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0. Introduction

From the set-theoretical point of view, the type-free A-caleulus initiated
by A. Church around 1930 may be labelled as a deductive system fit for
examining sets with the property

(1) A = A4,

Unfortunately, (1) is satisfied only if 4 is a one-element set and if we
agree to identify the unigue element in A with the unique function 4 — 4.
The problem of finding non-trivial models of the type-free i-caiculus
turned out to be difficult and was solved by D. Scott in 1969. Even the
question what should be meant by a “model” of the type-free i-calculus
requires some consideration. In this paper we shall outline a certain new
approach to the syntax and the semantics of the type-free A-calculus.
In Sections 2 and 3 some medifications of the classical syntax of the
type-free A-caleulus are described. In Sections 4, 5 and 6 we “categorize”
the syntax of the type-free A-caleulus: we construct some categories from
A-terms and we introduce the concept of a Church algebraic theory.
In Section 7 “models” in the style of Wadsworth [5] are discussed; we
give a new characterization of these “models”, which is independent of
the syntax of the type-free A-caleulus. In Section 8 a method of “functorial-
izing” the semantics of the type-free A-ealculus is described; “models”
of the type-free A-calculus are identified with certain functors defined on.
Church algebraic theories. In Sections 9, 10, the new concepts of a hyper-
algebra and hyperhomomorphism are introduced and discussed; it is
shown that certain “models” of the type-free A-caleulus can be treated
a8 hyperalgebras.

.
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1. Preliminaries

1.1. We shall use the following symbols:

? is the symbol of a variable,

N is the set of all non-negative integers {0,1,2,...},

Nt is the set of all positive integers {1,2,3,...},

n is the set {L,2,...,n}, and n+1 is the set {1,2,...,n41}

If A is a set, then card 4 js the cardinal number of A. By » family
(a;: t e T) of elements of A we mean the function ?— ¢, from the set T
into the set 4. If T = {«} is a one-clement set, then we shall identify
(@t e T) with a,. If A and B are sets, then the seb of all functions from
B to 4 will be denoted by A¥. If fis a function from B to 0, then

AT A% > AF,  f4 B4 (04

are functions defined by

Af(g: 0 - A) = gof, f4h: A —~B)=foh,

respectively, where o is the composition of functions. To avoid superfluous
notational complications we shall identify the sets A™, where n may be
considered as a von Neumann number, with sets defined inductively as
follows:

A’ ={0}, A'=A4, A" =4"xd neNt.

It f is a function from 4 to B, then f*: A™ — B™ may be identified with
the function given by

F™agy ooos 0g) = (f(‘h)z "‘7f(a'n));
in particalar, f*: 4° - B° i given by f°(0) = 0.

The symbol !"(4) (n eN) will denote the constant function from
Am to A° = {0}.

The symbol pri(4) (neN",ien) will denote the ¢th projection
from A" onto A:if (a4, ..., a,) € A", then pr}(4)(a,, ..., a,) = a;,in par-
ticular, pri(4) = id, is the identity function on 4. If (f;: A™ - A: i en)
is a family of functions, then {f;: ¢ e n) will denote the function from A™
into A" defined as

firieny(a) = (fl(m)7 ...,fn((ﬂ))

If A is a set, then 1,[ %] will denote the mapping assigning to any function
fi Bx4 - A the function A,[f] =g: B — A4 defined by

gb)(a) =f(b,a) forallbeB and all a4,

and to any function f: 4 — A the function 1,[f] = g: A° - A< defined
by ¢(0) =f.

for

for all z e A™.

icm

©
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1.2. Let f: 4 — B and g: ¢ — D be functions. We shall say that
the composition gof is defined iff the set of values of f is contained in the
domain of g; if that is the case, then gof is a function from 4 to D. Let us
note that, contrary to our convention, the composition gof is usually
considered only in the case of B = C.

1.3. For all unexplained terms concerning category theory we refer
the reader to MacLane [3]. If K is a category, then Ob K will denote the
class of all objects of K, and ArK will denote the class of all arrows of
K. If f: A — B is an arrow, then dom(f) will denote its domain 4, and
cod(f) will denote its codomain B. If 4, BeObK, then K (4, B) will
denote the set (“hom-set”) of all arrows with domain 4 and eodomain B.
The composition of arrows f: 4 — B and ¢g: B - C will be dnoted by
gf: A — O or sometimes by g-f: A — (. The opposite category of K will
be denoted by K°P.

The category of sets and functions is denoted by Set. The symbol

K(%,%): E® XK —Set
denotes the hom-bifunctor.

If (f;: A — B;:4 en)is afamily of arrows in K and B is a categorical
product B; X ... XB, with product projections pr;: B — B;, then the

symbol {f;: 3 end or {fi,...,f,> will denote the unique arrow h: 4 - B
such that pr;-h = f; for all i e n.

1.4. A congruence on a category K is an equivalence relation R on
ArK satisfying the following conditions:

(¢;) if fR f', then dom(f) = dom(f') and cod(f) = cod(f"),

(co) if f,f €K (4, B), g,9' e K(B, 0), fBf' and gRg’, then gfEg'f".

If B is a congruence on K, then the quotient category K /R has the
same objects as K and (K/R)(4,B) =K(4,B)/R, 5, where B, 5 i3
the restriction of R to K (4, B); it follows from (e,) that the composition
of arrows in K induces the composition of arrows in K /R.

1.5. An algebraic theory (cf. Lawvere [2]) is a triple T' = (T, [?], P)
such that

(ay) T is a category, [?] is a bijection n — [#] with domain N and
codomain ObT, and P = (pr?: n e N*, i en) is a family of arrows of T,

(ag) prf e T([n], [1]) for all » e N* and all ¢ en,

(ag) the object [#] is the product of # copies of [1] for all # eN,
and (pr?: i em) is a family of product projections for all » e N'*.

It follows from (a,) that the object [0] is the product of the empty
family of objects, i.e. [0] is a terminal object in T'; in other words, for
any n €N there is a unique arrow in 7' from [#] to [0]. This arrow will
be denoted by !": [#] — [0].

