icm°

DISCRETE MATHEMATICS
BANACH CENTER PUBLICATIONS, VOLUME 7
PWN—POLISH SCIENTIFIC PUBLISHERS
WARSAW 1982

THE LATTICE OF LINEAR CLASSES IN
PRIME-VALUED LOGICS

JANOS DEMETROVICS

Computer and Automation Institute, Hungarian Academy of Sciences,
Budapest, Hungary

JANOS BAGYINSZKI

Central Research Institute for Physics, Hungarian Academy of Sciences,
Budapest, Hungary

1. Introduction

In this paper we study the superposition of certain linear functions. The complete
lattice of closed classes for 2-valued logics was given by E. Post in 1921 ([8], [6]).
Several results about closed and maximal sets in Py for k = 3 were given in a paper
of Jablonskif in 1958 [5]. All maximal sets in P; were determined by Jablonskil in
1953 [5]. According to a result of Janov and Muénik [7], in k-valued logics, fork > 3,
there are both closed subsets infinitely generated and a continuum of closed subsets,
unlike the case k = 2. Consequently, Post’s method of determining all closed sub-
sets in Py cannot be successful for k > 3.

Still we think that in spite of these principal difficulties the structure of Py is
“almost completely” describable. In our opinion, the whole structure—except some-
sublattices of cardinality continuum which are well separated in the complete lattice—
can be described. This is in accordance with a result of Salomaa ([12], Theorem 8)
stating within a ”large enough” (but not sequentially infinite) distance from the
identity Py there are only countably many elements of the lattice.

The method of Post consists of the following steps:

(1) determine a base set B of the closed set P,

(2) determine maximal sets P’ in P,

(3) prove that all maximal sets are given in step 2.

Ivo Rosenberg presented all maximal sets in Py, k > 3, by a sieve method in:
relation terminology in 1965 [10]. Infinitely generated maximal sets contained only
in finitely generated closed sets were constructed by Salomaa at 1964, {11], and.
also some maximal classes in L(k) with the proof that L(p)’s have only a finite
number of closed subsets, where p is a prime number.

[105]
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This is the state of k-valued logics in brief. We rediscovered the results of Salo-
maa about L(p) (as we had not known about it) [1}. Moreover, our paper contains

(a) The complete lattice of closed linear classes in L(p), and therefore the exact
(finite) number of these classes;

(b) All bases with a minimal number of elements and the rank of each linear
class;

(c) The lengths of the maximal and minimal chains of the lattice.

In preprint [2] we deal with a (regular) language-representation of linear classes,
A forthcoming paper presents the corresponding complete lattice for a generalized
case where the number k is square free [3].

Forinteger k > 2,let ¥y = {0, 1, ..., k—1}, V = VN {0}, P = {f| f(xy, ...

W X): VB Vo), n=1,2,.., and let P = U P, where P{® is the set of

n=0
7381

constant functions. In this paper addition “+” and multiplication are carried
out modulo k. The main purpose of this paper is to investigate the set of linear
functions (= linear polynomial functions) over the ring Ry = {¥V,, +, *»>. This set
is denoted by L(k). It is known that for a commutative ring R with identity, which
is not a field, there are functions f & P, that are not R-polynomials, but for a field R
each element of P, is an R-polynomial function [9]. It is also known [5] that L(k)
is maximal in P, if and only if k = p is prime. We shall also use the fact that a?~*
= 1(modp) by the Fermat principle, and therefore the value x = af~2 is a solution
of the equation ax = 1(modp).

Let

Xm= Xy %), E(R) = {e] e=ei(¥) =x,1<j<n}.

Superpositions over the set P < P, are functions obtained from P by using the oper-
ation f(Xy, «.v, Xu) Oy 8WLs vos Xm) =S(X1, ooy Xict, 8W1s oovs V) s Xt 15 o5 Xir) With
Sf€P,ge PuE(X) a finite number of times.

The closure [P] of a subset P < P, is the set of all superpositions over P.

A set P < Py is said to be a closed set if [P] = P. Let P = P, be a closed set,
P', P = P.Theset P'is complete in Pif [P'] = P, Theset P’'isabasein Pif [P] = P
and [P"] # Pfor P’\P" # &, P" < P’.

The closed set P’ is maximal (= precomplete) in P if for every P o P', P' <
< P" < P, the equality [P"] = P holds. It can be checked that the following sets
are closed subsets of linear functions (with the notation: ap € Vo, a; @ Viori> 1,

,.EZI @ = a,f(X) = ag+ay X+ ... +a,x,):
Lk) = {f(H) n=1,2,...JUPD,
Li={f®la=1n=1,2.1},
= {f@® flo, 0, ., ) =a, n=1,2,..Ju{a}, a=0,1,.., k=1,

L® = {ag+a,x,JUP®),
LO = P,
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LONLO = {ag+a;x,},
Ly = LanLy = Ly,

LY = LynL® = {x,x+1,..,x+k-1},

LY = L,AL® = {ao+a%;| ap = a(l—ap)}u{e}; a=0,1,..., k-1,
LION{o} = LA (LONL); : «=0,1,.., k=1,
LY = L,L® = {a}; «=0,1, .., k-1,
LPUL®, =01, .., k-1

Remarkes. (1) L™ is not a closed subset of L(k) for n > 2.

