),

where ε = (∇u + ∇uT )/2, γ is a nonnegative viscosity constant, and ∂IT (·)
denotes the subdifferential of IT (·). We note that θ∂IT = ∂IT .

Originally, the system (45) has been proposed on the basis of the principle
of virtual power and a second gradient theory. It is worth to point out that
it turns out to fall into a general setting presented in Section 3. In fact, it
represents balance laws of linear momentum and energy (12), and a relaxation
law for phase ratios in the form of differential inclusion

−γ∂t

(
β1

β2

)
− f0,β(ε,∇ε, θ,β) ∈ ∂IT (β), (46)

with constitutive equations for S and q defined by (20), Sv = 0, and q0 given
by Fourier law (15), i.e.,

S = f,ε −∇ · f,∇ε, (47)
q = q0 + q1, q0 = −k∇θ, q1 = −εtf,∇ε.

Actually, for f defined by (44) we have

f,ε = Aε+ α(θ)(β2 − β1)I, (48)
f,∇ε = (f,εij,k

) = κ(εpq,kδpqδij) = κ(trε,kδij),
∇ · f,∇ε = ∂k(κtrε,kδij) = κ∆trεI,

f,∇ε : ∇εt = κ(trε,kδij)εtij,k = κ∇trε · ∇trεt,

f
0,β =

(
f1 − f3

f2 − f3

)
=

(
−α(θ)trε+ l(θ − θ∗)/θ∗

α(θ)trε+ l(θ − θ∗)/θ∗

)
.

Clearly, in view of (47), (48), the momentum balance (12)1 yields (45)1, and
the relaxation law (46) equation (45)3.
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Furthermore, proceeding as in Lemma 3.2, it is straightforward to show that
the energy balance (12)2 with S, q defined by (47) admits formally the following
equivalent forms:

et +∇ · q0 − f,ε : εt − f,∇ε : ∇εt = g, (49)
θηt +∇ · q0 + f0,β · βt + θ∂IT (β) · βt 3 g

c0θt +∇ · q0 − θf,θε : εt − θf,θ∇ε : ∇εt + (f0,β − θf0,θβ) · βt = g,

where c0 = −θf,θθ.
We note that since the term θIT (β) is proportional to temperature its con-

tribution in energy equation (49)3 drops out. Consequently, in view of equalities

c0 = cv − θα,θθtrε(β2 − β1), (50)
−θf,θε : εt = −θα,θtrεt(β2 − β1), −θf,θ∇ε : ∇εt = 0,

(f0,β − θf0,θβ) · βt = (α− θα,θ)trε(β2 − β1)t − l(β1 + β2)t,

equation (49)3 yields (45)2.
The system (45) is usually written in terms of the variables

χ1 := β1 + β2, χ2 := β2 − β1. (51)

It reads then

utt −∇ · (λ(∇ · u)I + 2µε(u) + α(θ)χ2I) + κ∇ · (∆(∇ · u)I) = b, (52)

cvθt − k∆θ = g + lχ1t − (α(θ)− θα,θ(θ))(∇ · u)χ2t

+ cvθt − k∆θ + θα,θ(θ)χ2∇ · ut + θα,θθ(θ)χ2(∇ · u)θt,

γ∂t

(
χ1

χ2

)
+

(
2l(θ − θ∗)/θ∗

2α(θ)∇ · u

)
+ ∂IK(χ1, χ2) 3

(
0
0

)
,

where

IK(χ1, χ2) =
{

0 if (χ1, χ2) ∈ K = {(χ̄1, χ̄2) ∈ R2| |χ̄2| ≤ χ̄1 ≤ 1},
+∞ if (χ1, χ2) 6∈ K.

The system is supplemented with appropriate initial and boundary conditions.
The system (52) and various variants close to it have been studied in 1-D

and 3-D cases. Most of the papers deal with quasistationary form of linear
momentum equation (52)1, i.e., neglecting the inertial term utt.

For the study of 1-D quasistationary case we refer to Colli and Sprekels
(1995), Colli, Laurençot and Stefanelli (2000). The full 1-D system (52) has
been investigated in Chemetov (1988), Shemetov (1998).

The mathematical analysis of 3-D system (52) has faced the difficulties aris-
ing from nonlinear terms in energy equation (52)2. By neglecting all or some of
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the nonlinearities in (52)2 the existence results for quasistationary system (52)
have been established , e.g., in Colli, Frémond and Visintin (1990), Colli and
Sprekels (1992), Hoffmann, Niezgódka and Zheng (1990).

