ON SYSTEM OF SUBOBJECT FUNCTORS IN THE CATEGORY OF ORDERED SETS

MILAN SEKANINA

Department of Algebra and Geometry, Faculty of Science of JEP University,
66291 Brno, Czechoslovakia

Let \(\mathcal{S} \) be the category of all non-empty sets with mappings as morphisms, \(\mathcal{U} \) the category of all non-empty (partially) ordered sets with isotone maps as morphisms.

Let \(\text{Exp} \) be the endofunctor \(\mathcal{S} \to \mathcal{S} \) with

\[
\text{Exp}X = \{ Y : Y \subseteq X, Y \neq \emptyset \}
\]

and

\[
[\text{Exp}f](Y) = f(Y) = \{ f(y) : y \in Y \}
\]

for all sets \(X \neq \emptyset \), \(Y \subseteq X \) and all maps \(f \). Defining \(\eta_X(x) = \{ x \} \) for \(x \in X \) and \(\eta_{\mathcal{S}}(\mathcal{S}) = \bigcup Y \) for \(\mathcal{S} \in \text{Exp Exp}X \), we get a monad \((\text{Exp}, \eta, m) \) (see [3], p. 138). We look now for such functors \(\mathcal{T} : \mathcal{U} \to \mathcal{U} \) for which the diagram

\[
\begin{array}{ccc}
\mathcal{U} & \xrightarrow{\eta} & \mathcal{U} \\
\downarrow U & & \downarrow U \\
\mathcal{S} & \xrightarrow{\text{Exp}} & \mathcal{S}
\end{array}
\]

(a)

\((U \text{ is the forgetful functor})\) is commutative (so \(\mathcal{T}(A, \varphi) = (\text{Exp}A, \mathcal{T}(\varphi)) \), where \(\mathcal{T}(\varphi) \) is a partial order on \(\text{Exp}A \) for each \((A, \varphi) \in \mathcal{U} \).

(b)

\[
Y_1 \subseteq Y_2 \subseteq A \Rightarrow Y_1 \mathcal{T}(\varphi) Y_2
\]

as \(T \) is a functor, we get for any isotone mapping \(f : (A, \varphi) \to (B, \psi) \)

\[
Y_1 \mathcal{T}(\varphi) Y_2 \Rightarrow f(Y_1) \mathcal{T}(f(\varphi)) f(Y_2).
\]

We shall call such \(T \) a functor lifting \(\text{Exp} \) and extending inclusion. A description of these liftings was considered in [4]. The system of all considered functors \(\mathcal{T} \) will be denoted by \(\mathcal{T}^e \).

[235]
for all \((A, \varrho)\).

Now \(T_M\) will be the subsystem of \(T\) formed by these functors \(T \in T\) for which \((T, \eta, \rho)\) is a monad (denoted simply by \(T\)). Having \((A, \varrho) \in \mathcal{U}\), \(\eta\), and \(\rho\) are now considered as morphisms in \(\mathcal{U}\); i.e., they must be isomorphisms. This is in fact the only condition on \(T \in T\) to yield such a monad as needed commutativity of involved diagrams follows obviously from the fact that \(T\) lifts \(\operatorname{Exp}_A, T_M\) has the smallest element \(T_1\) and the greatest element \(T_2\) (see [5], Theorem 2) defined as follows:

Let \((A, \varrho) \in \mathcal{U}\). \(T_{\varrho}(x)\) is the transitive hull of set-inclusion on \(\operatorname{Exp}_A\) and the relation \(\{(a, b) : a \in \varrho b, a, b \in A\}; X T_{\varrho}(x) \subseteq Y \Longleftrightarrow X \leq Y \subseteq Y\) = \(\{x\}; X = \sup X \in (A, \varrho)\) and there exists \(y \in Y\), for which \(x \leq y\) (here \(X, Y \in \operatorname{Exp}_A\)). The present paper should contribute to the study of \(T\), especially with respect to \(T_M\). Next lemma picks up one special situation for \(T \in T_M\), which will repeatedly occur in the sequel.