26 — Banach Center Publ. t. 8
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An algebraic theory T can be considered as a category with selected
products [m] X [n] = [m+n] and selected product projections

pr{™ 0 [m+n] > [m],
prf 0 [m 4] - [n]
defined by

primixisl _ {pr™™:iiem) for meNt, neN,
! 1" for m =0, n eN;

prinxinl _ (prﬁj[f, ien) for weN*t, meN,
2 ! for m =0, meN.

In the sequel we shall use the shorter notation
B = g, P e,

The selected products [m]x[n] give rise to the product-bifunctor
%% % I'XT - T, which is defined on arrows in the following way:
if f: [m] —[n], g: [¥] — [j]are arrows of T, then fx g: [m-+k] — [n+75]
is the unique arrow of T' such that

Py (fXg) =fPr,, and pr™-(fxg) =g-pr™F.

In particular, for g =id;; we obtain the following formula, which will
repeatedly be used in this paper:

) oLy f Dlm,zs s PTRF D15 PITT
(0) fxidy = for feT([m],[n»]), meN, neNT,
pratl for f=I!" meN.

1.6. Let T = (T, [%],P) be an algebraic theory. By an algebraic
congruence on T we shall mean a congruence R on T such that

(eq) it f,f e T([n], [m]) and pr™f Rpr™f for all i e m, then fRf.

It is easy to verify that if B is an algebraic congruence on T, then the
triple T/R = (T|R, [], P/R), where

PIR = ({f: fRpr?}: neN*, i en),

is an algebraic theory. This algebraic theory will be called the quotient
algebraic theory.

It follows from (e.) and (cg) that an algebraic congruence on T is
completely determined by its restriction to the set U T([n], [1]). In fact,

i B is an algebraic congruence on T and if f, f’ eT ([n1, [m]), then fRf
iff pry-fRpr-f' for all ¢ € m. Therefore algebraic congruences on 7' may
be identified with restricted algebraic congruences defined in the fol-
lowing way:

©
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1.7. A restricted algebraic congruence on T = (T, [?], P) is an equiv-
alence relation on |J T([a], [1]) satistying the following conditions:
nelN

(e)) if FRf', then dom(f) = dom(f’),

(cz) it dom(g) = [m], gRg’ and f;Rf; for all { e m, then

g-<fiiiemyR g <fii iem).

1.8. Let T = (7', [?], P) be an algebraic theory and let K be a cat-
egory with finite preducts (including a terminal object). We shall say
that a functor @: T — K is a p-functor iff G([0]) is a terminal object in K
and (G(pr}); i e n} is the family of product projections in K for all n e N'*,
It is easy to verify that @ is a p-functor iff G preserves finite products.

We shall say that a fonctor G: T — Set is an sp-funcior iff

G([»]) =A™ for all n eN, where 4 = G([1])
and

G(pr?) =pr}(d) forall neN*t, ien
(i.e. @ preserves specified finite products).

1.9. A cartesian closed category is a category K equipped with the
following adjunctions (cf. MacLane [3], p. 95):

(1) there is a right adjoint functor 1: 1 - K to the unique functor
K -1

(1 is the category with one object and one arrow),
(2) there is aright adjoint functor %, x ?,: K X K — K to the diagonal
functor
K —>KxK

(the diagomal functor is given by f e (f,f));
(3) for each A € ObXK, there is a right adjoint functor (2)4: K — K
to the functor
Ix4: K > K.

The functor (2)% is called an exponentiation by A and the eounit of
the adjunction (3) is denoted by ev,.

For any B e ObK the arrow ev, p: B4 XA — B is the component
of the counit ev,.

If f: Ox A ~ B is an arrow in a cartesian closed category K, then
A4,p[f] will denote a unigue arrow h: C — B4 in K such that the follow-
ing diagram commutes:

BAxATAE, B

hxidy } %”'
OxA
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Let us note that in the cartesian closed category Set the exponentiation
by A is the same as the covariant hom-functor (2)4 = Set(4, %).

An example of a cartesian closed category is the category Clatt of all
complete lattices and continuous functions (ef. Scott [4]).

2. General lambda-theories

2.1. We shall uge A-terms in a modified form, using different symbols
for free and bound variables. Let (z;} ¢ e N*) and (&% 7 e N*) be two
familics such that if ¢ # j, then card {w;, @;, &, &} = 4 (%, is a free variable,
&, is a bound variable), and let ' be a set of constant symbols (elements
of 0 are different from free and bound variables, ¢ can be empty). The
set Bxp[0] of A-terms (more precisely A%-terms) is defined by induction
as follows:

(i) each constant symbol and each free variable is an element of
Exp[03;

(i) if M and N are elements of Exp[C], then (MN) e Exp[0];

(iii) if M is an element of Exp[(] and j = min{k: &, does not occur
in M3, then A& (w;/&)M is an element of Bxp[C], where (@;/&;) M is the
result of substituting & for #; in M, for each free variable ;.

Remark. The A-terms defined above are in a one-to-one corregpondence
with equivalence classes of terms defined in the classical way (cf. Barend-
regt [1], p. 1096), where we identify terms differing only in the names of
their bound variables (see Barendregt [1], p. 1097).

The set Exp[@] will also be denoted by Exp. The set {z;: ¢ eN*t}
of all free variables will be denoted by V. If M is a A-term, then BV (M)
will denote the set of all bound variables oceurring in M, and FV (M) will
denote the set of all free variables occurring in M.

2.2. We shall use the following notion of simultancous substitution
for A-terms: if (#;,: 4 en)is a family of free variables such that ¢ # &
implies a;, # @y, and if (N;: ¢ em) is a family of A-terms, then the result
of simultaneous substitution of N, for @;, i a A-term M i the term, denoted
by
(%) [”j,-/Nii ien]M or [, /Ny, ..., m,-n/Nn]M,

obtained from M by replacing «; by N, for each ie n, with a suitable
change of bound variables. More precisely, (+) is defined by induction
as follows:
(1) [@,/N;: ienle =c for each ceC,
N, ifp=j
[0, /N;: denln, = E ] P _'J’“
T, if p is different from jy, ..., j,,
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(i) [w;,/N; ¢ ¢ en](MN) = ([@;,/N;i ¢ en]M[e;/N;: ien]N),
(iii*) if p =7, for a certain r in n, then

[, 1 N;: i € nIAE, ()8 M = Al (| &) [y, /N;: G em],

‘where
, [Ny forir,
Ny = .
z, fori=r
and

m =min{i: @; ¢FV(H)U{JFV(N;)},
i#r
k =min{j: &¢ BV([wji/Nﬁ i en]M)},
(iii?) if p is different from j,, ..., J,, then
[,/ & en]AE, (w0, [E)M = Ady (1] &p) (@, /N i e n+11M,

where

@, forien, " N, forien,
&gy = . i = R
o z, for i =n-+1; x4, fori=mn-+l1,

and
= minfi: z,¢FV(H)V{JFV(N,)},
jen
B =min{j: &¢BV([e, /N ¢ ent1]M).