In the latter reference a mollified version of the equation for phase ratios,
accounting for diffusion effects, has been assumed. More precisely, a technically
useful term involving Laplacian operator appears on the left-hand side of (45)3.
The presence of such a term is associated with additional phase ratio gradient
term in free energy (42).

The existence result for the full system (52) in the quasistationary form has
been established by Colli (1995). The maximum principle for Frémond’s model,
asserting that temperature is positive, has been proved in Colli and Sprekels
(1993).

Recently, Frémond’s model accounting for diffusive effects and with Cattaneo-
Maxwell heat flux law has been studied by Bonetti (2001, 2002).

The model is considered there in the simplified form neglecting nonlinear
terms in energy equation and with quasistationary form of momentum equation.
The results concerning well-posedness of such a model and the convergence
as relaxation and diffusive parameters tend to zero are proved in the above
mentioned references.

Finally, we mention recent references of Pagano, Alart and Maisonneuve
(1998), Balandraud, Ernst and Soós (2000), Timofte and Timofte (2001a, b),
where some variants of Frémond’s model have been investigated. These variants
neglect strain gradient term in free energy (42), i.e., do not account for interfacial
structure of phase boundaries.

6. 3-D Fried-Gurtin model

Fried and Gurtin (1994) have proposed a general theory of solid-solid phase
transitions, based on a microforce balance, which describes deformational effects
neglecting heat and mass transport. In this theory the order parameter is not
identified with the strain tensor but represents a new quantity which can have
different physical status.

In case of diffusive transitions it describes atomic arrangements within unit
cells of crystal lattice. For pure martensitic transitions, in which the lattice
undergoes a mechanical strain but there are no rearrangements of atoms within
cells, the order parameter might be viewed as an artifice that yields a regular-
ization of mechanical equations.

As discussed in Fried and Gurtin (1994), Fried and Grach (1997), such regu-
larization models interfacial structure of phase boundaries. Namely, it has been
shown there that, granted appropriate scaling, the governing equations of the
order-parameter-based theory are asymptotic to governing equations that arise
in sharp-interface theory by Gurtin and Struthers (1990).

The approach based on an order parameter has been applied also for diffusive
and ordering phase transitions in solids (Gurtin, 1996) and solid-liquid phase
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transitions in the presence of heat conduction (Fried and Gurtin, 1993).
We mention that the field equations generated by the Fried-Gurtin theory

based on a microforce balance can be recovered by exploiting the entropy in-
equality with multipliers, see Paw low (2000a) for examples and discussion.

The Fried-Gurtin theory is based on the first order gradient free energy

f = f(F ,ϕ,∇ϕ), (53)

where

F = I +∇u

is the deformation gradient, and ϕ = (ϕ1, . . . , ϕA) denotes vector-order param-
eter subject to constraint, for example,

ϕa ∈ [0, 1],
A∑

a=1

ϕa = 1. (54)

The underlying laws of the theory are: linear momentum balance, angular mo-
mentum balance, microforce balance and the second principle of thermodynam-
ics in the form of a dissipation inequality. Assuming constitutive functions
depending on (F ,ϕ,∇ϕ,ϕt) it is shown that the field equations compatible
with the dissipation inequality have the form:

%utt = ∇ · f,F (F ,ϕ,∇ϕ) + b, (55)

B(F, ϕ,∇ϕ,ϕt)ϕt = − δf

δϕ
(F, ϕ,∇ϕ) + γ

= −f,ϕ(F, ϕ,∇ϕ) +∇ · f,∇ϕ(F, ϕ,∇ϕ) + γ,

where b, γ are external forces, and B is a matrix of kinetic coefficients Bij ,
consistent with the inequality

ϕt · (B(F, ϕ,∇ϕ,ϕt)ϕt) ≥ 0. (56)

When order parameter has two components ϕ = (ϕ1, ϕ2) constrained via ϕ1 +
ϕ2 = 1 then, writing ϕ = ϕ2 = 1− ϕ1 and expressing free energy as a function
of F , ϕ,∇ϕ through

f̃(F , ϕ,∇ϕ) = f(F , ϕ1, ϕ2,∇ϕ1,∇ϕ2),

the system (55)2 can be reduced to one equation for ϕ with scalar kinetic co-
efficient β = β(F , ϕ,∇ϕ, ϕt) ≥ 0, provided that B11 = B22. In such a case
β = B22 −B12.