(2) The closedness of the subsets Ly,, L5, L, LN {oc}, L is a consequence
of the fact that the lattice of subalgebras of an algebra is also closed under the (set-
theoretical) intersection “n”.

It is a well-known theorem in algebra that every partially ordered set H having
both sup(h, , h,) and inf(h, , k) for all elements k,, h, € H constitntes a lattice.

Let % denote the class of closed subsets of L(k). Because of the fact that in
the set % with partial ordering there are elements sup(L’, L") and inf(L', L”) for
every L', L" € 2, we infer that (ZU®, =) is a lattice.

THEOREM 1. If k = p is a prime number, then {(XVD, =) is a finite lattice
with the identity L(p) and zero element & (empty set).

To prove this statement, we shall present the exact finite cardinal number [Z|
in Theorem 15.

The lattice (L,
the Post lattice.)

) for p = 2 is given in Fig. 1. (This is a sublattice of

{x} {0} {1}

Fig. 1
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We may assume further that k = p > 3 (prime number). The next four lemmas
are useful. The proofs are omitted, except in Lemma 3.

LeMMA 1. For elements of L) we have:

(@) ap+x e LY ifand only if ay = 0, for a« = 0,1, ...,p—1;

b) ap+ax e LM, a > Vifand only if ap = a(l—a) for = 0,1, ..., p—1;

©ase LY ifandonlyifag = . m

Lemma 2. Let L' be one of the sets L, Ly, LONLO, LY, LY, and f¢ L,
gel . Thengnf¢lL. m

LEMMA 3. Let f(x), %) = Qo+ a1 X1+ ta Xz, dy = 1,h 2 2,ad > 1,if 1 € j < h.
Then the functions

Jo(xys X2y %3) = Aop+arx+apx,+x5
and
8o(¥15 X2, X3) = boy+bipXy+Xs+Xs

are contained in [ {f(x;, x,)}] with

Ty= l4az+ ... +a5,  ag = ao Ty, a4 = a,(T,—~1),

bon = aoal™?Ty, by = T,—1.

Proof. With the notation

Jilxgs x2) = f(xq, %5), Jns1(xq, %5) = f(xl > Ju(%1s xz)): mz1,
ot (%, X2, %3) = fo (xl s %2, f3(xy5 X3, xa))

the functions fo (¥, , x5, X5) = f(x1 s Joe1 (%2, xg))andgo(xl s X2, X3) = fE0(%2, Xy, X3),
ny = a§~2, are obtained. =

Lemma 4. [{ao+x}] = L if and only if ay # 0.

From the definitions and Lemma 1 we have L(k) = L, = L,u ,Dl Ly. m
(2]

2. Bases, maxima) sets in L(p), and bases of those maximal sets

It is a well-known fact that the set {x+1, x+y} is a base of L(k) for every k > 2.

In the next theorem we give all bases of Z(p) having a function from L( and a func-
tion from L®,

THEOREM 2. The following sets are bases in L(p) (with the notation f=f(xy, x3)
= Go+a xXy+a,x,):

(a) {/f. bo, co}, a=1,a0=0,by # co;
(b) {f:bo}, a=l:a07é0;
© {fbo},  a#1,bg # (p=aoia~1)r-2.
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Proof. We shall generate the base {x+1, x+y}.
(a)-(b): If @ = 1, then a4, > 1, a, > 1. Moreover,
{x1 +x,+(p—1)x5, ay %, +(P”al)xz+x3} & [{f}]
by Lemma 3. The function x+1 is obtained from a;by+(p—a)co+x3 =
a,(bo— o)+ X3 in case (a) and from x+a, in case (b) by Lemma 4. We have the
function x;+x,+(p—1)be = X +X;-+p—by and hence also the function x; +x,.

(c): If @y =1 or g, = 1, for example a, = 1, then ap+x,+a,by = ay+x,,
with ap = ao+azbo # ao+ay(p—ao)(ay+a,—1)P"% = ay+p—ay = 0, therefore
x+1 e [{ap+x}] by Lemma 4,

If a, > 2 and a, > 2, then ag-+ayx-+p € [{f}] holds with a; 5 O by Lemma 3.
According to Lemma 1, feL, for a = (p—ap)(a—1)"2, and this fact implies
ay+aix+y € L,, therefore ag = a(l—(a;+1)) = a(p~ai) #0 if 4, #0 as in
the previous case, If @o =0, then ag =0, by # (p—ao)(a—1)’~2 = 0; hence
[{a1bo+»}]) © x+1 by Lemma 4. In both cases the function x+y is obtained as at
the points («)-(b). To complete the proof, we must check the minimality of the sets
in question. But it can be seen that

() INLWY = @ implies [L] # L(k);

@ [{x+r03 x+1;

(3) [{ay x4+ 1 —a)xz, bYNL® = {b} # L;

@ [{aot+axi+(—a)x}] € Ly # L(p);

(5) [{ao+a x,+a3x,}] € Ly # L(p), a = (p—ao)a—1y~?ifa #1. u

CoroLLARY. [{f(%), £1(3), g2} = L(p) for all f(%) € L\\L?, £:0), £2(2)
e L™,

The maximal classes in L(p) are presented in the following theorem.

THEOREM 3. (a) The classes L, are maximal in L(p), « = 0,1, ..., p— 1.

(b) The class Ly is maximal in L(p).

(c) The class L* is maximal in L(p).

