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Let X be an infinite compact Hausdorff space, let C(X, C) denote the algebra of
continuous complex-valued functions on X with the usual pointwise operations,
and, for fe C(X, C), let

Iflx = sup{lf()i: x e X},

so that |+ |x is the uniform norm on X and cx, o), |x) is a commutative Banach
algebra.

Now let || - || be any norm with respect to which C(X, C) is a normed algebra
Then it was proved by Kaplansky in 1948 that

Il 1flx  (feC@),

and this suggests the conjecture that every such norm H Il on C(X, C) is equwalent
to the uniform norm. This occurs if and only if ]l || is 2 complete norm on C(X O),
and it is also easy to see that it holds if and only if every algebra homomorphism
from C(X, C)into a Banach algebra is necessarily continuous, In this latter formula-
tion, we see that the question is one of automatic continuity.

The seminal paper on the automatic continuity of homomorphisms from
C(X, C) and other commutative Banach algebras is the 1960 paper of Badé and
Curtis [1] in which, for example, it is proved that a homomorphism from C(X, C)
into a Banach algebra is necessarily continuous on a dense subalgebra of C(X, C),
and that there is a discontinuous homomorphism from C(X, C) if and only if there
exists a radical homomorphism from C(X, C), that is, a non-zero homomorphism
from a maximal ideal of C(X, C) into a commutative radical Banach algebra.

Of course, the algebras C(X, C) are exactly the commutative C*-algebras. Let
B(H) denote the Banach algebra of bounded linear operators on a Hilbert space
H. These are non-commutative C*-algebras. In 1967, Johnson [7] proved that
every homomorphism from certain C*-algebras, including each B(H), was necess-
arily continuous (see [9], 12.4). Thus, the automatic continuity problem was re- -
solved for some non-commutative C*-algebras, although left open for each in-
finite-dimensional commutative C*-algebra.

Here, I briefly describe the following solution to Kaplansky’s problem
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THEOREM 1. Let X be an infinite compact Hausdorff space. Then, assuming the
continuum hypothesis, there exists a discontinuous algebra monomorphism from
C(X, C) into a Banach algebra, and there exists an incomplete algebra norm on
C(x, O).

This theorem is proved in [2], and applications to the construction of dis-
continuous homomorphisms from some othcr topological algebras are given in [3].
This problem was also solved independeritly by Jean Esterle: he-describes his work
in this volume [6]. See also the announcement [5]. The book of Sinclair [9] is an
excellent survey of automatic continuity theory up to about 1973, and it includes
proofs of the results of Kaplansky, Badé and Curtis, and Johnson described above.
The article [4] is a further survey of automatic continuity theory, bringing the story
up to 1977, and it includes a fairly long description of the two solutions to Kaplan-
sky’s problem, as well as some applications to other problems. It also discusses the
role of the continuum hypothesis in the theorem, and points out that results of
Woodin and Solovay show that there are models of set theory (in which the con-
tinuum hypothesis does not hold) in which every homomorphism from each C(X, C)
into a Banach algebra is necessarily continuous.

‘Now let C(X) denote the algebra. of continuous real-valued functions on X, let
Q2 be a connected open set in C, and let O(£2) be the algebra of analytic functions
on (2. Our present approach to the problem is based on the following question.

QuesTION. Is there an algebra homomorphisxﬁ u: C(X) ~ 0($)?

One would not expect there to be such a homomorphism, and in fact the only
such maps are the zero homomorphism and the trivial ones of the form u(f)
= f(x0)1, for some x, €X. For take z e 0. Then there exists xo, € X such that
@WN () = f(xo) for fe C(X). If f 2 0 in C(X) and f(x,) = O, then f is infinitely
divisible in C(X)-—for each neN, there exists g e C(X) with g" = f. Hence
(@f)(z0) = 0 and puf is infinitely divisible in 0(2), and so uf =0, by the basic
properties of analytic functions. Now an arbitrary function fe C(X) with f(xe) =0
can be wrltten = gh with g(x,) =0 and g > 0 (take g = [f]*/?), so the remark
follows.

Let me now describe a modification of 0(Q). For o> 1, let 2, = {z€C:
Rez > 1,1zl > o}, and let 0, = J{0(R,): o > 1}. Thus, 0, is an algebra of
analytic functions defined on “half-neighbourhcods of w”. The domain of a func-
tion in O depends on the function.

. THEOREM 2. Assuming the continuum hypothesis, there is a non-trivial homo—
morphi.sm b CX)~ 0.

Actually, I shall indicate that there is a non-trivial homomorphism pu: M —
= @y where M is a maximal ideal of C(BN) and €., will be described below.