A general lambda-theory (shortly lambda-theory) is an ordered pair
(0, B), where C is a set of constant symbols and F is an equivalence relation
on the set Exp[(C], called a conversion on Exp [C], satisfying the following
conditions:
(B) (A% (2/&)MN) B [z, /N]1M

for all M € Exp[(], ¢ e N* and j = min{k: & ¢ BV(IM)};
(v if M E N, then (MP) E (NP), and (PM) E (PN), and
Al (2] 6,) M B Agy, (2] En)} N
for all P e Exp[C], ¢ e N* and
# =min{k: & ¢BV(HM)}, m =min{k: & ¢BV(N)}.

Remark. The notion of a A-theory in the sense of Barendregt [1] is

a particular case of the notion of a general lambda-theory.

Let con denote smallest conversion on Exp = Exp[@], and let con,
denote the smallest conversion on Exp satisfying the condition

() -~ A&y (M) comy M
for all M € Exp and j =min{k: & ¢ BV(M)},
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The general lambda-theory (@, con) is called the pure type-free A8-calculus
and the general lambda-theory (&, com,) is called the pure type-free Agy-
calculus. Another example of a lambda-theory is the ordered pair
({2}, @), where 2 is a fixed constant and @ is the smallest conversion
satisfying:

() 1008
and ‘
(Qp) (RM)Q 2 for all M eExp[{2}]

(cf. Barendregt [1], p. 1126).

The above examples of lambda-theories give rise to the concept
of an equational lambda-theory. An equational 'lambda-theory is an
ordered triple (0, H, @), where B < Exp[C]xExp[C] and 6 is the
smallest conversion on Exp[C] satisfying ¥ < 6.

3. Labelled A-terms

‘We shall now introduce the notion of a labelled A-term, which is needed
for the construction of algebraic theories from A-terms. For any A-term M,
we detine the rank of M to be 0 if FV(M) =@ and max{i: a; e TV (M)}
otherwise. The rank of M will be denoted by rn(M). A labelled AC-term
is an ordered pair (M, n), where M is a A%term and # > rn(M). The
number # will be called the index of (M, n). The set {(M,n): M e Exp[0]
and rn(M) < n e N} of all labelled A°terms will be denoted by Exp*[0].

3.L. PrOPOSITION. The set Bxp*[(] is equal to the set M[C] defined
by induction as follows:
(i) (¢, n) e M[C] for all ¢ and all n eN,
(#;, m) € M[O] for all n e N* and all i en;
(i) if (M,n) and (N,n) are in IM[C], then ((MN),n)e M[C];
(ili) o (M,n+1) e M[O] and j =min{k: &, does not occur in M),
then (A&;+(@, ., /E)M, n) € M[O].

Sketch of proof. For any A-term M, let the degree of M, denoted
by @eg(M ), be the total number of occurrences of symbols 4 and (in M.
By induction on the degree of a A-term we can prove that

(a) (2/2;)M € Bxp[0] and deg((s/w;) M) = deg(M) for all I in
Exp[0],
and by induction on the length of an expression M wo can prove that
(b) if @; does mot occur in M, then (w,/£ )M = (a0 &) (0, J22) L,
where (w;/z;) M denotes the result of substituting Z; for «, iil JT[ . A
Usmg* (a) and (b), we infer by induction on the degree of a A-term
that Exp™[C] € M[0]. The inclusion M[0] Exp*[0] is immediate.
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3.2. PROPOSITION. If (M, n+1)is o labelled A-term and ((N;, m): i en)
is a family of labelled A-terms, them

BNy ony B [N 1AE (0 [6) M
= Ay (Vg1 [50) (01N 1y «evy Bn Ny By [0 1M
where
j =min{s: & ¢ BV (M)}
and
kb =min{s} & ¢ BV([/Ny, ey B, /Ny By [Ty I}

Using 3.1 and 3.2, we prove by induction on MM[C] the following
composition rule for simultaneous substitution:

3.3. ProposITION. If (M, n) s a labelled A-term and ((P;, %)} ¢ em)
and ((N;,m)} i€ n) are families of labelled A-terms, then

[P i em][m; /Ny ienlM = [a/[2/P;i i e m]N;: jen]H.

4. Algebraic theories constructed from i-terms

4.1. Let T[C] = (T[C], [?], P[C]) be the following algebraic theory:
the objects of T[C] are non-negative integers, i.e. ObZ'[C] =N, [»] =n
for all n eN; the arrows from [%] to [m] (m > 1) are m-tuples of 18-terms
with index n, i.e.

T[O1([n], (m]) = {((M;; n): iem)i \ (M;,n) e Bxp*[O]};
the (unique) arrow from [n] to [0] is (n, 0), i.e. ! = (n, 0) (for technical
reasons we shall assume that the set O is disjoint with N, in this case
all hom-sets T[0]([n], [m]) are disjoint), the composition of f = ((M;, n):
2 em): [#] - [m] and g = ((Nj, m): jes): [m] — [s] is defined as

of = (({z;/ 2, sem]N;,n)ijes): [n]—>[s] for m>1;

and the composition of I*: [n] - [0] and b = ((V, 0): jes): [0] - [s]
is given by

Bi" = (7, m)} jes): [n] ~[s];
the family of projections P[C] = (prf: n eN*¥,ien) is defined as
pre = (z;,n): [@] > [1] form>=1,iemn.

By 3.3 the composition is associative and by the definition of simultaneous
substitution the family P[C] is, in fact, the family of projections, i.e.
condition 1.5(a,) holds for P[C].
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4.2. Now we shall introduce a concept of a lambda-congruence.