Proof. Tt can be seen that the classes given in Theorem 3 are not comg}ete in
L(p). Let us denote by L’ one of the sets Ly, Ly, LV, he L\L' and h(x) =
h(x, %, ..., x).

In order to prove the theorem we shall generate over the set {hEIVUL a set
{f(%), g,(»), g2(2)} appearing in Corollary of Theorem 2, _

(@) fD) = X +Xa+ (p—) € Ly, £:0) = @€ La, g2(2) = h(e) € L, h(o) # a.

(b) If i(x) € L, then the functions A(y) = g:(3), g2(2) = h(2)+1 (x+1 € La),
S(®) = x4+ (p—1)x, € L, constitute a suitable set.

Let us suppose that B(x) = dy-+dx ¢ L; therefore d > 1. Then f(%) & L,\L§”
holds for the function f(%) = €,%, +e,x, with e, = (d=1)""2+1, ¢, = p—ei+l
= (1—d)?-2, hence the functions
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J(x, h(x)) = e;X+eh(x) = eydo+(eg+erd)x
= eydo+ (I+(d—1ex)x = exdo = g,(x) € L,
£2(%) = g:(x)+1
are obtained.

(© f(%) = h(5),8(x) = 0,8,(x) = 1. =

To prove that all the maximal sets in L(p) are given in Theorem 3, we need the
bases of those maximal sets. A base with one element is the simplest one.

THEOREM 4. (1) The set of base functions (bases with one element) in the set L,
is LN (Lau L®).

(2) The set of base functions in the set Ly is L\ (Lo LV).

(3) The set of base functions in the set Lyq is L\ L.

Proof. The necessity of the conditions is clear.

(1): We shall first prove that f(¥) = x4 +x,+(p—a) is a base function and
second that for an arbitrary function jig() & L\ (Lsv L") we have f(¥) € [ {2(3)}]-
With the notations f; = f(X), fus1 = f(x1,fm), m =1, 2, ..., functions f,,(x;, Xz, ...
ooy Xmy1) = Xy +Xo+ oo + Xy +(p—m)o are generated. To gencrate an arbitrary
function g(5) = a1 y(+ ... +a,y,+a(l—a) for n > 1, we must choose m = a,+
tat o ta—lz], prEXimXy= =X, V2= Yyt = Yoz = e
e = ya.+a,a veos I = Yamaprt = o0 = Ya infm(xl 3 ‘-~1xm+1): f(.]"l yos Vi Vas "'l.vll)
= g(J). The function go(%) = « is obtained from the function fy..,(xy, ..., x,)
= Xy+ ... +x,+a by identifying the variables: go(X) = fp\(x, ..., %). Let g(5)
=dot @ Y1+ ... + 8Py € LN\ (LaV LY (therefore aq = a{l—a),a # 1, n > 2).
The function go(X,, Xs, Xa) = bo+beXy +x,+x; can be obtained by Lemma 3.

Therefore we' have the function f(%) = x; + x5+ (p—0) = gu (¥, x;) from the
following construction:

8100, %) = go(%y15 Xz, X1) = bo+(by+1)x+x,,
gn(xe, X3) = g(xl » 8m—1(%1, xz)) = mbo+mby+1)x;+%,, mz 2,
with b = (by+1)P~2.

.(2)—(3): Cases (2) and (3) can be considered together because of the fact that
Lyisa clo§ed. set and [Lgu {A(x, ..., %)} = L, if and only if A(¥) € Ly, \Lyo-
A method similar to that used in part (1) can be used to prove that f(x, y, 2)
= X+y+(p—1)z+co is a base function in L, if ¢, 5 0 (in Lo if ¢y = 0) and,
moreover, that

JGe,y,2)e[{g(®}] if g®e L\(Lgou L™
(in case ¢, = 0: if g(3) € Liy\LID). m ‘
We can see by Theorem 4 that almost all the elements of L, (Ly, Lgo) constitute

a base. ;n order to investigate the bases of L™ and LON L we shall need some
propertics of the structure defined by multiplication “-” modp over theset V', Itis well
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known that the sct ¥ constitutes a cyclic group having p(p~1) one-element
bases, p(x) denoting Euler’s g-function.

We shall mean by the multiplicative order of a & V the least integer r(a) = r > 1
for which & = 1 holds. If p—1 is divisible by m, then ¥ has p(m) elements with
order m. Let ¢y € L®, ao-+ayx € LONLD, i> 1, r(a) = r;. Let us denote by
lLeam. {ry, ra, ...} the least common multiple of the numbers ry, r5, ...

THEOREM 5. (A) The following statements are all equivalent:

(1) B = {ajo-kay X, tao-+azX, .o, dyotayx} is a basis of LONLO,

(2) By = {co}Y B is a basis of L.

(3) The following three statements hold true for the elements of B:

(@) Lem. {ry, o, ty} = p—1,

(b) BN\Ls # D, x=0,1,..,p~1,

(c) statements (a) and (b) do not hold simultaneously for any non-trivial
subset of B.

(B) The cardinality of the bases of L'V and of LONL® is > 3 and > 2, respecti-
vely.