First, however, let us see how this homomorphism p leads to the discontinuous
monomorphism required in Theorem 1,
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Let  be a continuous function on [0, 00) such that co(O) =1, a)(t) >0, and
w(s+ t) w(s)w(t) (s, t> 0). Let

@) ={7: 111 = § 10l < o},
0
and, for f, g € L'(w); let _
(F+ ) = | ft—9)g(s)ds.
0

It is easily checked that, with this convolution multiplication, L(s) is a com-
mutative Banach algebra. If w(z)*/* — 0 as ¢ — oo, then L!(w) is a radical Banach
algebra. For example, if we take w(t) = exp(—?2), then we have a radical Banach
algebra.

Thus, suppose that L'(w) is a radical Banach algebra. If F e %.,, then |F(z)| —
— 0 sufficiently rapidly as [z| — oo with Rez > 1 so that the inverse Laplace trans-
formation
T+ i

S F2)edt,

T—in

(&) (1) = o

can be defined for suitable 7. The map #~'opu: M — L'(w) is a homomorphism.

To begin a description of the proof of Theorem 2, consider first the domain
of u. Take X = AN, the Stone-Cech compactification of N, take p € ANV, let
M, = {fe C(8N): f(p) = 0}, andletJ, = {f: f = O near p}. Then M, is a maximal
ideal and J, is a prime ideal of C(X). Let 4 = M, /J,, so that 4 is an integral domain,
and let w: M, — 4 be the quotient map. We construct a monomorphism 8: 4 —
~ %, and then # ! ofon: M, — L'(w) is a homomorphism with kernel J,.
Since J, is dense in M, this homomorphism is certainly discontinuous, and it is
easy to construct from it the discontinuous monomorphism from C(X, C) required
in Theorem 1.

The algebra C(X) is a partially ordered set: £ < g if f(x) < g(x) for each x € X.
(It is for this reason that we are working with real-valued functions.) It is property
of BN that, for each f, either f< 0 or f> 0 in some neighbourhood of p. Thus,
the quotient order on A is a total order. The algebra 4 is real-closed, which means
that A(l/ :T) is algebraically closed, and (4, <) is an #,-set, which means that,
given countable subsets S and T of 4 with S < T, there exists ac 4 with S
< {a} < T. Thus, the quotient field of A is a real-closed, totally ordered #,-field
of cardinality ¥, (assuming the continuum hypothesis), and so itis a non-standard
model of R.

I now describe %,
or F satisfies:

(1) F= 0(z"%) as |z| - 0, Rez > 1, for each k € N;

(2) F(z) #0 for ze ,;

(3) F(R) < R.

. If ¢ > 1, we'say that F € %, if F e 0(£,) and either F = 0
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Then %o = | J{#,: 02 1} = 0,. We say that F> 0 if F(R) = R*.

The exact form of these conditions is important. Note first that, if Fe @,
then, by (1), &~1(F) can be defined. Next, if Fe« @, then, by (2) and (3), F
= expG for a unique G with G(R) = R, so that F* = exp(«G) can be defined for
>0, and F*e%y. Also, if F, G €%y, then FG € €. However, if F, Ge¥,,
it does not follow that F+ G € %, for F+G may not satisfy (2), so %, is not a
subalgebra of 0. But we do have the result that, if F,Ge%» and G = o(F),

then F+ G = F(1+G/F) belongs to %, for F(14 G/F) belongs to %,, for ¢ suf-.

ficiently large. It is at this point that we use the fact that the domains of the func-
tions of ¥, are not fixed.

Now think again about 4. If a, b € 4, then lima/b must exist in {—co}URU
U {0}, We say that a < b if lima/b = 0 and that a ~ b if lima/b € R\ {0}. Then
alb in A if and only if @ < b. It is rather easy to show that there is a set (¥) = 4
such that: if @, b € (¥) and « > 0, then ab, a* € (¥); if a, b & (¥) and a < b, then
a/be(P); if a,be(¥) and a # b, then a < b or b < a; for each ae 4, there
exists b € (¥) with b ~ a. Roughly, we are picking out from 4 a representative
of each rate of decrease to zero.

The set ((¥); <) is an #;-set of cardinality N,. We start by mapping (¥)
into %, and in doing this we specify N, functions in €, which is a little unusual.
Introduce

en(z) = %(lae"’/”) (Rez > 1).
Then &, has no zero, &, is close to 1 when |z| is small compared with n, and ¢,

= O0(z"1) as |z] » o for fixed n. Now let &,(2) =j]°j1 exy(2), where n = (n()))

belongs to a certain family, &, of real-valued sequences. Actually, we work with
E,(2) = &,(z*/?). Note first that E, € ¥,. Next, we can introduce an order on the
functions E,: let A, be the inverse of the function logE,, and say that m > n if
A,(3)— Am(y) » o0 as y - 0. This order is designed to give the important result:

THEOREM. If m > n, then E,[E, e ¥.

