The regularity classes of the semigroup of all binary relations have been described in full generality by K. A. Zarecki [7]. In this note we are concerned with special binary relations for which the diagrams immediately tell us whether or not the relation belongs to a certain regularity class.

In particular, we give a complete characterization of those binary relations on a finite set belonging to a non-trivial regularity class which happen to be the complements of quasi-orders. To do this, we may restrict ourselves to complete lattice orders. A special case was already established in [3]: the complement of a partial order is regular if and only if the associated completion by cuts is completely distributive.

Let S be a semigroup with identity. Given non-negative integers m and n, the regularity class $\mathcal{F}_g(m, n)$ is the set of all elements $a \in S$ for which there exists an element $x \in S$ such that $a^m x a^n = a$. The elements of $\mathcal{F}_g(1, 1)$ and $\mathcal{F}_g(2, 2)$ are called regular and completely regular, respectively. For $m + n \leq 1$, $\mathcal{F}_g(m, n)$ is trivial, that is $\mathcal{F}_g(m, n) = S$. Every regularity class is already equal to $\mathcal{F}_g(m, n)$ for some $m, n \leq 2$. The non-trivial classes other than $\mathcal{F}_g(0, 2)$, $\mathcal{F}_g(1, 1)$, and $\mathcal{F}_g(2, 0)$ are given by trivial intersections (cf. [3]).

The semigroup of all binary relations on a set X is denoted by $\mathcal{B}(X)$. For $\sigma, \rho \in \mathcal{B}(X)$ the product is written as $\sigma \circ \rho = \{(x, y) \in X \times X | \exists z \in X, (x, z) \in \sigma \land (z, y) \in \rho\}$. σ^\ominus and σ' denote the converse of σ and the complement of σ respectively; $\sigma^{\ominus} \cdot \rho$ is written for $(\sigma^\ominus \cdot \rho) \circ (\sigma^\ominus \cdot \rho)^\ominus$.

Our first lemma is a straightforward extension of [5], Theorem 1. Lemma 2 is an immediate consequence of this (cf. [5], Theorem 2).

Lemma 1. Let $\rho, \rho_1, \rho_2 \in \mathcal{B}(X)$ be binary relations and let $\sigma = \{(x, y) | \rho_1 \circ \rho \circ \rho_2 \subseteq \rho\}$. Then $\sigma = (\rho_1 \circ \rho' \circ \rho_2)^\ominus$.

Proof. For $(x, y) \in X$, $(x, y) \notin \sigma$ if and only if there exists $(u, v) \notin \rho'$ such that $(u, x) \in \rho_1$ and $(y, v) \in \rho_2$ if and only if $(x, y) \in \rho_1 \circ \rho' \circ \rho_2$.

[239]
LEMMA 2. For a binary relation \(\rho \in \mathcal{R}(X) \), \(\rho \in \mathcal{P}_{\mathcal{R}}(m, n) \) if and only if \(\rho \subseteq \rho^0 \circ (\rho^{-1} \circ \rho^0) \circ \rho^0 \).

E. W. Wolfs [6] characterized partial orders as regular, reflexive, antisymmetric relations (for a simple proof cf. [5]). Using Lemma 2 it is an easy exercise to prove the analogous result for any other non-trivial regularity class:

Theorem 1. A reflexive and antisymmetric relation \(\rho \in \mathcal{R}(X) \) belongs to a non-trivial regularity class of \(\mathcal{R}(X) \) if and only if \(\rho \) is a partial order.

Proof. Given \(m + n \geq 2 \), let \(\rho \in \mathcal{P}_{\mathcal{R}}(m, n) \) be reflexive and antisymmetric. We will show that \(\rho \) is transitive. Wolfs’s theorem settles the case \(m = n = 1 \). We may therefore assume that \(m = 0 \) and \(n = 2 \). Put \(\sigma = \rho^0 \circ (\rho^{-1} \circ \rho^0) \). By Lemma 2 \(\rho \subseteq \sigma \circ \rho^0 \). Since \(\rho \) is reflexive, \(\rho^0 \subseteq \rho^0 \circ \rho^0 \) (cf. [5]), whence \(\sigma \subseteq \rho^0 \). Further for each \(a \in X \), \((a, a) \in \rho^0 \circ \rho^0 \), whence there exists \((x, y) \in \rho \) such that \((a, x) \in \rho \) and \((y, a) \in \rho \). Since \(\rho \) is antisymmetric, \(a \neq y \) implies \((a, y) \in \rho^0 \). Thus \((a, x) \in \rho^0 \circ \rho^0 \), which is impossible. So we get \(a = y \) and therefore \((a, a) \in \rho \). As \((a, a) \in \rho \), again by antisymmetry we get \(a = x \) and thus \((a, x) \in \rho \). Hence \(\rho \) is reflexive and we infer from Lemma 1 that \(\rho \) is transitive, completing the proof.