Proof. (A). (1) = (2): As a consequence of [B] = L\ L® 5 x+1 we have
(LD 2)[Be] 2 [BIU {x-+1, ¢} = (LONLOWU (LOU L) = LD,

(2 = (3): Let a eV, r(u) = p=1, and consider a function ao+axe L®. As
a consequence of ao+ ax & [B] & [Bol, r(a) will be a divisor of Leam. {ry, ra, ..., 75}
As (b4 bx) 11 (co+ex) = (bo+be)+(be)x, and b, ¢ belong to the multiplicative
group modp over ¥, we have by a well-known group theory method

r(be) = Le.m. {r(b), r(d)}.

Thus, if @ = Y192 ... Yus Yo+ ¥y X € B, j=1,2,...,u, then r(y) € {r1, ..., s}, and
s0 (@) = Leam, {r(p)), ..., ()} is indeed a divisor of Lem.{ry, ..., rs}. Finally,
according to the theorem of Lagrange, ry, ..., r, are divisors of p—1 and thus so is
the Le.m. {ry, ..., ry}, which implies (3a).

If statement (b) were not fulfilled, that is if B < L{"\ {«} did not hold for
any a, it would result in x+1 & LONL® = [B] & [L\ {«}] & LE", contradicting
Lemma 1. Statement (¢) is a consequence of the fact that the set B is a basis.

(3) = (1): Suppose that (3a) and (3b) are valid. Let @ = a,a, ... & and let us
compose the function ag--ax & [B] from the elements of B. It remains to prove
that the function x-1 can also be constructed, since some composition of any
function Ao-+Ax & LAONL® can be obtained in the following way: (x+p—ap)D
tlax+ap) = ax, Ao+ Ax € [{x+1, ax}], u being a number satisfying the equation
@ = A. If ¢, = 1 (and thus, by statement (c), dio # 0), for any ¢ with 1 <7<,
then it is easy to see that x4 1 & [B]. If &, > 2 for all ¢, then, according to Lemma 1,
there is exactly one value of a, namely « = (p—1)ao(a—1)?~2 fulfilling a4+ ax & L.
Thus choosing / 50 as to satisfy g = 1 for the function a;o+a;x € B\LE", we shall
have by +x € [{a1o+ a; X, ag--ay}] with bo+x ¢ L, as a consequence of Lemma 2.
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Tn this case, using Lemma 4 again, we get b, # 0 and thus x+1 & [{bo+x}]. So
-we have proved the completeness of the set B.

The fact that B is a minimal set and thus a basis follows from statement (3c). m

To conclude this section we shall prove that no other maximal subsets are
«contained in L than the p+2 ones described before.

" TuroREM 6. Every non-trivial subset of L in & is contained in at least one of the

subsets Loy Ly o ..., Ly, Lgy LD,

Proof. If we take for an indirect proposition a subset (L # )P € .% not contained
in any of the maximal sets specified in the statement of the theorem, it will consequent-
ly contain at least one function of each of the following types:

Cao % 0 OF  CuotCuX, Cyo # d(l~cy), a=0,1,..,p=1,

Cpo  OF  Cpotepx, o, # 1,

&= Cp1,0FCprraXit oo FCpppaXn, N2 2.

Let
Cpi1,0F Cprg, 1 XF oo FCop1,aX = Cpipg0tCppr Xs
‘We shall distinguish three cases; in each of them we shall generate some of the
maximal classes, which it will be complete together with an element of P chosen
arbitrarily.
Case 1. ¢pyy = 1, Cpyr,0 = 0. According to Lemma 1 we have

-1
£ e (Ly () LONLO,
am=0

If ¢; = 1, then by Theorem 4 and Lemma 2 we have [{coo+¢ox, ¢}] = L4 and thus
[{coo+cox, ¢, cpoteyx}] = L.If cg > 1, leta, = (p—D(co—1)""2, a; = p—a,+1
and 50 a;x; +a,x; € Lyo, and we have [{¢}] = L, by Theorem 4. Therefore
[{arX1+a2Xa2, coo+eox}]D ¢o = @3Coo and x;+x;+ (p—1)x3 € Lgo and thus
Xy +%:4 (p—1) ¢y € Ly Using Theorems 3 and 4, we get [{, -+x, -+ (p—1)xs,¢0}]
2 [Lev {40}l = L. Finally, if the contained function is ¢, then Lo and Ly can
be obtained in the same way that as for ¢, > 1.

Case 2. ¢z11 = 1, €p41,0 # 0. By Theorem 4 we have [{¢}] = L, and thus &
together with the function of type p constitutes a complete system,

Case3.cpyy # 1.Thereis (by Lemma 1) exactly one oo with & & Ly, \ (L0 LD),
and so, by T)aeogem 4, [{€}] =Ly, holds. As L, is a maximal set, we have a complete
system {¢, d}, d being a function of type «q.

3. The maximal subclasses of
Loy Lyy ooy Lyyy Lygy LY and their bases

The intersection of any two classes is a subelass of both of them but not always

a maximal one. We have seen that L, = L,,; from Lemma 1 we can also deduce
that Ly = Ly if o 5 f.
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TusoraM 7. (1) Lo is maximal in each of the classes Ly, Ly, ...

() Forall g Vy, L is maximal in the class L,.

(3) There is no other maximal class in L, Sor any « € Vy, than LSV and Ly, .

