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Since the approximation is scale dependent, the criterion (Ex, Ex)/(x, x) may
be replaced with (Ex, Ex)/(x, S,x) where S, is a relevant positive definite matrix,
e.g. an error covariance matrix in a multivariate regression situation or a covariance
matrix to which the matrix of interest has to be compared. This modified criterion
is equivalent to z'L'E'ELz/z'z where L'L = S7* and L an upper triangular matrix.
Now the approximation C of Y will be AB’ with 4 = YL'U,A;* as before, and
B = M'U.A, where L'M = I, and M is a lower triangular matrix. Then Y'Y will
be approximated simultaneously by BB’ again.

When a relevant matrix S, is not available one may find, given the covariance
matrix £ = n~1Y'Y, a diagonal scaling matrix X such that an approximation of
KZK—1 induced by the approximation UpA}U; of KZK, namely Uy(A¢—1) Uy,
will be perfect in the diagonal elements. This idea borrowed from factor analysis
is directed towards equalizing by a suitable rescaling, the variance approxi-
mation errors, and so the rescaled specific variances are set equal to one beforehand.
Finding such a K is exactly what happens in maximum likelihood factor analysis,
where K-2 is the required matrix of specific variances.

Now with A2—7J = A% one may choose C = AB’ with 4 = n™*2YKU, ;!
and B = K*‘kal'k, where A contains factor scores in agreement with Bartlett’s
recommendation.

In the case where Y is a contingency table W, it is preferable to rescale N to
R-U2NK-1/2 where R is a diagonal matrix of row totals of N, and K similarly of

v
column totals. In the canonical decomposition p, v, u.y all 4 are at most 1,
=1

while A, equals one, 1,7, u,, representing square roots of expected frequencies
under independence. The statistic nA? may be used for testing independence, its
asymptotic null distribution being known. The rank k approximation of
N—RYy ul, KM, ie. RY?V,A, U K'? may serve the study of dependence.
The present paper has been published recently:
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The basic essential concepts and structures have been formalized rather intensively
for the last ten years. In this paper(*) the geometric approaches, which naturally
arise in the analysis of statistical concepts, are considered.

Let (2, S) be a measurable space of elementary events, let {P,} be a family
ofa probability distribution, a priori possible, over (2, S), and let (¢, B) be 2 measur-
able space of decisions.

Any of Wald’s statistical decision rules [9], both determinated and randomized,
can be written as a transition probability distribution I7(w; de) from £ onto (&, B).
Thus if we use the rule IZ, our decision will be distributed according to the law

M Q)= RIT: Qi) = | Pi@)T(@; -).

The value of the parameter § at which the observations occur is unknown to the
observer; he only knows that the observed P belongs to {Ps}. Therefore, all a priori
conclusions about the quality of the decision rule IT are based on the properties
of the families {PplI}.

It is natural to say that the families {P§P} on (2P, S®), i = 1, 2, parametrized
by the same parameter 0 € @ are equivalent in the theory of statistical inference
if, for any space of decision (&, B) and for any rule II®(w®; ds), i = 1, 2, which
leads to the family of laws P§TI® = Q, there exists a rule IIP(w"; de), j = 2,1,
which Jeads to the same family {Q}:

© PPITD = @, = PPIID, VOe6.

THEOREM 1. The families {P{"} and {P§®} are equivalent in the theory of stat-
istical ‘inference iff there exist decision rules W and MU such that

3) PO = PPIICD, PP = PPIICD, VO 0.

(*) The text following below combines two lectures of the author: “On basic concepts of
mathematical statistics” and “On testing hypotheses”.
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To prove it let us note that the statistical decision rules form a category. Spe-
cifically the composition
S (12)((0 dw/l)n(z:i)(wn A) n(la)(w A)
o
cortesponding to the sequential use of two decision rules will again be a statistical
decision rule. So (2) follows from (3) if we take JI¢ = IHYNITO:

POIMUAIIN = POTID = 0y, V€O,

Conversely, let us assume (¢, B) = (2%, §¥) and as the decision rule J®
take the identical one ITo: w — w, which is assigned by the transition distribution
Io(w; A) = g4(e). The corresponding one for (2) is JI9 = IOV,

Thus we have come to the concept of statistically equivalent families of prob-
ability laws [1].

THEOREM 2. If two families {P§°} and {P§?'} are statistically equivalent and if
some regularity conditions are satisfied, then there exists a common sufficient statistics
for them; to be more exact there exist measurable mappings fi: QP — 0, i=1,2,
such that ,

@ PO ) = PEF( ) = Ro(*)s
and {P{P} ~ {Ry} ~ {P}.

PrOBLEM 1. Under what natural regularity conditions does the theorem hold?

This question is closely bound with the question when there exists a true con~
ditional distribution relative to statistics. So it makes sense to consider the families
of concordant Lebesgue probability measures, i.e. the measures concentrated on
the mutually measurable one-to-one image g(F) of the B*-measurable subset F
of the unit interval. Such families tolerate a short characterization in non-traditional
terms: the commutative algebrd of random variables has just one generator, for
example, g~*(w). Perhaps the regularity conditions should also be found in non-
traditional form.