0
A lambda-congruence on \_) T[01([n], [1]) or on Exp*[C] is a restricted

=0
algebraic congruence on T'[0] (ef. 1.7 ) satisfying the following conditions:
(i) if (M,n+1) ~(N,n+1), then
(25" @y [E) M, ) ~ (A" (@1 [6m) N, 1)
where
j=min{k: & ¢BV(M)} and m =min{ki & ¢BV(N),
(ii) for each (M,n+1)e Bxp*[C]
(28 (g &) M @)y n+1) ~ (M, m+1),
where j = min{k: &, ¢ BV(M)}.

By an algebraic theory constructed from 2-terms we shall mean
the algebraic theory T[C] and the quotient algebraic theory T[C]/~,
where ~ is a lambda-congruence.

The following two theorems establish the corespondence (equivalence

from the proof-theoretical point of view) between quotient algebraic
theories T[0]/~ and general lambda-theories:

4.3. TerorEM. If (0, B) is @ general lambda-theory, then the binary
relation ~ defined on Bxp*[0] as follows:

(i) (M,n) ~(N,m) iff MEN and m =n>max{n(M), m(N)},

is a lambda-congruence on Exp*[C].
Conversely, if ~ is a lambda-congruence on Exp*[0], then the pair
(C, E), where B is the binary relation defined on Bxp[C] as follows :

(i) MEN iff there is an n e N such that (M, n) ~ (N, n),
i a general lambda-theory.

4.4. TaEoREM. If (C, E,0) is an  equational lambda-theory, then
the lambda-congruence defined by formule 4.3 (i) for B = O is the smallest
lambda-congruence on Exp*[0] satisfying the following condition:

(iif) if (M, N)eX, then (M, n) ~ (N, n) for all n > max{m (M), mn(N)}.

5. Algebraic theories with application and abstraction

We shall now deseribe properties of algebraic theories 7'[¢'] and T [C]/~
in & more categorial way.

‘ 5.1. An algebmic* theory with application and abstraction is an ordered
triple 7 = (T, ¢, (%)*), where T' is an algebraic theory, e: [2] - [1] is

©
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a distinguished arrow of T, and (?)* is & mapping assigning to each arrow
f: 411 =11 (n eN) of T an arrow h: [#] — [1] of T (we shall denote
the value of (2)* for f by (f)*). The arrow & is called application and the
mapping (2)* is called abstraction. In an obvious way the triple
'7-[0] = (T[CL €, (?)*)7

‘where

(i) e = ((-’”1562): 2);

(i) (M, n+1))" = (A4 (Bp44 )M, m) for j = min{k: & ¢ BV(I)},
is an algebraic theory with application and abstraction.

5.2. A lambda-algebraic theory is an algebraic theory with application
and abstraction satisfying the following condition:
() (N9 =(f(gxidy)* for all feT([n+1], [1]), g € T([n], [m]),

neN, meN (for x see 1.5).

By virtue of 1.5 (0) condition (p) is equivalent to the conjunction of

the following two conditions:

) (N <fit iemy =(F<{foDlmus-eos fu P,y DIRi)*  for
fi € T([m], [1]), meN, n eN*, and f e T([n], [1]);

(pe)  (F)"-1" = (f-prai})* for feT([1], [1]), n eN;

hence by virtue of 3.2 we have the following proposition:

5.3. ProrosITION. The algebraic theory with application and absirac-
tion T [0] = (T10], ¢, (V*), where & and (2)* are given by 5.1 (i), (i),
is a lambda-algebraic theory.

5.4. A Church algebraic theory is a lambda-algebraic theory (T, ¢, (%))
satisfying the following condition:

(B) e (()*xidy) =f for all feT([n], [1]),n eN* (cf. 1.5).

By virtue of 1.5 (0) condition (B) is equivalent to the conjunction
of the following two conditions:

@) (D =f for fin T([1], [1]);

() &) -<prftt: demd, prpid =f .
for f in T([n-+1], [1]), n eN*;

hence by virtue of 5.3 and 4.2 we have the following:

5.5. PROPOSITION. If ~ is a lambda-congruence on Exp*[C], then

T[01~ = (T[0]]~, ]~ (D)[~),
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where
(i) 8/~ = ((®@:@2),2)/~;
({) (B, n41)] ~)*f ~ = (A& (@54 /) Uy m) | ~
for  j=min{k: &, ¢BV(M)},
is & Church algebraic theory (here (N, m)[~ denotes an equivalence class
with respect 10 ~).

5.6. The pure type-free Afn-caleulus leads to a stronger version of
the concept of a Church algebraic theory. By an algebraic theory of type
A-Bn (cf. Obtulowicz [3*]) we mean an algebraic theory with application
and abstraction (T', s, (9)*) satistying (8) and the following condition:
@  (e(hxidy)* =h for all A eT([n], [1]), n eN (cf. 1.5).

By virtue of 1.5 (0) condition (v) is equivalent to the conjunction
of the following two conditions:

() (b, prbdf =% for all b in T([0], [1]);

() e+ Cheqpritti dem), prifid)* =% for all n eN* and all
in T({n], [11);

hence the concept of an algebraic theory of type A-87 characberizes general
lambda-theories (0, B) with F satistying condition () in 2.2, where #
is put instead of eon,, in a similar way as Church algebraic theories charac-
terize all general lambda-theories (cf. 4.3, 4.4 and 6.4).

5.7. TaroREM. If 7 = (T, s, (1)) is an algebraic theory of iype A-By,
then T' is & cartesian closed category with the exponentiation (cf. 1.9) satisfying

[ =[]

IfT = (T, [%], P) is an algebraic theory, where T is a cartesian closed category
with emponentiation satisfying [11 = [11Y, then the structure of a cartesian
closed category of T induces application and abstraction swuch that T with
these data is an algebraic theory of type i-fn.

Remark. For any algebraic theory with application and abstraction
satisfying (B), eondifion () implies condition (p), but the converse is,
in general, not true (cf. the remark in 7.7).

6. Interpretation of labelled i-terms in algebraic theories with application
and abstraction

There is a natural question: does the concept of a Church algebraic theory
characterize general lambda-theories completely? After Theorems 4.3,
4.4 and Proposition 5.5, this question reduces to the following question:
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is each Church algebraic theory isomorphic to some algebraic theory
T[0]/~ constructed from i-terms? A positive answer to this last question
is contained in Theorem 6.4.