Lemma 1. Let \((T, \eta, \mu) \in T_M\), and \(A\) be a set, \((\operatorname{Exp}_A, \sigma) \in \mathcal{U}\), \(\varphi \in \operatorname{Exp}_A\), \(\Sigma \subseteq \varphi\sigma \subseteq \varphi\). Then \(\varphi \sigma \subseteq \varphi \subseteq \varphi\). There exist \(Y \in \mathcal{U}\) such that \(X \subseteq Y \subseteq Y\) \(\operatorname{Exp}_A\), \(\mu_{\varphi}(\varphi) \subseteq \mu_{\varphi}(\varphi)\). Then \(\varphi \subseteq \varphi \subseteq \varphi\). The assertion of the lemma follows immediately from the fact that \(T \subseteq T_1\) and from the definition of \(T_{\varrho}\).

In Propositions 1-4 some constructions are described which applied to subsystems of \(T (T_M \text{ resp.})\) or to an element of \(T (T_M \text{ resp.})\) yield again an element of \(T (T_M \text{ resp.})\).

Proposition 1. Let \(T \subseteq T (T \subseteq T_M \text{ resp.})\). Let \(T_{\varrho}(x) = \bigcap_{\varphi \in \varphi}(x)\). Then \(T_{\varrho}(x) = \bigcap_{\varphi \in \varphi}(x)\). Put \(F(A, \varrho) = \bigcap_{\varphi \in \varphi}(x)\). Then \(F(A, \varrho) = \bigcap_{\varphi \in \varphi}(x)\). This is clear.

Proposition 2. Let \(m \in \operatorname{Exp}_A, T \in T (T \in T_M \text{ resp.})\), \((A, \varrho) \in \mathcal{U}\). Put for \(Y \in \operatorname{Exp}_A\)

\[
X = Q(A, \varrho) Y = X \subseteq Y \text{ or } X T_{\varrho}(Y), Y, \quad \operatorname{card}X \subseteq m,
\]

\[
X \equiv Q(A, \varrho) Y = X \subseteq Y \text{ or } X T_{\varrho}(Y), Y, \quad \operatorname{card}X \subseteq m.
\]

Let \(F_i(A, \varrho) = \operatorname{Exp}_A, (Q_i(A, \varrho)), F_i(f) = F_i, i = 1, 2\). Then \(F_i \subseteq T (F_i \subseteq T_M \text{ resp.})\).

Proof. We shall prove Proposition 2 for \(T \in T_M\) and \(F_i\).

(a) \(F_i(A, \varrho)\) is an order on \(\operatorname{Exp}_A\). Reflexivity and antisymmetry are clear. Transitivity (put \(Q_i\) instead of \(Q_i(A, \varrho)\)):

- \(X \equiv Q_i Y \subseteq Z\); if \(X \subseteq Y \subseteq Z\), then \(X \subseteq Z\); so \(X \equivalent Q_i Y\).

So \(X = Y \subseteq Z\). If \(X \neq Y \subseteq Z\), then \(X \neq Y \subseteq Z\); if \(X \equivalent Y \subseteq Z\), then \(\operatorname{card}X \subseteq m\); and \(\operatorname{card}Y \subseteq Z\). If \(X \neq Y \subseteq Z\), then \(\operatorname{card}Y \subseteq m\); so \(\operatorname{card}X \subseteq m\) and \(\operatorname{card}Y \subseteq Z\).

(b) It is evident that \(F_i\) is an endofunctor in \(\mathcal{U}\).

\(F_i\) is an isotone mapping from \((A, \varrho)\) into \((A, \varrho)\). This is clear.

(c) \(\rho_{\varrho}\) is an isotone mapping from \((A, \varrho)\) into \((A, \varrho)\). This is clear.

