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Taeorem 11. If ¢'(x+a'n) = ¢'(x), @' < q, ‘S) lg'12dx <N (i=1,2), then

OR©) — IN+1
Sesin (@30, o) < V/a@ e M, Bl
where
M(x, B) = sup (JA]2+1)"*2
aALS

The perturbation properties of the type (10) in the case of periodic g follow
from some estimates of classical eigenfunctions and from the fact that the eigen-
elements of U span the space B*(R3).
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The Schrédinger operator L = —A+q with an almost periodic potential g (in

‘symbols: q € AP.(R") is of interest in the quantum theory of disordered systems

(alloys, liquids).
Let ¢(x) denote a function for which the set suppgnsupp(e—1) is not too
large; we shall call the operator
Loy = —A+Qq '

the Schrodinger operator with potential “cut by ¢”. By 4 and 4., we shall denote
the unique self-adjoint extensions in L?(R") of the operators L and L,, defined in
Dy = Dy, = C}(R"). Now, the spectral cutting problem may be formulated as
follows: for which cut gg do the spectra 6(4), o(dcu.) satisfy the inclusion

€Y o(4) = o(4eud?

This inclusion has the following physical interpretation. Suppose that an

electron is moving in the medium defined by the potential g. Then the set of num-

bers o(4) represents the admissible levels of energy. In other words, o(4) rep-
resents the energetical characteristics of an electron moving in the medium con-
sidered. The potential g defines the medium arising as the portion cut from the
original medium defined by g. The inclusion (1) means that the electron in a piece
cut from the medium may have the same energy levels as one moving in the whole
medium,

We will use the following norms:

@ []f[]’-—-limsup% S If1dx,
¢ Toe T
1 .
® i = tim - § 1f2a,
Tmeo x|<T
@ N1 = § if1dx,
R®

where f(x), x € R", is'a complex-valued function.
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In this paper we shall give the proof of the following theorem:
THE CUTTING THEOREM. If g € AP.(R"),

©)] o €C2(RM, lloll #0, [|ID%|| =0 for |a| = 1,2, ‘
|le(1—0)l| = 0, and there exist numbers §, > Bz > O such that for each u € AP.(R"):
(6) Bulluli = lleull = Ballull,

then

o(d) = o(4eu)-

Let I' = R" denote a cone satisfying the condition

edx # 0.
{|x| <1}nI"
Then condition (6) is satisfied if, for example, there exist numbers a > b >0
such that the following inequalities are fulfilled:
a > p(x) >b.
xeRgy xel'

Our proof of the cutting theorem is an application of the idea that in investigat-
ing spectral properties of L in L2(R") it can be useful to operate simultaneously
with spectral representations of L in other (possibly different) functional Hilbert
spaces. In this case we have at our disposal several different points of view on the
spectral properties of the operator L. This may enable us to obtain better spectral
information in the basic space L*(R"). From this point of view the nonseparable
functional spaces §(R") are very useful because: 1. the essential spectra of L in
L*(R™) and H(R") are in many cases equal, 2. the spectral resolutions of L in
L?(R™) and $H(R") are quite different, in particular the square-nonintegrable eigen-
functions of L belong to H(R"). '

We shall start with the construction of certain spaces $(R"). Let us put M
= {f:[Jf[J < +}. Then, with the relation: f~g iff [] f—g[] =0, the
linear space

M= M/~

is a complete Banach space (see [7]). The elements of 9t will be denoted by capital
letters F, U, ... If f € M represents an element F & I, we write F = (f).
We look for Hilbert spaces § < IR. As scalar product we will take

) @, V)= lin ”TITMS b U= @, V=@

Hence it is natural to consider the set
P={u:ueM,||u| exists}.

B%n there arises the trouble that P is not a linear set (see [1]). Two functions f, g € P
will be called comparable if f+g e P, Obviously, f, g are comparable iff the scalar
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product (f, g) exists. Similarly, we shall say that a function and a subset P are
comparable or that two subsets of P are comparable. There holds the following
theorem (see [1]).

TaroreM L. If E is a linear subset of P, f, € E, || fy—full = O, then for fe M
such that [ f—fu[] — 0 we have:

feP, fis comparable with E, |If—f,1l-0.