Let \(\sigma \in \mathcal{R}(X) \) be an equivalence relation and let \(\mathcal{R}(X) \), the quotient group of \(\mathcal{R}(X) \) which consists of all elements having \(\sigma \) as their two-sided identity. Each \(\sigma \in \mathcal{R}(X) \) defines a binary relation \(\rho \) on the quotient set as follows: \((x, y) \in \rho \) if and only if \((x, y) \in \sigma \). By [3], Proposition 6.2, \(\rho \Rightarrow \sigma \) establishes an isomorphism between \(\mathcal{R}(X) \) and \(\mathcal{R}(\sigma) \). We therefore have: For \(\rho \in \mathcal{R}(X) \), \(\rho \in \mathcal{P}_{\mathcal{R}}(m, n) \) if and only if \(\rho \in \mathcal{P}_{\mathcal{R}}(m, n) \) if and only if \(\rho \in \mathcal{P}_{\mathcal{R}}(m, n) \) if and only if \(\rho \in \mathcal{P}_{\mathcal{R}}(m, n) \), a quasi-order \(\leq \) on \(X \) is a reflexive and transitive relation. It defines an equivalence relation \(\equiv \) by \(a \equiv b \) if \(a \leq b \) and \(b \leq a \) and finally a partial order \(\leq \) on \(X \) as in the above way. Since the complement of \(\equiv \) obviously belongs to \(\mathcal{R}(\sigma) \), we have proved the following:

Lemma 3. Let \(\leq \) be a quasi-order on \(X \) and let \(\leq \) denote the corresponding partial order on \(X \). Then non-\(\leq \) is \(\in \mathcal{P}_{\mathcal{R}}(m, n) \) if and only if \(\leq \) is in \(\mathcal{P}_{\mathcal{R}}(m, n) \).

Let \(X \) be a partially ordered set. Put \(\beta_X = \{(p, q) \mid \forall a \in X \text{ either } p \leq a \text{ or } q \leq a\} \), \(\mathcal{P}(X) = \{p \in X \mid p \leq q \Rightarrow \exists a \in X, (p, a) \in \beta_X, (r, q) \not\in \beta_X\} \).

\(\beta_X \) denotes the normal completion (alias completion by cuts) of \(X \). Let \(L \) be a complete lattice. A subset \(\mathcal{L} \subseteq X \) is called join dense (meet dense) in \(L \) if every element of \(L \) is the join (meet) of elements of \(\mathcal{L} \). It is known that \(L \) is isomorphic to \(X^* \) if and only if \(L \) is join dense and meet dense in \(X \) (cf. [1]). For \(p, q \in L \), \(q \leq p \) if and only if \(q \leq p \) if and only if \(q \leq p \) if and only if \(q \leq p \). The pair \((-,-)\) sets up a Galois connection between \(L \) and its dual and determines the relation \(\mathcal{L} \) (see [4], Theorem 6); in particular one infers from this the following:

Lemma 4. For a complete lattice \(L \), the image of the map \(- \Rightarrow - \) is equal to \(\mathcal{L}(X) \).

Lemma 5. For a partially ordered set \(X \), \(\leq \) belongs to \(\mathcal{P}_{\mathcal{R}}(0, 2) \) if and only if \(\mathcal{L}(X) = X \).

Proof. From [2], the lemma, it follows that the product \(\mathcal{P}_{\mathcal{R}}(0, 2) \) is equal to \(\mathcal{P}_{\mathcal{R}}(0, 2) \), which is evidently the complement of \(\beta_X \). Therefore by virtue of Lemma 2, \(\leq \) is in \(\mathcal{P}_{\mathcal{R}}(0, 2) \) if and only if \(\leq \) is contained in \(\beta_X(\beta_X^{-1}) \). By the definition of \(\mathcal{L}(X) \) this is equivalent to \(\mathcal{L}(X) \).