(d) Isotonicity of \(\mu_{\varphi}\) for \(F_i\). Let \(X \in \operatorname{Exp}_A\), \(\varphi \in \operatorname{Exp}_A\), \(\mu_{\varphi}(\varphi) \subseteq \varphi\) and \(\mu_{\varphi}(\varphi) \subseteq \varphi\). Then \(\mu_{\varphi}(\varphi) \subseteq \varphi\). The only case, which needs a consideration, is \(\mu_{\varphi}(\varphi) \subseteq \varphi\). As \(\mu_{\varphi}(\varphi) \subseteq \varphi\), it is \(X = Y \subseteq \varphi\). When there exists \(Y \in \varphi\) such that \(X \subseteq Y \subseteq Y\) \(\operatorname{Exp}_A\), \(\mu_{\varphi}(\varphi) \subseteq \varphi\), \(X_1 \subseteq X_2\) (see Lemma 1). Then \(\operatorname{card}X_1 \subseteq m\). As \(X_1 \subseteq X_2\), \(\mu_{\varphi}(\varphi) \subseteq \varphi\). Then \(\mu_{\varphi}(\varphi) \subseteq \varphi\). Therefore, for all these \(X\)'s we have \(\operatorname{card}X \subseteq \operatorname{card}X_1\). As \(\operatorname{card}X \subseteq \operatorname{card}X_1\), we have \(\operatorname{card}X \subseteq m\). Hence \(\operatorname{card}X \subseteq \operatorname{card}X_1\). If \(X = \varphi\), then \(\mu_{\varphi}(\varphi) \subseteq \varphi\).

Definition 1. Let \(m, T, F_1, F_2\) be as in Proposition 2. We put

\[
r_{F_2}(T) = F_1, \quad r_{F_2}(T) = F_2.
\]

Definition 2. Let \((A, \varrho) \in \mathcal{U}\). Put \(t(A, \varrho)\) (briefly \(t(A)\)) = \(\operatorname{sup}(\operatorname{card}X); X \in A, X\) is an antichain in \((A, \varrho)\) (one-point set is taken as an antichain).

Proposition 3. Let \(m \in \operatorname{Exp}_A, T \subseteq T (T \subseteq T_M \text{ resp.})\), \((A, \varrho) \in \mathcal{U}\). Put for \(Y \in \operatorname{Exp}_A\)

\[
X = Q(A, \varrho) Y = X \subseteq Y \text{ or } X T_{\varrho}(Y), Y, \quad t(X) \subseteq m,
\]

\[
X = Q(A, \varrho) Y = X \subseteq Y \text{ or } X T_{\varrho}(Y), Y, \quad t(X) \subseteq m.
\]
Let $F_i(A, g) = (\text{Exp}A, q(A, g), F_i(f)) = \text{Exp}f$ for $i = 3, 4$. Then $F_i \in \mathcal{T}$ ($F_i \in \mathcal{T}_M$, resp.).

Proof. Take again the case $\mathcal{T} \in \mathcal{T}_M$ and prove $F_i \in \mathcal{T}_M$. The proof runs along the same lines as the proof of Proposition 2. We can concentrate ourselves to the proof of the isotonicity of μ_3 for F_i.

Let $\mathcal{X}, \mathcal{Y} \in \text{Exp} \mathcal{A}$. Suppose $\mu_3(\mathcal{X}) \nonc \mu_3(\mathcal{Y})$. Then $\mathcal{X} \circ \mathcal{Y} \nonc \mathcal{Y}$. For every $\mathcal{Z} \in \mathcal{Y}$ there exists $\mathcal{W} \in \mathcal{X}$ such that $\mathcal{W} \in \mathcal{Z}$ and $\mathcal{W} \nonc \mathcal{Y}$. Therefore $\mathcal{W} \in \mathcal{X} \circ \mathcal{Y}$. We take $\mathcal{Z} \in \mathcal{Y}$ as $\mathcal{Z} \circ \mathcal{Y}$. If $\mathcal{X} \circ \mathcal{Y} = \mathcal{Z}$ then $\mathcal{X} \circ \mathcal{Y} = \mathcal{Z}$ and $\mathcal{X} \nonc \mathcal{Y}$.

DEFINITION 5. Let m, F_1, F_2 be as in Proposition 3. Then we put $r_i^\alpha(T) = F_3$, $r_i^\alpha(T) = F_4$.