Hence every functional Hilbert space $ € MM with the scalar product (7) is

of the form
H=El~
where 'E denotes the closure in the norm (3) of some linear subset of P. We have,
e.g.,
B(R") = T/~ = AP.(R)/~

where T denotes the set of trigonometric polynomials.

In order to define other linear subsets E = P we shall use various sets of com-
plex valued functions z;, 4 e A, satisfying the following two conditions:

1.y e P, :

2. u,, uy are comparable for each 4, 1’ € A.

Then we put

4
E = {u: U= Za,,u,,“, qg< +mo, Med, a, complex numbers}.
e

A function u, will be called a weak eigenfunction and the number 1 a 'ufeak
eigenvalue of the operator L = —A+q, suplg| < + oo, if the following conditions
R*

are fulfilled:

(@) u e C2(R)NP, |l #0,

(®) sup(luil, D)) < + o0,

(©) I(L—Duli = 0.

The following lemma is true:

Lemma 1. If uy, uy, A5 X, Imd = ImA = 0, are weak eigenfunctions, then
(43, uy) = O, and thus they are comparable.

S 4% dx. For bounded functions u,v we

1
Proof. Let us put (¥, v)r = T
x[<T

have:
sup [Re(u, ¥)rl< +0, sgplIm(u,v)rl < 0.
T

Thus we may define:
[u, ¢]° = max{limsupRe(#, ¥)r, lijrglsupIm(u, o)1}
T — 00

[u, 9], = min {liminfRe(x, ¥)r, lir;ﬂnf Im(4, ¥)r}-
T " 00
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For the proof it suffices to show that
[, up]® = [uz, urlo = 0.
Integrating by parts we obtain for u, v satisfying the conditions (a) and (b):
[u, Lo]® = [Lv, u]°.
Moreover, for real o we have
[oeue, o’ = [u, av]o = afu, 9]°
and
[f,81° = [f, HI°
if f, g, h are bounded and []Jg—A[] = 0. Hence, in view of the condition (c), we
may write
Aluz, upl® = [Lu, ugl® = [ug, Lug]® = X[, uy]°

ie. [u;, uy]° = 0. In the same way we obtain [u;, uy]o = 0, which ends the proof
of the lemma.

Now we shall prove the following simple lemma:

Lemma 2. If o(x) satisfies the conditions (5), then

o(x)e'®® = y,5(x), ueR"

is a weak eigenfunction of the operator L = —A and |u|* is the corresponding weak
eigenvalue.

The proof follows from the fact that

—du—|ul*u = —e M Ao+2i(dive, u)e' ™,
‘We shall be working in the three following spaces:
L¥R™, B*R", %N =To/~
where To = {u: u=gv,veT}and ¢ satisfies (5). Let us write
APMR) = {u: u e AP.(R"), Du e AP.(R"), |o| < k}
and
APYRY = {u: u = gv, ve APHR"}.

We shall prove the following lemmas:

LeMMA 3. The operator L = —A+q, g€ AP.(R"), D, = AP2(R"), is in
the space B*(R") essentially self-adjoint.

We will denote the unique self-adjoint extension by A.

Lemya 4. The operator L = —A+q, g€ AP.(R"), D, = A.P. 2(R™, is in
the space N essentially self-adjoint if o satisfies the conditions (5).

Wewill denote the corresponding self-adjoint extension by ?I.

LevMa 5. The operator L. = —A+gq, qe€A.P.(R"), DL,,,, = AP, Z(R"),
is essentially self-adjoint in R if o satisfies the conditions (5) and [le(1—p)I| =0
We will denote the corresponding self-adjoint extension by ‘J

cut*
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Proof. The symmetry of the operators defined in the lemmas follows simply
by integrating by parts. Let us consider the operator —4 in D_, = T. Then,
after simple computations, we obtain that the set (—4— )T is dense in B2(R")
if Im4 # 0. Hence —4 is essentially self-adjoint in B2(R"). But L—(—4) is in
D_; = Dy bounded and symmetric, hence L is essentially self- ~adjoint in BZ(R")
This completes the proof of Lemma 3.

For » € AP.2(R") we have

—A(pv) +q(ov) = o(—do+gv)+vdp+2(gradp, gradv).

Hence, in virtue of the conditions (5), we have

(L(ev)) = (eLv) e R,
ie. L, Dy = AP2(R") is well defined in N.
Moreover, we may write
(LEDAPI(R") = o(LEDAP.2(RY).