6.1. PROPOSITION. Let I = (T, ¢, (%)*) be an algebraic theory with
application and abstraction. For any set O and any function f from C to

I([0], [1]), there is @ unique function h from Bxp*[C] to U T([»], [1])
such that the following conditions hold:

(i) h{e, n) = flc)"!" for n €N, ¢ e C, and h(z;,n) = pr} for n eN*,
i en;
(il) B((MN), n) = - (h(HM, n), h(N,n));
(iii) B (A& (Bpr (&) M, m) = (B(M, n-+1))*.
The function % defined in the above proposition will be called an

interpretation of labelled A-terms in I (more precisely: & will be called the
interpretation induced by f).

6.2. ProposITION. Let 7 = (T, &, (%)*) be a lambda-algebraic theory
and let C be a set. If h is an interpretation of labelled A-terms in I, then
B[ /N i en]M, m) = h(M, n)-<h(N;, m)i {en)

for all m eN*, (M,n) e Exp*[C], (N;, m) e Bxp*[C].

6.3. PrOPOSITION. Let 7 = (T, &, (9)*) be & Church algabmic theory,
let O be a set, and let T be an interpretation of labelled 2°-terms in 7. The binary
relation ~ defined on Exp*[C] as follows:

) (M, n) ~(N¥,m) iff &(M,n)="h(N,m)
is a lambda-congruence on Exp*[C].
The proof follows by Proposition 6.2.
6.4. TEEOREM. For each Church dlgebraic theory 7 = (T, s, (%))

there exist a set O and a lambda-congruence ~ on Exp™[0] such that the
category T s isomorphic with T[C]]~.

Sketch of proof. Let ¢ = T'([0], [1]) and let k be the interpretation
of labelled A-terms in 4 induced by the identity function on T'([0], [1]).
We define ~ by condition 6.3 (i). Sinee for each arrow g¢: [#]— [1]
in T we have

B(((en ((g'21) ) - 2)20) 5 1)
=¢:{nn8:4e (g, pIDD, PrE) . PR =4,
where g': [0] —[1] is the result of abstraction (%)* applied n times to g,
we conclude that  is a surjection; hence by 6.3 the mapping

I: U IOl ~([m], [n]) -~ UNT([m]:[%])

m, nelN
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given by
(2, m)] ~: 4 en)) = (M, n)i iend

i the arrow function of the functor from T[C]/~ to T which is an iso-
morphism of categories.

6.5. We shall intloduee the following definitions: Let I =
and 7' = (T’, &, ()°) be Church algebraic theories. A morphism of Ohwoh
algebraic theones is a triple (H, 9, 9"), where H: T — T’ is a functor
satistying the following conditions:

(T, e, (1Y)

H([o]) = [o],
Hpry) =pr;* for all n eN* and all i en,
He) = ¢,
H((f)*) = () for all arrows f: [n+1]—>[1] of T and all neN.

The category CHT, called the docirine of Ohurch algebraic theories,
has as objects all Church algebraic theories and as arvows from 7 to 7'
all morphisms of Church algebraie theories (H, 7, 7'); the composition
of arrows in CHT is the composition of functors.

6.6. TumorEM. The forgeiful fumctor U: CHT — Set defined by
U(g) =T([0], 1]
has @ left adjoint F: Set — CHT with an object function defined by
F(0) = (TTCY~, el (1)*]~),

where ~ is the smallest lambda-congruence on Exp'[0] and &f~,
are defined as in B.5.

(0"~

7. Functional interpretation of A-terms

7.1. Let 4 and C be sets. An ordered pair (u: 4 -0, »: 0 - 4) of
functions is called a normal padr iff the following conditions hold:

CcA* and pov =idg.

The following notion is implicitly contained in a paper of Wadsworth
[5]: An ordered pair (u: A - C,v: C —+ A) of functions will be called an
interpretable pair iff it is anormal pair and there is a function h: Bxp — A4« )
satisfying the following conditions:

(1) R(z;)(v) = v(x;) for all v e AV and all i eN™,

icm°®
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B{(MN) (0) = (s (R(2) () (B(
N e Exp,
(iif) R (A& (2;/&) M) (v) = »(A[h(M)o"5;1(v)) for all v € AV, M e Exp,
i € N*, where "n': A% xA - A¥ is the function defined as follows:
5 (v, a) (@) =
2 (v, a)(3,) =
% ! n » (mn)
For any interpretable pair (u, ) the function & from Exp to A"
satistying conditions 7.1 (i)-(iii) is unique: we shall call it the explicit
interpretation of A-terms and denote it by [} (the value of [ for M is
[A15).
7.2. THEOREM. If (u, v) i8 an interpretable pair and M, N are elements
of Exp such that M con N, then [M]) = [N]}.

This theorem shows that an interpretable pair together with the ex-
plicit interpretation of i-terms may be considered as a model of the
pure type-free Af-calculus.

N)(v)) for all ve A” and all M,

it n =1,
it n 1.

7.3. The examples of interpretable pairs due to D. Scott are

(A) the homeomorphism &: D, —[D, —D,] and
(Barendregt [1], p. 1110),

(B) the funections fun: Z, > [Z, - 2,],
(Barendregt [1], p. 1106).

its converse

graph: [#, 2,1 >2,

74. Let (u: 4 > C,v: C —A4) be a normal pair and let & be the
function from 4? to A defined by

& (@1, @3) = p(@;)(a;)  for all @y, a,e 4.

We define by induction a family (E;: neN, k eN) of sets

B =0, E ={d}, B ={prid),pd),s],
v = {mi(d)iien} for n>2,
and

Ep, = Bro{etolfr fayt fufoc BRyu{g: f e BY the composition
voa,{f] is defined and g = vod [f1}
(cf. convention 1.2).
A™(u, v) will denote the set | Ef.

keN
The family A(u,») = (4"(x, »): neN) gives rise to the following
definition: a regular pair is 2 normal pair (u: 4 — 0, v: ¢ — A) satisfying
the following condition:

(Ab) for each m e N* and cach fe A™(u,») the composition voi,[f]

is defined.
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7.5. PROPOSITION. For each regular pair (u: A —C,v:C — A) there
is @ unique funciion J*: Exp*[@]— | 4A™(u, ) satisfying the following
conditions: nel

(i) T*(a;, m) = prP(4) for all n eN*t and all i e n;

(i) J¥ (M), n) = efo Ty (M, n), TL(N, n));

(i) % (M5 @naa[59) M, ) = 90 2 [T5 (M, +1)].