It remains to prove

1. $r_i^\alpha(T) = r_i^\alpha(T)$ for $i = 2, 3, 5, 6, 7, 8$.
2. $r_i^\alpha(T) = r_i^\alpha(T)$ for $i = 2, 3, 5, 6, 7, 8$.
3. $r_i^\alpha(T) = r_i^\alpha(T)$ for $i = 2, 3, 5, 6, 7, 8$.
4. $r_i^\alpha(T) = r_i^\alpha(T)$ for $i = 2, 3, 5, 6, 7, 8$.

The proof of assertions (a), (b) consists in constructing a set (A, g) such that $r_4^\alpha(T) \in \mathcal{A}$. This construction is a generalization of an example due to A. Kurepa (22, 9). We shall proceed as follows. Take the smallest number m, with the property $m > m$. We have $m \leq m$. Let B be a set with card $B = m$, and let us order the set B by a well-ordering of the corresponding initial type. This type will be denoted by β. We can put $B = \beta$ and consider $A = -\beta$, where $-\beta$ is the system of all maps of β in the set $\{0, 1\}$. (0 \in \omega) ordered lexicographically (this ordering is denoted as $\leq \omega$). Let $\gamma < \beta$, γ an ordinal. Then $\text{card} \gamma \leq m$. As $\gamma < \beta$, we can suppose that β is a subset of ω (e.g. the maps from ω are extended to those of β by assigning 0 to the elements of $\beta - \gamma$). The set $D = \bigcup \beta$ is dense in A, i.e. for $a, b \in A, a \leq b$ there exists $c \in D$ such that $a \leq c \leq b$. As card $\omega \leq m$ for $\gamma < \beta$, we get card $D \leq m$.

Let $X_i \in X_i$ (so $a_1 \leq a_2$, or $X_i = X_i$) and again $a_1 \leq a_2$. Put $\mathcal{Z} \circ \mathcal{Y} = \mathcal{Z}$. Then $\mathcal{X} \circ \mathcal{Y} = \mathcal{X} \circ \mathcal{Y}$.

DEFINITION 6. Let m, F_1, F_2 be as in Proposition 3. Then we put $r_i^\alpha(T) = F_3$, $r_i^\alpha(T) = F_4$.

It remains to prove

1. $r_i^\alpha(T) = r_i^\alpha(T)$ for $i = 2, 3, 5, 6, 7, 8$.
2. $r_i^\alpha(T) = r_i^\alpha(T)$ for $i = 2, 3, 5, 6, 7, 8$.
3. $r_i^\alpha(T) = r_i^\alpha(T)$ for $i = 2, 3, 5, 6, 7, 8$.
4. $r_i^\alpha(T) = r_i^\alpha(T)$ for $i = 2, 3, 5, 6, 7, 8$.
Now, order A by a well-order $<_a$. Put $\sigma = \leq_a \land \leq_a$. Let $Z \subset (A, \sigma)$ be a chain. This chain must be well-ordered, say $Z = \{z_1, z_2, z_3, \ldots\}$, and this chain is also a chain in $(A, <_a)$. As D is a dense set in $(A, <_a)$ and card $D \leq m$, the cardinality of Z is $\leq m$. As card $A = \sigma > m$, it follows that $\sigma(A, \sigma) > m$.

Let Z be an antichain in (A, σ), $Z = \{z_1, z_2, z_3, \ldots\}$, $z_i < z_j$ for all $i < j$. For the same reason as before, card $Z \leq m$. So $(A, \sigma) \leq m$.

Proof of (a). Let (A, σ) be the set just constructed and take a, b non $\in A$. Put $T = (A, \sigma) \uplus \{\emptyset\} \uplus \{\emptyset\}$ where the ordinal sum. Put $G_1 = A \cup \{\emptyset\}$, $G_2 = A \cup \{\emptyset\}$. It is $G_1 = \{\emptyset\}$. The proof of (b) is similar.

Proof of (c). Let M be an antichain of the cardinality m, a, b non $\in M$. Put $A = M \uplus \{\emptyset\} \uplus \{\emptyset\}$. Put $G_1 = M \cup \{\emptyset\}$, $G_2 = M \cup \{\emptyset\}$. It is $G_1 = \{\emptyset\}$. The proof of (b) is similar.