Proof. (1): With o & V fixed, let co+ ¢y X1+ ... + ¢y X, € Ly\Lyo. Letuscompose
the function ¢o--¢'x = Co+¢ X+ ... ¢, x. Since, by our assumption, ¢’ % 1, we
have ¢ = (L—c)e. In the case ¢’ = 0 from the function x, +x,+(p—1)x; € Ly,
we got (p— o)X -+x;, which we know by Theorem 4 to be a basis of the class L.

In the case of ¢ = a(l—c", ¢’ > 1,leta; = (p~1('~1)~2%,a; = p~dy+1
(s 0 with ¢’ % 0; hence a, # 1), As

(@ %1 a3 %) 1(Co+€'%,) = ageo+(a)+azc)x,
= g (p—dy+l4aye)x, = at+ (I+ay(e’ —1))x, = a,
the problem has been reduced to the previous case, i.e. to the case of ¢ = a.

(@) Let & & LNL. If € e Ly \L§Y = Lo \L§, then by Theorem 4 we
have [{¢}} = Lyo and, Lyo being maximal in the class L, by (1), using 2x+p—a
& LN Lo, We get [Lo {(p— o} +2x}] = L. On the other hand, if & ¢ Lso\L5",
we have & & L\ (L v LV) and thus by Theorem 4 [{¢}] = L, as well.

(3): Let P L,, PeZ and P\Ly # @, PNLP # G. We are going to
prove that P = L,. Indeed, on the one hand, if P’ = (P\Ls)n(P\IL) # @,
then by Theorem 4 we have [{8}] = L, for any & & P’; on the otherhand, if P’ = a,
we have [{2}] = Lygo for the function ¢ & Pr(Lio\LE"); thus [{¢, &'}] = L, with
¢ e PA(LEPONLgo). m

THEOREM 8. (1) Lgo and L are maximal classesin Ly.

(2) The class Ly has no other maximal classes than Ly and L.

Proof. (): Let & L,\ZLyo, 85 6(x, ..., %) = co+ex with ¢ =1, ¢ #0,
since, as we have seen [{co+x}] = L, it is enough to prove L§? to be maximal,
because, having been enlarged by the function 2x+(p—1)y € Lo the set {2x+
+(p—1)y}u LY will be complete in the class L, if L is maximal.

Let de LNLY, d = do+dix+ ... +du%,; owing to n>2 and using the
fact that 1—dp+x € L§P, we get (1 —do)+x)0d = 1+dyx;+ ... +dux, which by
Theorem 4 is a basis of the class L.

(2): Let P g Ly, P& stisfy P\Lyg # @, PNIP #3. We shall prove
P = L, in this case. Let 3 & P\ Lyo, d € PNL, i.e. let the functions co+cx and d
satisfy e = 1, ¢ # 0, d == |, n> 2. As [{co+ex)] = L s a maximal class, we
have [P] 2 [L{PU (@] = Ly, ie. P= Ly, w

We are now going to investigate the maimalclasses of LV and LONL® togethe}-,
as in determining the bases in Theorem 3, One can easily check that L(”.\_L@) is
a (non-commutative) group of order p(p—1) with respect to the superposition. Li‘
the numer p~1 have the decomposition to powers of primes p—1=gqiqz ... 1.;"
with all g, =2<gqy <..<g, primes, % >1, p=(p—D/g and L™
= {ag+ax| r(d) (> 1) divides p;}, i= 1,2, .., u.

3 Lp«1~

8 Banach Center t. VII
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THEOREM 9. (A) In the class LONIL the following p-+u classes in & are maxi-
mal:

) LD, i =1,2,..,u,

@ LN{o}, ¢ =0,1,...,p-1.

(B) In the class LV the following p+u+-1 classes in & are maximal:

() LEDOL®, i=1,2, ..., 4,

@) LPUL®, a=0,1,...,p—1,

(3) LONL®,

(C) 1. There are no more maximal classes of LONL® but those given in (A1),
(A2).

IL. There are no more maximal classes of LY but those given in (B1)-(B3).

Proof. (Al): The closedness of L!+" is a consequence of r(ab) = l.c.m. {r(a),
r(b)} and thus, r(ab) being a divisor of p, provided so are r(a) and r(b). So Lt»
is a non-trivial subset of LWONL® because r(a) = p—1 implies ao-+ax ¢ LD,
So, LY is maximal, because, according to the definition of L“P, if gy+ax
€ (LONLON LD, then g¥ divides r(a) and thus, by the use of a function b+ bx
e L4D satisfying r(b) = p; assumption (3a) of Theorem 5 is satisfed for the set
{ao+ax, bo+bx}. Assumption (3b) of the same theorem is fulfilled by the subset
{l+x} = LD,

(A2): Let ap+axe (LONLONNLEY. Since, by definition {ao+axN\LY
is non-void, the set (LN {xPv {ao+ax} = {x, (p—)+2x, ..., 2u+ (p—1)x,
ao+ax} fulfils assumptions (3a) and (3b) of Theorem 5.

(B1): It is a consequence of (A1) as LON(LH DU L®) = (LON LY LI,
In a similar way we obtain (B2) from (A2) and the identity

LON(ZPUL®) = (LONLONZON {a]).

(B3): Let coeL®. As LY < LONLO, [{eo}u L] = L© U LY implies
[{eo }o (ONLO].