A rather long technical calculation shows that there is a totally ordered ,-set
in (¢; <) satisfying various extra conditions, and with this, a proof using trans-
finite induction shows:

THEOREM. There is an injection 0: (V) — ({E,}) such that 0(ab) = (0d)(6b);
6(a®) = (0a)*, and such that, if a < b, then 0a < 0b.

Let 2, be the inverse-closed subalgebra of A generated by (¥). (A subalgebra
B of A is inverse-closed if by, b, € B, b, |b, € A implies that b,/b, € B.) Then it is
easy to see that there is a monomorphism 8: 2, — %, such that, if a > 0, then
6a > 0: the point to note is that, if @, b€ 2, and a < b, then 6a < b, so that
0af0b and 6a+0b belong to ¥ !

DeFINITION. (2;0; #) is a triple if: 2 is an inverse-closed subalgebra of 4;
F < €x;0: 2 F is an algebra isomorphism; if ¢ > 0, then 6¢ > 0; and 2 o 2.
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Clearly, we must now study the problem of extending a triple to one with
larger initial term. Suppose that (2;0; %) is a triple and that ae A\ 2. There are
two cases according as a is algebraic or transcendental with respect to 2.
Case 1. ais algebraic with respect to 2.
It can be shown that one can suppose that 4 has a “minimal polynomial” of
the special form

aX) = qo+X+ (@2 +4)X%+ ... + (¥, +g)X",

where ¢o, 425 ..., 9, € 2 and y,, ..., ¥, € R. (In fact, something rather more com-
plicated is needlessly considered in [2].) We have that q(4) = 0, and a satisfies no
equation of degree less than n. Let Q; = 0(g;). We have to find w = F(2) so that

n Qo@D+ w+ (2 +Q2(@))W+ ... + (ya+0u(@))W" = 0.

Since Q;(z) — 0 as |z| — oo, this is nearly w+y, w2+ ... +y,w" = 0 for |z| large,
an equation with one root at 0 and no other root in some neighbourhood of 0.
Rouché’s theorem and the implicit function theorem lead to a solution, w = F(z),
of (1), and it is easy to check that Fe %,. One can now make the required ex-
tension in the usual algebraic way. Here, it is necessary to check that the new range
is contained in €.

Case 2. ais transcendental with respect to 2.

In this case, 8a must be defined so that ¢, < a < ¢, with ¢, g, € 2 implies
that f¢; < fla < 0g,. I do not know how to do this in general. Consider the special
case in which the position of a in the order is specified by countably many members
of 2. Then, given (Q,), (On) = F with

01 <0 <..<0Q;<0y,
we must find Fe %, with )
()]

My method for this is long and complicated — it involves a curious quasi-analytic
algebra of functions which may have some interest in its own right — and I should
like to find a shorter method. At the analogous point in his construction, Jean
Esterle uses the Mittag-Leffler theorem, which is possible because he is working
in a Banach algebra, but this does not seem to be available in my context because
we are not working in a metrizable algebra.

After constructing an extension in case 1 and the special form of case 2, we
apply Zorn’s lemma to obtain a maximal triple, (2,;0,; #,), say. Because we
could not deal with the general case 2, we do not know that 2, is equal to 4. How-
ever, it is not hard to see that 2, is a totally ordered, real-closed 7,-set of cardi-
nality N,. Thus, by a recent result of Johnson [8], 2, is isomorphic to 4. This is
sufficient for the result.

0, <0, <..<F<..<Q;<0;i.
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1. Resonance problem in mathematical scattering theory

Let H, and H be self-adjoint operators given in the separable Hilbert space $. Let
P,.(H,) be the orthoprojection onto the absolutely continuous subspace of H,. The
following strong limits are called wave operators, if they exist,

Wi (Hs Ho) = ls‘lim etfe- "H"Pnc(HO)’
'~ 00

implying the definition of the scattering operator
S(H, Ho) = W¥(H, Ho) W_(H, Hy)

and the scattering amplitude operator

T=S-1.

Using the dlrect integral decomposition of P,.(H,) 9,
PuHa$ = § @Hu(hdi
oac(Ho)
where H, is represented by multiplication with 4 in the separable Hilbert space
$Ho(4) and using the commutity of § with H,, § can be represented in $Ho(2) by
the scattering matrix S(4). The same holds for T represented by the scattering
amplitude T(4). Poles of T'(4) meromorphically continued are called resonances.
On the other side, let H and H, be connected by

H=Hy+V
where V is also self-adjoint and bounded. Furthermore, let ¥ be factorized by.
‘ V= B*4
with bounded 4 and B. In perturbation theory (see e.g. [1]) poles of the factorized
resolvent,

A(z—H)™'B*,

defined for Imz > 0, meromorphically continued into the lower half plane are
called virtual poles.
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