Remark. Result of Dilworth [1] implies $r(T) = r(T)$.

One of the needed information on T or T_M is the answer to the question whether the classes or hyperclasses. Proposition 5 relates to this question.

Proposition 5. Let T be the full subcategory of T consisting of all ordered finite non-empty sets, T', T'' be the system defined for T in the same way as T and T_M for T. Then card $T'' = 2^n$, card $T_M'' = 2^n$.

Proof. card $T'' = 2^n$ can be proved along the same lines as Proposition 3 in [5]. Let us prove that card $T'' = 2^n$. Exp is now considered as an endofunctor in T''. Let

1. $m_1 < m_2 < \ldots < m_n$
2. $n_1 < n_2 < \ldots < n_m$
3. $s_1 < s_2 < \ldots < s_n$

be sequences of positive integers with

4. $m_1 < s_1 < n_1 < m_2 < s_2 < n_2 < \ldots < m_n < s_n < n_m$

Put $t_i = \{n_i, m_i\}$

Let G_1 be a set with $2 + s_i = t_i$ elements $b_1, a_1, b_1, \ldots, b_2, a_2, \ldots, a_2$. For this set a_2 is a mapping from the system B_0 of all subsets with m_i elements from the set $\{a_1^1, \ldots, a_2^1\}$ onto $\{b_1^1, \ldots, b_2^1\}$. Let b_1 be the ordering of G_1 generated by pairs (a^1_1, b^1_1), where $a_1^1 \in D_1$, $a_2^1(D_1) = b_1, (b^1_1, a^1_2)$ for all j, a_2, b_1 (see Fig. 1). Put $A_2 = (a_1^1, a_2^1, \ldots, a_2^2)$, $B_2 = G_1 - \{z_0\}$. By the same symbol (and by G_1 as well) also the corresponding ordered sets with the restrictions of a_2 to these sets will be denoted.

Let P be a non-empty subset of the set $\{x_1, x_2, \ldots, x_n, \ldots\}$. Let (M, σ) be any finite ordered set. We shall define the order $\varphi_{\sigma}(M, \sigma)$ on $\text{Exp} M$ in the following way.

For $X, Y \in M$, $X \neq \emptyset \neq Y$ we put $X \varphi_{\sigma}(M, \sigma) Y$ iff $X \subseteq Y$ or there exists $s_1, \ldots, s_\ell \in P$ and isotope maps $h_j : G_0 \rightarrow (M, \sigma)$, $j = 1, \ldots, \ell$ such that

4. $X \subseteq h_1(A_1), h_1(B_1) \subseteq h_2(A_2), h_2(B_2) \subseteq \ldots$, $h_{\ell-1}(B_{\ell-1}) \subseteq h_\ell(A_\ell), h_\ell(B_\ell) \subseteq Y$.

It is easy to prove that $\varphi_{\sigma}(M, \sigma)$ is an order on $\text{Exp} M$ and that $G_{\varphi_{\sigma}(M, \sigma)} = (\text{Exp} M, \varphi_{\sigma}(M, \sigma))$, $G_{\varphi}(f) = G_{\text{Exp} M}$ is an endofunctor in T''. In proving these facts it is sufficient to observe, in which case the cardinality of $h_1(A_1)$ and $h_{\ell-1}(B_{\ell-1})$ or of $h_1(A_1)$ and $h_\ell(B_\ell)$ respectively, are the same and to use the observation for proving antisymmetry for $\varphi_{\sigma}(M, \sigma)$.

Anyway, one can use [4], Theorem 1 as e.g. $\varphi_{\sigma}(M, \sigma) \subset \text{Exp} E_{\sigma}(M, \sigma)$.

Let us now prove one auxiliary statement.

Lemma 3. Let $x_1 \notin P$. Then $A_{x_1} \varphi_{\sigma}(G_0)$ B_x.