(CD: Suppose P LIONL®, Pe® and PNLYD %@, i=1,2,..,u,
PN\LP # @, «a=0,1,...,p~1. Let ayo+axeP\LOH, i=1,2,...,u, and
buotbex € PNLYP, a=0,1,..,p—1, ie by = a(l~b,). So the set A
= {aotarx, ..., auo+a.x,} will fulfil assumption (3a) of Theorem 5 and the set
B = {Boo+boxo, bio+by %y, ..., byoy o+ bp_y X,1} will fulfil (3b) of Theorem 5.
Thus [4U B] = LONILD, and so P = LN LO,

(CID: The way we shall prove this statement is similar to that of (CI). We shall
only use the class P’ with P’ € L™, P'e & satisfying P\L® = P, As a con-
sequence of the identities

PNZEPOLO) = (PNLONLL,
PN\ (L@ J)UL(O)) = (P'\L(O))\L(‘ )

icm°®
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P’ contains the class L\ L‘”; hence by the assumption P™\ (LN L®) # & by
(B3) we have P/ = LD, m

Next we shall determine the bases of the maximal classes described in Theorems
7, 8 and 9.

THEOREM 10. (1) The bases of the class L§" are elements of L{\ {x}.

(2) The set of one-element bases of the class L\ {oc} is {ap+ax| ap = a(l—a),
ri@) = p—1} = 4.

(3) The minimal cardinality bases of the class L have two elements; {a(x), «}
isabasisiffaix)e A.

(4) The minimal cardinality bases of the class L{P U L have three elements;
{a(x), o, B} is a basis iff a(x) € A and f e LON {a}.

Proof. Statement (1) is equivalent to Lemma 4.

2)-(3): As the set L\ {x} = {ao+ax| ap = a(l—a),aeV} has exactly
p—1 elements and [{bo+bx}| = r(b), {ao+ax}isa basis of the class L\ {a}
if r(a) = p—1. This involves (3), also, for in order to generate « we also need an
element of L, and in L « is the only such function. ‘

#): According to Lemma 2, « ¢ [LM 0 L\ {«}] and so « must belong to
the basis considered. As both L{"\ {a} and LN\ {«} are closed with respect to
the superposition, we shall need elements of both, However, one of each will suffice,
for by (2) any of the elements of A generates the class L\ {«}, and [ZM U {}]
= LM {8, 28+ (p—1) e, 3+ (p—2a, ..., (p— 1) f+2a} = L U L® also holds,
since from the equality a, f+ (1—a;)ax = a,f+ (1—a;)x we have (a,—a,)(f—a)
= 0, which in the case of g, # a,canholdonlyifx = . m

Remark. The one-to-one correspondence between the modp multiplicative
group C, and the group L{\ {«} is:

C,5 ¢+ cx+a(l—c) e LN\ (a}.

The next theorem with its proof is similar to Theorem 5; therefore we present
it without proof. In this theorem L*?uU L, Lt and p; are written instead of
L, LONL® and (p~—1) in Theorem 5, respectively.

THEOREM 11. (A) The following statements are equivalent
(1) The set B = {a30+ 31 %1, Gzo+ 03¢ X, ..., Gso+dxy X;} is @ base in L&D,
(2) The set By = B {co} is a base in L0 L©O.
(3) For elements of the set B we have:

(a) Lem. {ry, ..., rs} = pi,

(b) B\L&ll #* Q) a=0, 1, -*-,P"'L

(c) Statements (a) and (b) do not hold both for any proper subset of B.
(B) If Bis a base of LY, then |Bl > 2 and |By| = 3. ™
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4. The description of the rest of the classes of the lattice

After describing further lattice elements we shall present a maximal and a minimal
chain, and also the cardinality of &. The lattice structure is demonstrated by Fig, 2,
The enclosed table contains bases and their orders n of the different types of classes.
An immediate consequence of Theorems 4 and 10 is

TeEOREM 12. (1) The classes Ljo and L§D both have only a unique maximal
class, which is the trivial class {x}.

The lattice of subsets
of {x}u LW
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(2) The set L\ {a} with operation superposition is a cyclic group of orde
p—1 having o as a fixed point. :

(3) The class L\ {a} is maximal in L§P.

(4) The class L&Y is maximal in LP OLO, w

It can be shown by arguments similar to those used earlier, with the notation
LGN = LED LD, that the class {a}u L is maximal in LY, etc. It should be
noticed that the every closed class L' © L™ has the form G U F, where G is a closed
subset of LONL® and F = L js also a closed se. The restrictions of F are deter-
mined by the structure of G. By the theorem of .Lagrange we know that the order
of the subgroup G of the group LM\ L is a divisor of p(p—1). We shallsee that if
q' divides p(p—1), then there is a unique closed class G' in L'ON\ L with order
q' = |G’|. These closed classes are sorted out onto two classes by

LEMMA 5. The subgroup LG is contained in the subgroup G of the group LON\ L
iff the order of G is |G| 2 p.