As a special case the Fried-Gurtin theory includes also the situation of
small displacement gradient where the constitutive functions depend on F only
through the linearized strain ε(u). We cite now some examples corresponding
to such a case. A typical form of the free energy is

f(ε, ϕ,∇ϕ) = W (ε, ϕ) + g(ϕ) + h(∇ϕ), (57)
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where the three terms on the right-hand side denote the strain energy, the
exchange energy and the gradient energy. A standard exchange energy for
system constrained by (54)2 is

g(ϕ) =
1
2
ν

A∏
a=1

(1− ϕa)2, ν > 0. (58)

A standard isotropic version of gradient energy is

h(∇ϕ) =
1
2

κ|∇ϕ|2, (59)

where κ is a positive coefficient. A relevant expression for the strain energy is

W (ε, ϕ) =
A∑

a=1

ϕaWa(ε), (60)

where Wa(ε) stands for the individual energy of phase a, given by

Wa(ε) = wa +
1
2

(ε− εa) : (Aa(ε− εa)). (61)

Here εa denotes the natural strain of phase a, Aa — the elasticity tensor of
phase a, and wa = Wa(εa) — the minimal energy value.

We quote also an alternate example of strain energy, originally proposed by
Libman and Roitburd (1987) for ordering transitions:

W (ε, ϕ) = w(ϕ) +
1
2

(ε− ε̄(ϕ)) : (A(ϕ)(ε− ε̄(ϕ))), (62)

where ε̄(ϕ) is the natural strain corresponding to the order parameter ϕ, and
w(ϕ) is the energy of homogeneous stress free phase.

We present now the field equations corresponding to the free energy defined
by (57)–(61) in case of two-component order parameter. Setting ϕ = ϕ2 =
1−ϕ1, that is, identifying phase 1 with ϕ = 0 and phase 2 with ϕ = 1, we have

utt −∇ · (1− ϕ)A1(ε(u)− ε1) + ϕA2(ε(u)− ε2)) = b, (63)
β(ε(u), ϕ,∇ϕ, ϕt)ϕt − 2κ∆ϕ + g,ϕ(ϕ) + W2(ε(u))−W1(ε(u)) = γ,

where Wi, i = 1, 2, are given by (61), and

Aiε(u) = λi(∇ · u)I + 2µiε(u), (64)

g(ϕ) =
1
2
νϕ2(1− ϕ)2.

According to our knowledge the well-posedness of systems directly related to
the Fried-Gurtin model has not been studied mathematically.

A specific one-dimensional version of the model with strain energy of the
type (62) has been studied in Sikora, Cusumano and Jester (1998) from the
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point of view of numerical simulation and the analysis of equilibrium solutions.
The free energy has been assumed there in the form:

f(ε, ϕ,∇ϕ) = W (ε, ϕ) + g(ϕ) +
1
2

κ|∇ϕ|2, (65)

with g(ϕ) as in (64)2, and

W (ε, ϕ) =
1
2
µ(ε− kϕ)2,

where κ, ν, µ are positive material parameters, and k = 1/
√

2 is a constant. In
such a case the field equations read (b = 0, γ = 0):

utt − µ(ux − kϕ)x = 0, (66)
βϕt − κϕxx + νg,ϕ(ϕ)− µk(ux − kϕ) = 0,

where β is a positive constant, and g,ϕ(ϕ) = νϕ(1− ϕ)(1− 2ϕ).
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Colli, P., Laurençot, P. and Stefanelli, U. (2000) Long-time behavior
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al Frémond model for shape memory alloys. Math. Methods Appl. Sci.,
18, 371–385.

Ericksen, J. L. (1986) Constitutive theory for some constrained elastic crys-
tals. Int. J. Solids and Structures, 22, 9, 951–964.

Falk, F. (1980) Model free energy, mechanics and thermodynamics of shape
memory alloys. Acta Metall., 28, 1773–1780.

Falk, F. (1982) Landau theory and martensitic phase transitions. J. Phys.,
C4, 43, 3–15.

Falk, F. (1983) One-dimensional model of shape memory alloys. Arch. Mech.,
35, 63–84.

Falk, F. (1990) Elastic phase transitions and nonconvex energy functions. In:
Hoffmann, K.-H., Sprekels, J., eds., Free Boundary Problems: Theory and
Applications, vol. I, Pitman Research Notes Math. Ser. 185, Longman,
45–59.



On diffused-interface models of shape memory alloys 655

Falk, F. and Konopka, P. (1990) Three-dimensonal Landau theory describ-
ing the martensitic phase transformation of shape memory alloys. J.
Phys.: Condens. Matter, 2, 61–77.
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