The function J# in Proposition 7.5 will be called a functional inter-
pretation of A-terms. Immediately from Proposition 7.5 we have the fol-
lowing characterization of interpretable pairs, which does mof involve
the notion of an interpretation of A-terms:

7.6. THEOREM. A pair (u,v) is an interpretable pair iff it is a regular
pair.

7.7. For any interpretable pair (u:4 —C,»:0 - 4) the family
A(p, v) gives rise to the category T4 having as objects all sets 4™ (n eN)
and as arrows f: A™ —> A" all functions of the form (f;: ¢ en}, where
f; € A™(u, v) for all ¢ e n; the composition of arrows in T} is the composition
of functions. -

The triple T# = (T4, [%], P), where [n]= A" and P = (pr;‘(A)f n
eNt,ie 'n), is an algebraic theory (note that m s n implies 4™ == A"
even in the cage of cardd = 1).

The triple % = (T%, &, (%)*), where & is defined in 7.4 and (%)
is defined by

(f)* =90Ay[f1 for all feT}([n+1], [1]), neN,

is a Church algebraic theory. We shall call 7% the Ohurch algebraic theory
constructed from the interpretable pair (u,v).

Remark. The Church algebraic theory constructed from the inter-
pretable pair (fun, graph) (cf. 7.3 (B)) is not an algebraic theory of type
A-pn.

7.8. There is another characterization of interpretable pairs. Leb
(u: A - C,v: C > A) be a normal pair, and let 2/ be the function

& o (&} o <pri(4), pri(4)), & o {pri(4), pr3(4)>)>.

‘We shall call (@, v) a combinatorial pair iff all compositions in the following
expressions are defined (cf. convention 1.2):

voli, fid,], woliylpol,lpri(A)]], wo /'I.A[volA['u o a,[47]-
Let

I =volflidd, K =volfrodpr(4)],

©

@
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8 =volyvoisro i)
The family (R}: n €N, k eN) is defined by induction as follows:
R ={I}, K}, 8}, Ry ={I}o!"4),E}oP(4),8o(4),ids},
R} = {I o 12(4), Ef o 13(4), 8 0 12(4), &, pri(4), pri(4)},
R ={I¥o "(4), Kt o 1"(4), 8% o "(A)}u{pri(4): ien} for all n>2,
Ry, = RRU{ey o {fr, fodi fr, fae BR}
%™(u,v) will denote the set | Rp.
keN
7.9. TEEOREM. A normal pair (u,v) is an interpretable pair iff it is
a combinatorial pair; moreover,
C"(, v) = A*(u,») for all neN.

7.10. The functional interpretation of A-terms gives rise to the concept
of a homomorphism of interpretable pairs.

Let (u: 4 —0,9:C - A) and (u': B> D, »: D -~ B) be two inter-
pretable pairs. A lambda-homomorphism of (u, v) into (u', »") is a function
f: A — B such that for any labelled A-term (M, n) € Exp*[@] the follow-
ing diagram is commutative:

"
n JEamy 4

f”l lf
Bt ———>
JE (3,n)

7.11. TaeoreM. Let (u: 4 -0, »:C - A) and (u':B->D, »':D
—> B) be two interpretable pairs. A funmction f: A — B is a lambda-homo-
morphism of (u, ) into (u’,¥') iff the following conditions hold:

£ off =foe, folt=I¢, foK!=FK¢, fokl =48

8. Functorial semantics of the type-free A-calculus

8.1. Let G: T[@]/~, — Set be an sp-functor (cf. 1.8), where ~; is
the smallest lambda-congruence on Exp*[@], and let G([1]) = 4. We shall
say that a normal pair (pu: 4 — 0, »: ¢ — A) is associated with the functor
G iff the following conditions are satistied:

(1) G(g]~y) = &t A* —~ A4,

(i) G((f)"/~) =» 0 A6 (f)]forallf e (T[@]/ ~o)([n+1], [L]),n eN
(for &/ ~, and (2)*/~, see B.5 (i), (ii)).
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8.2. PROPOSITION. If (p,») and (u', ") are mormal pairs associated
with the funcior @, then u = p'y, v =v'.

Proof. Since & = G(e/~,) = &, we have for each a4

pla) = A,[el1(a) = A [G(e]~0)](a) = A4[el](a) = p'(a).

Moreover,
vou =v0au[et] = G((e) )"/ ~o) =¥ 0 Ayl =" 0o,
and hence » = ', because u is surjective.

8.3. PROPOSITION. If (u,?) 48 & mormal pair associated with some
functor @, then (u,») is @& regular pair.

8.4. We shall now introduce two categories.

5 The category Int has as objects all interpretable pairs and as arrows
I (my ) — (', ") all triples 7 = (f, (u, »), (', +")), where fis a lambda-
homomorphism of (x, ») into (x’, +'); the composition of arrows in Int is
the composition of functions.

By a Af-functorial model we shall mean a sp-functor G: T[@]/~,
— Set such that there is a normal pair associated with it.

The category Fun,, has as objects all Ag-functorial models and ag
arrows f: G —@ all natural transformations @ - @'; the composition
of arrows is the composition of natural transformations.

Using the definition of functional interpretations of A-terms, we may
define the functor H: Int — Fun,,, called the identification functor,
in the following way:

The object function of H assigns to each interpretable pair (u, )
a functor H,,: T[@] ~, — Set defined as follows:

H,o (M m) [0} i e m)) = (M, ) 6 em).

The arrow function of H assigns to each [~ = {f, (u, ), (4, ")) the
natural transformation

H. =(f"H, ([n]) = H,,([n]): n eN).

8.5. TusorEM. The identification fumctor H: Ing —TFun,; is on
isomorphism of categories.

The proof follows by Propositions 8.2 and 8.3.
. 8.6. We ghall now consider other “models” of the type-free A-cal-
culus.