Proof. The necessity of condition is obvious: |[L{?| = p. Let us suppose |G| > p.
If ¢o+x € G for ¢y # 0, then LY = G by Lemma 4. If G\ {x} = {ap+ax| a > 1},
then, the elements of G\ {x} being written in the form by+bx, for b, = f(1-b)
there are two elements, byo+by %1, bao+ by x; € G\ {x}, such that b, = §,(1—b,),
bao = Ba(1-by), By # B, because of [ILPN {x}| = p—2 < |G\ {x}|. Furthermore
(ao+ax, bo+ax € LN\ {«}) = ao = bo; hence there are o, # «, such that
ao+ax, ayp+axc G, ao = a;(1—a), a0 = x,(1—a). But from the sequence
(a20+ ax)0(aze +ax) = Aoz +a2x, ..., (@0+ax)I(Aoys +a"1x) = Agpt+d'x, we
obtain (ay0+ax)0(do,_z+aP~2x) = Aog+x and [{do+x)] = L because A,
= a0+ adop-z = @ro—lzo = (1 —)(1~a) # 0. =

LeMMA 6. The subgroup G & LONL® of order |G| < p—1 is cyclic, and G is
a subgroup of LY\ {o} for suitable w.

-1
Proof. Clearly, LONL® = Lﬁj"puo (LN {=}), is a union of cyclic groups.
s

By Lemma 5 GNL§> = {x}. Let us suppose that there are o; # ay, such that
aotag x € GNLY,  az+ayxe GRLY, a0 = ay(l—ay) #0 # oy (l—as,)
= a9 (a1; > 1,0, > 1). Leta = a;yayy; then

ryo=r(ay), r2=r(@), r=r@= l.C.m.{rl, Tz}s ry S 1y

Forming the sequences (do+ax)n(ao+ax) = gy +a3x, ..., (ap+ax)D(@ou—1 +
+8"1x) = ag,+0a"x and (dzo+ @21 X)0(@20+ 21 %) = A2ty X, ..., (@20+ 21 X)0)
0oy 1 +a57*%) = Ao, +abyx, we can obtain from them (dor, + @ x)0(dorser, +
+afx) = Ap+x, Ag # 0 because at = afyadl = a3y, Ay #0 by Lemma 2,
and this contradicts Lemma 5. Therefore, we cannot have «; # o, as we supposed. m

The structure of a cyclic group may be obtained from the main theorem on
Abelian groups. Accordingly, the lattice of subgroups of L&\ {«} is isomorphic to
the lattice of divisors of p—1. (Lattice operations: \| = Lem.; /= g.c.d)
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Notice that this statement also holds for the non-Abelian group LN LO, ag
a consequence of Lemmas 5 and 6 and the fatc that every subgroup G in L<1>\IL(°)
of order |G| = pq, can be given in the form G = [¢"ULP] (|G| = ¢ divides p-1)
Now we can state a theorem about the structure of L and LN LO, .
First, let us associate the sequence gopy ... fp-y A ... 4, With the subgroup G,

of order phogls ... gl in the following way:
1 if 2=1,
po={0 i do=Adi= .= A =0,

I—(i—a)"'modp in other cases.

Moreover, let u, = 1if G # @ and 4, = 0 if G = @, Let us associate the sequence
Bohy oo pphy oo AWovy o vp_y = udy with the class GUF < L&Y with its first
p+u+l elements constituting the subsequence corresponding to G and the next

elements being the characteristic sequence of F: voy, ... Yp—1 With ?

{ 1 if ieF,

Y= .

: 0 if ie VQ\F.

These sequences have been constructed in such a way that their usual partial ordering
preserves the ordering of the corresponding sets. (The partial ordering of sequences

iS:p1yy . M < 618, 8 if py < 8y, j=1,2, ..., k). Letus denote b
sum of the elements of the binary sequence », and let ’ o) the

{0, p} if
s(u) = p,
N, = ‘ {lg,lg+1l g =gir ..gb1=0,1, .., P~D/g} i s(u) = 11,,
{0,1,...,p} if  s(u) =0,

(The operations - and + are the usual ones, not modp.)

THEOREM 13, (A) The subgroup lattice of the
! group LN L s 4, i
the lattice of the partially ordered set ? N * nomporkic to

R={pdl me{0,1},0< < n,ieVy,j=1,2,..,4,

s(,u) € {0) 1: p}'} ‘

(B) The subsemigroup lattice of the semigroup L™ is isomorphic to the lattice of

the partially ordered set
Q = {ubs| u2eR,s() Ny, and v, > , if s(u) = 1}.
Proof. Let G, be an a-preserving subgrou
u ] p of order g = - 1) wit
h = (p—1)/g. Let us consider the sequence &= 10l (< p=1) with
Fo = G‘,U{d}, Fl = [Fou{ﬂl}]a '~"Fl = [Ft~lu{/9i}]a e

with wo Fy= [ O {B)] = GuL®

BieLONF,,, i=1,2,..,h.

Clearly, F;_, is maximal in F, for i = 1, vy bty the chains Gy © Fy < F,
. 1

being of (p—1)/g+2 clements according to the fact that the s o o

ame partition of
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(p—1)/g+1 elements on the set ¥, is induced by the disjoint cyclic decomposition
of any base element of G, . In this partition {«} has cardinality 1 and the rest of the
h+1 subsets have cardinality g.

Similarly, if |G| = p, only the two-element chain G < G U L will belong to G.
On the contrary, any chain of the lattice of subsets of ¥, can be related to the trivial
group {x} and to the empty set &; thus chains of type

(x}  {x}u{0} c {x}u{0,} = ... = {x}uL®
have length p+1, in accordance with {x} being c-preserving and = p—1.