Proof. Suppose $A_{x_1} = h_1(A_1), \ldots, h_\ell(B_\ell) \subset B_x$ is a sequence of type (4). First of all we prove

5. $A_{x_1} = h_1(B_1)$.
6. $h_{\ell-1}(a_{x_1}) \in \{a_{x_1}\}$.

Suppose (6) does not hold. So $h_{\ell-1}(a_{x_1}) \notin \{a_{x_1}\}$. We have $h_{\ell-1}(a_{x_1}) = a_{x_1}$. and

7. $h_1(B_1) \varphi_{\sigma}(a_{x_1}), h_1(B_1) \varphi_{\sigma}(a_{x_1})$ for all i.---
We have \(k < l \) and \(m_0 > n_0 \). For any choice of \(a_i^n \in h_i^{-1}(a_i^n) \), \(i = 1, \ldots, n \) (such choice clearly exists) there exists \(b_i^n \) so that \(a_i^n b_i^n = a_i^n b_i^n \). Therefore \(a_i^n b_i^n \in h_i^{-1}(a_i^n) \), which gives \(h_i(b_i^n) = a_i^n b_i^n \). This is a contradiction to (7). Therefore (6) is valid and hence \(B_k \subseteq h_i(B_i) \). By induction we get (5). (5) together with \(B_\infty(B_i) = B_k \) implies \(A_k \subseteq B_k \) which is a contradiction to the definitions of \(A_k \) and \(B_k \).

From Lemma 3 we can deduce

\textbf{Lemma 4.} \(F_1 \neq F_2 \Rightarrow F_{P_1} \neq F_{P_2} \).

The proof is immediate, as by Lemma 3 \(s_k \in P_1 \neq P_2 \) \((s_k \in P_1 \neq P_2) \) implies \(\varepsilon_{P_1}(C_3, a_3) \neq \varepsilon_{P_2}(C_3, a_3) \). card \(T^* = 2^c \) follows obviously from Lemma 4, the definition of \(P \) and from the evident upper bounds \(\text{card} \ T^* \leq 2^c \).

References

\textit{Presented to the Seminar
Universal Algebra and Applications
(February 15 – June 5, 1978

HOMOMORPHISMS OF GROUP RINGS

JAN KEEMPA

Institute of Mathematics, Warsaw University, Warsaw, Poland

Introduction

Homomorphisms of group rings with the ring of integers as the coefficient ring and torsion-free group were first investigated by Higman [1]. These investigations were continued among others, by Snirnov [13]. Parmerter and Seigal considered automorphisms of the group ring \(A(C) \) for infinite cyclic group \(G \) and arbitrary ring of coefficients \(A \) ([7], [8]). Lautze [4] described automorphisms of group rings of free abelian groups of finite rank with commuting coefficients.

The aim of this paper is to present a new method of investigation of a group of units and homomorphisms of group rings. For this purpose we shall investigate in \(\S 1 \) properties of some subgroups of a group \(U(C(G)) \) of units of a group ring \(C(G) \), where \(C \) is a commutative ring. In \(\S 2 \) a structure of the group \(U(C(G)) \) is described in the case where \(G \) is a u.p. group. In \(\S 3 \) we introduce 4 classes of homomorphisms of group rings related to subgroups defined in \(\S 1 \). They are called \(G_0 \)-homomorphisms, \((G_0 \neq G_1, (G_2, G_3) \) and it is shown that in the case of u.p.-groups every homomorphism is a \(G_0 \)-homomorphism. In \(\S 4 \) a structure of \(G_0 \)- and \(G_1 \)-homomorphisms is described. In \(\S 5 \) we investigate properties of \(G_0 \)- and \(G_1 \)-homomorphisms using in the essential way results concerning \(G_0 \)-homomorphisms. In \(\S 6 \) some criteria for a homomorphism to be an injection, a surjection or an automorphism are given. In \(\S 6 \) our results are applied to the description of the structure of group of automorphisms and homogeneity and cohomogeneity of group rings of u.p.-groups.

The paper is written in such a way that it is possible to extend all the results on u.p.-groups to the arbitrary torsion-free group after showing the triviality of the group of units of group algebras of such groups over fields.