A pre--object means an ordered pair A = (¥, ), where ¥ is a st

called a support of U, and g is a function from Bxp to Y‘YV) called a struc-
ture of A
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Let 7 = (T, e, (%)*) be an algebraic theory with application and
absmaetlon, let 7: Bxp* [@]—>U T([n], [1]) be the interpretation of labelled

J-terms in J (cf. 6.1), and let G be an sp-functor defined on 7. We shall
say that a pre-A-object % = (¥, g) is associated with the functor & iff the
following conditions are satisfied:

@) ¢([1]) =
(i) g(M)(v) =

for all e ¥7.

Let o = (M, &*) be a Aalgebra [a weakly extensional A-algebra]
(c¢f. Barendregt [1], pp. 1098, 1099), where M = (X, -) is a combinatory
algebra and A" means an assignment A4 > A"z- 4. We shall say that
a pre-A-object A = (¥, g) is induced by o iff the following conditions
are satisfied :

() X =7%, R )

(b) g(M)(v) = [P for all v € X”, M e Bixp, where [M];" is defined
in Barendregt [1], p. 1098, and II is & A-term defined in the classical way
(cf. Barendregt [1], p. 1096), chosen from the equivalence class correspond-
ing to I (cf. Remark in 2.1).

8.7. THEOREM. If a pre-i-object A is induced by some A-algebra, then
there is an sp-funcior G defined on T[@][~, such that U is associated
with G, where ~, 48 defined in 8.1.

G(R(I, n))(v(@1), -y 0(3,)) i (D) =0 #0,
G{R(M, 0))(0) if n(M) =0

8.8. Let 7 = (T, ¢, (%)) be an algebraic theory with application
and abstraction. We introduce the following definitions:

(1) a weak functorial model of 7 in Set is an sp-functor G from T
to Set,

(2) an ordinary functorial model of 7 in Set is an sp-functor & from T
to Set satlsfymg the followmg condition:

) if G(f) = G(g) and f, g & T([n+1], [11), then G((f)") = (6(9)"),

(3) a strong functmwl model of I in Set is an sp-functor G from T
to Set satisfyng the following condition:

(i) there is a normal pair (u: A —C,»: 0 — A) such that
G([1]) = 4,
(b) G(e) = &},
(e) G((f)) =»o alf] for all feT([a+1), [1]), » eN.

The distinction between “weak”, “ordinary”, and “strong” corresponds
to the different definitions of interpretation of A-terms in a “model” of
the type-free A-calculus (it should be stressed that A-algebras, weakly exten-
sional A-algebras and interpretable pairs differ essentially in the interpreta-
tion of A-terms). In fact, the class of all interpretable pairs may be identified

27 — Banach Center Publ. t. 9
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with the clags of all strong functorial models of F[@]/~, = (T10] ~,
€] ~gy ()% ~q) in Set, and the class of all pre-i-objects induced by A-alge-
bras may be identified with a subelass of the class of all weak functorial
models of T[]~ in Set (cf. Theorems 8.5 and 8.7). Similarly, the class
of all pre-2-objects induced by weakly extensional A-algebras may be
identified with a subclass of the class of all ordinary fanctorial models
of T [@]]~, in Set.

8.9. In definitions 8.8 (1), (2), (3) one may replace Set by an arbitrary
cartesian closed category K. This yields the following mnotions:
(1) a weak functorial model of 7 in K is a functor G: T - I which
preserves finite products,
(2) an ordinary functorial model of 7 in K is a weak functorial model
G of 7 in K satisfying condition 8.8 (2) (i),
(3) a strong functorial model of 7 in K is a weak functorial model ¢
of 7 in K satistying the following condition:
(i) there is an arrow k: 4 — 4 in K such that
(a) G([1]) =4,
(b) G(8) = v 4,4 <G (pr3), G(prD),
(€) k-G((f)*) = Ay IG ()] for all feT([n+1], [1]), » eN.
TFor example, the Scott models D, and &, (cf. 7.3) give rise to &
strong functorial models of 7 [@]/~, in the category Olatt of all complete
lattices and continuous functions.

9. Hyperalgebras and hyperoperations

9.1. We shall consider a certain generalization of the notion of an
abstract algebra and a homomorphism of algebras. To simplify the notation
we shall omit ga.rentheses in ’oheDfollowing way: the set ABO will be
denoted by 477, the function AV will be denoted by AP ete.

Let A be a set and let p, n, ¢ € N. A hyperoperation on A of the type
(p,m, ) is a function of the form

w: (A4 447,
i.e. a function o which assigns to each n-tuple of functions
gt AP > A, ..., @p 47 —>A
a function
O(P1y eeny @p): AL > 4.

A type of hyperalgebras is a quadruple = = (T, P, N, @), where T is a set
and P, N, @ are functions from T to N. A hyperalgebra of type = is a pair

A =4, (of: teD),
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where 4 is a set (the underlying set of %), and (wf': ¢t € T) is a family of
hyperoperations
off: (A4FO)TO L 4490,
Let % and B = (B, (w}: t & T')) be hyperalgebras of the same type 7.
A hyperhomomorphism of % into B is a function f: 4 — B such that for

every ¢t in T and for p = P(t), n = N (), ¢ = @(?) the following diagram
is commutative:

et
P ( AAp)u [ AAQ \

A )77. N
{ Q p B

i
(BBp)n T BBq /
“t

(ﬂ?’%\

In other words, f: 4 — B is a hyperhomomorphism of ¥ into B iff for
any ¢ in T and any functions

v BP =>4, ..,

the following diagram is commutative:

ypt B> A

A
@ (w1 ofP, ey vy ofP
el e e 4

” 7
v
{

@D (forysenss JoUp) g
i.e.
foof (90175 ++ vy pa0f?) = @7 (forps, -.vy fop,)Of .

Let %, B, € = (C, (of: t € T)) be hyperalgebras of the same type .
Tt is easy to verity that if f: 4 — B is a hyperhomomorphism of % into B
and g: B —» C is a hyperhomomorphism of B into €, then gof: 4 — 0O
is a hyperhomomorphism of U into €.