Lemma 6. For a partially ordered set \(X \), \(\leq \) belongs to \(\mathcal{P}_{\mathcal{R}}(0, 2) \) if and only if \(\leq \) belongs to \(\mathcal{P}_{\mathcal{R}}(0, 2) \).

Proof. Let \(X \) be join dense and meet dense in \(L \). Clearly \(\beta_X \subseteq \beta_X \subseteq \beta_X \). Suppose that \(\mathcal{L}(X) = X \). Since \(X \) is meet dense in \(L \), for each \(p \in X \) and \(r \in L \), there exists \(t \in X \) such that \(r \leq t \) and \(p \leq t \). Then there exists \(q \in X \) such that \(p \leq q \) and \(t \leq q \). Consequently \(r \leq q \) and \(q \not\in \beta_X \). Hence \(\mathcal{L}(X) \).

Combining Lemma 5 and 6, the theorem, we conclude that for a partially ordered set \(X \), \(\leq \) is in \(\mathcal{P}_{\mathcal{R}}(0, 2) \) if and only if \(\leq \) is in \(\mathcal{P}_{\mathcal{R}}(0, 2) \).

Note that it is also not difficult to derive Lemmas 3, 5, 6 from the results of [7].

Let \(L \) be a complete lattice. Then by \(\mathcal{L}(X) \) denote the set of all elements \(a \in L \) such that \(a \neq 1 \) and whenever \(a \neq 1 \), \(\mathcal{L}(X) \) is defined dually. By Lemma 4 \(\mathcal{L}(X) \) is \(\mathcal{L}(X) \) and therefore \(\mathcal{L}(X) \). This proves:

Lemma 7. If \(L \) is a complete lattice, then \(\leq \) is in \(\mathcal{P}_{\mathcal{R}}(0, 2) \) whenever \(\mathcal{L}(X) \) is join dense in \(L \).

Using Lemmas 4, 5, 7 the following assertions are readily verified:

Examples. 1. The lattice \(L \) of Figure 1 is not modular, though \(\leq \) is in \(\mathcal{P}_{\mathcal{R}}(0, 2) \).

2. For the chain \(N \) of non-negative integers, \(\leq \) belongs to \(\mathcal{P}_{\mathcal{R}}(1, 2) \) but not to \(\mathcal{P}_{\mathcal{R}}(2, 0) \).
3. Put $Z_n = \{(a, b) \in Z^2 | 0 \leq a - b \leq n\}$, where Z denotes the chain of integers. For each $n \in N$ the complement of the partial order on Z_n is completely regular. (Note that $\mathcal{H}(Z_n) = \mathcal{F}(Z_n) = \{(a, a) \in Z \cup \cup \{(a+n, a) | a \in Z\}$.)

4. For every chain C which is dense in itself, \leq is completely regular. Obviously for every lattice of Figure 2 the complement of the partial order is completely regular. That this infinite list in fact includes all finite examples is stated by our concluding theorem.

Theorem 2. Given a finite lattice L, the following are equivalent:

(i) \leq is completely regular,

(ii) \leq belongs to $\mathcal{N}(0, 2)$,

(iii) L is a sum of four element Boolean lattices (see Figure 2).

Proof. (i) \Rightarrow (ii) is trivial, (iii) \Rightarrow (i) follows from Lemma 7. Suppose that (ii) holds. Clearly we may assume that L has at least two elements. Assume that L contains only one atom p. Since, by Lemmas 4, 5, $p = p_0$, p_0 is the unique atom of the interval $[p, 1]$. Continuing this argument we conclude that L contains an infinite chain, a contradiction. Therefore L has at least two atoms p and q. Thus for each element $x \in L$ distinct from $0, p, q$ we get $p \geq q \lor p_0 = p \lor q$ and $x \geq p \lor q$. Hence, if $p \lor q < 1$, we may apply the above arguments to the interval $[p \lor q, 1]$. Thus it follows by induction that L must occur in the list of Figure 2.

References