Let a binary sequence corresponded to each closed class F = GUK & LD,
its first p+i-+1 elements being sequence iy ... dp-1tp Ay ... A, related to G
and the next p elements being the characteristic sequence of K < LO: gy, =1 if
jeKandy, =0ifi¢ Kfori=0,1,...,p~1,

Thus for each subgroup G & LONL® the corresponding sets K are unions
of the partition elements induced by its cyclic subgroup maximal of order. So each
closed set F and no other one is produced.

{x} can take the form of any binary sequence 9o¥y ... ¥p—1 and ¥, = 1 in each
F, for the a-preserving group of order g, G;. Moreover, in the set F;, (1+ig) elements
are equal to 1 while the rest of the elements equal to 0. (Even in the case of @ no
more sequence than 00 ... 0 is excluded.)

Finally, the sequence », = 1for i=0, 1, ..., p—1 belongs to G WL if |G| > p
and, in general, », = 0 for i = 0,1, ..., p—1 belongs to G < LONLO.

This construction provides us with a one-to-one correspondence between the
sequences in Q and the closed classes in LW, So it only remains to prove the order-
preserving property of this correspondence.

Let G,U K, be maximalin the closed class G,V K. If |G{| = p, then K; = L©®
and G, is maximal in G, by Lemma 5. So ufP = 1 = ¥V for all i and A® < A
by Lagrange’s theorem.

If |Gy| < p—1, then G; = G, implies K, < K, and thus pOID = p 3
and 9@ < »), In the case G, © G, we have u® < p®s(u®) = 1 and A® < PION
and K, < K, implies #® < 1, So u® i@ < u® AWM is true in all cases. m

5. Countability, an example and some closing conclusions

From Theorem 13 we can infer the number of closed classes in LONL® and in
L, Let d(a) be the nuniber of positive divisors of a.

TreorEM 14, (A) The number of subgroups of the group LIONL is

R] = (p+1)d(p—1+1—p.
(B) The number of subsemigroups of the semigroup L™ is
0] = 2d(p—1)—1—(p=22°+2p Y 2.
gh=p~1

Proof. (A): One sequence, ui = 00...0, belongs to the weight s(u) = 0.

One u-sequence and d(p—1) A-sequences belong to the weight s(u) = p. Finally,
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p u-sequences and d(p~1)—1 A-sequences corresponding to any u-sequence belong
to the weight s(u) = 1.
These facts together yield

[R| = 1+1d(p—1)+p(d(p—1)—1) = (p+1d(p—D~p+1.

(B): Let us first suppose that G # &. The closed classes described in (A) will
correspond to the weight s(») = 0. d(p—1) A-sequences will correspond to the
s(u) = p = 5(») pair of weights and 2? —1 sequences will correspond to the con-
figuration s(u) = 0 # s(v).

New let s() = 1, 5() # 0. The number of sequences associated with weights

s(uw) = 1is p, and, with a fixed g, a sequence with weight 1+/g = s(») can be chosen
h

h h h .
iny, ( 1) ways. Likewise we proceed on Z ( 1) v-sequences having the weight
I=0 23]

s@) = lgforl=1,2, .., h. Finally 2? — 1 sequences are related to the case G = @.
These all together yield

h P N )
ol = |Rf+d(p~1)+2(2"””+”gh§1 ("'Zo(f) 1

= (P+2d(p-D-p=1+2 *+p( D' @+ —1)-(2-1))

ghap~1

= @+2d@-D-(@-22-1-p  1+2p y 2
' gh=p-1 ghwap-1
= 2(p-1)-(p-22~142p Y 2" u
Ehmp—1
An immediate consequence of Theorems 6, 7, 8, and 14 is the number of all
the closed classes in L. The result concerning the lengths of chains is Theorem 15.
By directed paths we shall mean the chains of the directed graph corresponding
to the lattice of the linear class L. The maximal length of a chain in this graph
is clearly its height over the radical vertex L. Let the canonical decomposition of
p—1bep—1= g% ... g% (as before).
THEOREM 15. (1) The number of closed classes in the linear class is

PH2=(p-0242d(p~1)+2p » 2~ 20442040,
Bhzpe
(2) The lengths of the minimal and maximal chains in the linear class L are 3

u
and p+2+ Y, x;, respectively,
i1

Proof. The first statement needs no proof. It is easily seen that (L) - (L,) —
= (L4o) ~» ({x}) is a minimal chain and that all the maximal ones contain the
vertex (L™). As we descend from L™, either the sum of exponents 1+ »; belonging
to the canonical decomposition of p(p~1) or the number of constants belonging
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o the closed classes will decrease. This fact gives the following upper bound for
the chain lengths:

u u
4
1+ ([LO]+ (1-!—2 %‘) = p+2+ 2.4""
[E}} I3
This bound can be reached by taking the path
(L) > (LD = ... = (GUL®) > ... = (LPULO) = ({x} U LO) —
= ({x}o(LON{0}) = ... -+({x}).

The structure of the lattice-diagram can be seen in Fig. 2 and the complete diagram
forp = 3in Fig. 3.

Table
Class Base Rank
L {x+1, x+y} 2
La {x+y+(p—0)} 2
Lg {2x+(p—~1y+1} 2
Lo {2x+(p—1)y} 2
L {0, x+1, ax}, r(a) = p—1 1
LONL® {ax, x+1}, r(@) = p—1 {
LgH {a, ax+(a(l—a)}, ra) = p~1 1
L {x+1} 1
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