By Hyp, we shall mean the category whose objects are all hyperalgebras
of type 7, and whose arrows are all hyperhomomorphisms between hyper-
algebras.

We have the forgetful functor

U: Hyp, > Set
with the object function given by

U4, (of: tel) = 4.
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9.2. The following observation explains the meaning of the definition

9f a hyperhomomorphism. Let + = (T, P, N, Q) and let ¢ be a fized element
in T. Consider the bifunctors

I;: Hyp?® x Hyp, — Set, G¢: Hyp?® x Hyp, — Set

defined as follows:
Fy(t, %) = (Set((T(%)7, U(%))"
Gi( %, 1) = Seb((T (%)%, U(%),

where p = P(i), n = N(t), ¢ =@Q({). The family (of: % e ObHyp,) is
a J;lm;tuml transformation (in the sense of MacLane [3], p.- 214) of F,
into @,.

9.3. ExamPLES. (A) Let T be o set and let N: T — N be a function.
An algebra of type (T, N) is a pair A = (4, (ol teT)), where 4 is a
set and w, is a N (f)-ary operation on 4. An algebra of type (T, N) is
(under the identification 44° — 4) the same as a hyperalgebra o’f type
(T,0,XN,0), where 0: T — ¥ is the function defined by 0(t) = 0 for all
t e I. Tt is easy to verify that a functionf: 4 — Bisa hyperhomomorphism
between two hyperalgebras of type (T, 0, N » 0) iff it iy & homomorphism
between corresponding algebras. In other words, the category Alg.,
of all algebras of the type (T, N) is isomorphic with the category Hypr, (,( NI:,?
. (_B) Let (u,v) be a regular pair with the underlying set 4 (fo,r’tl,le
definition of a regular pair see 7.4). The function u is a hyperoperation

B (AA“)1 > 44
of type (0,1, 1) on A. For any (I, n) e Exp*[0] (sce 3.0) let
Ciar,myt (AAI)O - 44"
be a hyperoperation of type {(1,0,%) on A defined by
O (0) = J% (M, n),
where J} is the functional interpretation of A-terms defined in 7.5. Let

T ={0}UExp*[@]and let P: T - N, § T i
: : : N, Q: i
defined as follows: ’ % @ &= Nbe functions

P(t)=l0 for ¢ =0, N = 1 fort =0,
1 for i e Exp*[0], "o tor ¢ e Bxp*[@],
o) = {1 for t =0,
n  for ¢ = (M, n) e Bxp*[@].
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The pair (4, (o}*”: ¢ eT)), where
7 for t =0,
for t= (M, n),

0)5“’”) —_
Catm)

is a hyperalgebra of type (T,P, N, Q).

Let (u’,7') be another regular pair with the underlying set B. It is
easy to verify that a function f: 4 — B is a hyperhomomorphism of
a hyperalgebra (4, (of*”: teT))into a hyperalgebra (B, (of"": teT))
iff f: A - B is a lambda-homomorphism in the sense of the definition
in 7.10.

10. Partial hyperalgebras and hyperalgebras in cartesian closed categoriesl

10.1. By a partial hyperoperation of type (p,n, g) on a set A we shal
mean a partial function

w: (445" —o> A4Y

i.e. a function o: X - 44% defined on some subset X of (44°y%. If
z =(T,P,N,Q) is a type of hyperalgebras, then a partial hyperalgebra
of type = is a pair A = (4, (0f: teT)), where 4 is a set and, for any
in T, o is a partial hyperoperation of type (P(1), N (1), @(i)) on 4. The
notion of a hyperhomomorphism of hyperalgebras may also be generalized
to the case of partial hyperalgebras. Just as in the case of homomorphisms
and partial algebras, we obtain some non-equivalent variants of the notion
of a hyperhomomorphism.

10.2. BExampres. (C) If (u,») is a regular pair with the underlying
set A, then the function v is a partial hyperoperation

p: (A4 —es A4

of type (1,1,0) on 4.

(D) Tt (u, #) is a normal pair with the underlying set A (for the defini-
tion of a normal pair see 7.1), then the construction of sets 4"(u,%)
described in 7.4 gives rise to a partial hyperalgebra with the underlying
set A and partial hyperoperations

ap,: (A4"} —e— 44" of type (n,2,n) defined by

apy, (f, 9) = &0 lf, 9,
ab,: (A4") —o A" of type (n-+1,1,n) defined by
ab, (f) = vo 2, [f]-

o (A4 —o> 44" of type (1,0,m) defined by ¢}(0) = pry(4),

where n eNT,ien.
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10.3. Tt is easy to generalize the notion of a hyperalgebra and to define
a hyperalgebra in a cartesian closed category. For example, the Seott model
7.3 (A) gives rise to the following hyperalgebra % in the cartesian category
Clatt of complete lattices and continuous functions: the underlying object
of 9 is D, and the hyperoperations are the following arrows in Clatt:

apy: [D% — D] — [D% — D] defined by ap,(f, ) = ez-10<f, 9,
ab,: [D%' - D_]—[D% ~ D,,] defined by ab,(f) = &' Ao o [F),

@ [DY, - D,]° - [D% - D,] defined by ¢f(L) = pry(D,), where
[4 — B] means the lattice of all continuous functions from the lattice 4
to the lattice B.
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The notions of BCK-algebras and Griss algebras were formulated first
in 1966 (see [2], [3]). For example, BOK-algebras are obtained as unified
theory generalizing some elementary and common properties of set-dif-
ference in set theory and implication in propositional caleuli.

We know the following simple relations in set theory:

(A—B)—(4A—C)=(C-B,
A-—(A—-B) < B.
In propositional calculi, these relations are denoted by
(» > (g > =@ ~>1),
p=>(»—>9 >4
From these relationships, we have a new class of algebras as follows:

DEFINITION 1. Let X be a set with a binary operation * and a con-
stant 0. X is called a BCOK-algebra if it satisfies the following conditions:

(1) (@xy)*(2x2) < 2xy,
(2) ox(2xY) < Y,

(3) <%,

(4) 0<a,

(5) <y, ¥y < implies 2 =¥,
(6) z <y if and only if oxy = 0.

e introduced another class of algebras which are called Griss algebras.
The notion is an algebraic formulation of negationless logic considered
by G. F. C. Griss [1].
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