But the last set is dense in 3% because, according to Lemma 3, the set (L4 i) A.P.2(R")
is dense in B*(R"). This ends the proof of Lemma 4.

The proof of Lemma 5 is now an obvious consequence of the assumption
llel—g)ll = 0. Indeed, for uecAPXR"), u=pv, veAP>2(R") we have:

(Lewit)) = (—A(e¥) +0g0v) = (—A(ov)+g0v—qup(l ~0))
= (~4(er)~4¢) = AW).

Hence, in virtue of Lemma 4, the operator L, is essentially self-adjoint, which
ends the proof of Lemma 5. Moreover, we obtain the equality

(8) . QI = Q[r:uh
1

1
The proof of the cutting theorem is based on the following chain of equalities

" and one inclusion.

N

(9) o(4) = U(m) = U(%Icut) < 0(4cur)-

The first equality follows from the general Subin’s theorem (see [8], [9]) stating
that elliptic operators with almost periodic coefficients have the same spectra in
L?(R") and B*(R").
According to (8)-for the proof of the second equality of the chain it suffices
to show that o(2) = o(). Hence we have to show that the following two inequa-~
1

lities

(A= Au|| > cllull, ueAP.(R"), c= const.
and

(A= Do]] > ¢illoll, ©eAPZR"), c, = const.
1
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are equivalent. But for v = gu, u € AP.*(R"), we have
(A~ Dol = [lo(A—Dull  and  [jv]] = Jleull.
1

Hence the equivalence of the inequalities is a simple consequence of (6).

Let us now introduce a function ¢r e C3(|x] < T) such that 0 < ¢y < 1,
@r(x) =1 for |x| < T—1 and for u e AP.2(R") the following equalities take
place:

o1 .1
]2 = tim = llrtdizes  (Weurtt #) = lim — (Aei(@ri), @rue)s,
T T 1 To0 T
T |
Wyl = Tim [ Acoi(@ri)llZa.
1 T
Hence and from the inequality
(A= Dollz2 = cllollz, veCHR), ¢ = const,

it follows that
II(?]Icm—?-)ull = cllull, ueAPZR".

This gives the last inclusion of (9) and ends the proof of the cutting theorem. For
more information on spectral analysis in nonseparable spaces see [3}-[6], [8]-[11].
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DILATIONS TO SYSTEMS OF MATRIX UNITS
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0. The context

The dilation theorem of M. A. Naimark ([9], Thm. 1.8.2) concerns dilations to
a spectral measure. The object dilated has some but not all of the defining proper-
ties of a spectral measure. The dilation theorem of W.F. Stinespring ([8], [2]),
and that of the present paper, are of analogous nature. To show what we are about,
we begin by restating Nafmark’s theorem in the case which gives a spectral measure
of finite support.

TreoreM 0.1 (Natmark). Assume the operators A; (j running over a finite index
set) satisfy 0 < A; € B(H), Z A; = 1. Then there exists an isometric injection ¢ of
7

S into alarger Hilbert space X", and there exist commuting orthoprojectors E; € B(HA')
with > Ej = 1, such that 4; = *Eju.
7

The last equation holding for all j is what is meant by saying the E; are a simul-
taneous dilation of the 4;; so the theorem may be phrased briefly thus: a finite
family of positive operators adding to the identity have a simultaneous dilation
to complementary orthoprojectors.

One way of proving Naimark’s theorem [6] begins with a simple explicit con-
struction for the case where there are only two 4;, and handles more numerous
families by iterating this construction in nested fashion. Infinite families can be
handled in the same way and the full force of Naimark’s theorem recovered.

Stinespring’s theorem concerns linear mappings on a C*-algebra. into B(3¢).
We will restate it in the special case where the given algebra is that of all n xn com-
plex matrices. This algebra is the linear span of the ey (this denotes the matrix
having entry 1 in the j, k-place and all other entries zero), so any linear mapping of itis
determined by the images 4, of the ej;. It is known ([4], Remark 1.8, or [5], Lemma
2.1) that the mapping is completely positive if and only if the Ay form a positive
operator-matrix; and that the mapping is a *-homomorphism if and only if, in
addition, 4;; Ay = 8j 4, The following is therefore a variant of this case of Sti-
nespring’s theorem (cf. [3], Lemma 3.2):
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