Let us consider probability laws P on (2, S) as “points” of the collection
Cap(_.Q, S) of all probability measures on (@, S). Then the decision rule IT assigns
by (1) the Markov mapping from Cap(@2, S) to Cap(#, B). Thus the statistical
¢quivalence of two families is interpreted as the geometrical congruence of two
parametrized punctiform sets with respect to the category of Markov mappings.

It is naturally desirable to study invariants of this categorical geometry. In

particular we shall call a numerical fiinction of a pair of points of one object an
invariant when

® {(PAT' = Q,, QII" = P; i = 1,2} = {V’(Ph Py) = (04, Qz)}

' In this paper we shall be interested in those invariants of the pair of points
which have the meaning of distance.

) THEOREM 3. If the norm on the linear space of measures of bounded variation
is such that the function ¢: @(Py, P;) = || Py~ P,|| is an invariant in Markov geometry,

Vo,
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then o(Py, P;) = c|Py— P,| where |u| is the symbol of a total variation and c is a non-
negative constant.

Thus (see [S]) on the collection Cap(2, S) of all probablhty laws on (2, 5)
there exists a unique “reasonable” (i.e. invariant) norm. This is well known but,
however strange, it does not have any specific statistical sense.

Measuring the “distance” between points may be carried out by means of Rie-
mann geometry methods.

THEOREM 4. In Markovian geometry there exists a unique (up to a multiplicative
constant) invariant Riemann metric.

In the simplex of all probability distributions on the finite set 2 =
it is assigned by the invariant quadratic form

> O}

(@1, .

(6) ds? = % (dp)*

i = P(wy), VJj;
7 Pi (w05), Vj

=
and by the Fisher form on smooth probability law families

Z b dgﬁMp dnp(w;6) dlnp(w;H) .

©)
A a0, a6,

This metric is also well known. Through the Fisher tensor the famous information
inequality is written down. But an interesting fact is that the metric can only appear

.in local problems (among them angle measuring). It cannot be met in the global

ones.

Meanwhile measuring the distance between laws along the shortest path in
the Fisher metric would be sufficiently simple. While changing the coordinates
<LV, Ygd=1,

J

pi=zjz’ 0<yz

we map the unit simplex on the positive orthant on the sphere of radius 1 and as the
length we take the double Euclidean length. Thus here the arcs of great circles
are the shortest and the double lengths of these arcs are the distances:

n
ds* =4 dif.
Jj=1

Another approach is possible. The geodesic lines can be introduced not as
the shortest lines but as the lines of null curvature with respect to any linear con-
nection, not necessarily generated by the Riemann metric,

It should be noted that the length scales are assigned to each geodesic ]me
separately and no consistency rule for the scales along different lines is introduced.

In my monograph [5] it is shown that the whole family of linear conneclions,
invariant in Markovian categorical geometry, is possible. Every such commection
is completely defined by the rule of finding the “mean” R = y(P, Q) = v(Q, P)
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of the “geodesic line segment” PQ. The simplest rule is
Ry(wp) =rj=%p+ian Vi pi=P), ¢ =0(w).
Apparently it corresponds to measuring the distance along the variation
|P=Ry| = |0~ Ry| = 5|P- Q).
For the Fisher metric the mean Ry is given by the rule:

@) Vr =@ Or (Ve +vVa), Vi
WP, 0) = > (Vo +Va )

“the length” PQ is given by *

® 5¢(P, Q) = 2arccos; Voede -

But in the most remarkable connection the mean Rj is defined through the
geometric mean

® =@, QI Vog s Vii  HP,Q = Vonde -

%
Such a mean I have proposed to call the geodesic mean. In this connection the geo-
desic lines prove to be one-parameter exponential families. The exponential families
of several parameters are completely geodesic manifolds, i. e. plane analogies and so
forth. ’

ProBLEM 2. Define the geodesic lines of the remaining possible (according to [5])
invariant linear connections. Check whether convenient approaches of measuring
unlikeness of probability distribution arise in them.

Let us consider the exponential families in more detail. Let u(dw) be a certain
measure on (2, S); let g;(w) (Where j = 1, ..., m) be measurable functions (direc-
tion statistics of the family) and let po(w) be a probability density. The family
Py of probability laws, given by family of densities p(w, §) with respect to the
measure 4

(10) P(@;5) = po(w)exp[sg;(w)— P @),
where exp[¥(5)] is a normalizing divisor

(11 W(E) = In { po(w)explsiayw)|u(dw),

2
is called an exponential family in canonical parametrization §.

The probability distributions Py are for all § for which the normalizing divisor

is finite,

‘ Such § form a convex set of an m-dimensional linear space of parameters
with a possibly smaller dimension.

. The canonical parametrization is defined by the family itself up to a non-
singular affine transformation. But there exists another remarkable parametrization
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(a natural one) in exponential families:

12) 1) = {4 Peldo) = Megi@), V.

Q2

It is connected with the corresponding canonical one by the Legendre transforma-
tion

¥ (s
Megi(w) = ¢ = 7;55-)—,
()
ot; V(s
= Melg@)-tllae—1] = -2

which can be got by the differentiation of the identity

1 = { po(@) [expsgs(0)— P@)] u(dw)
2

The density of the appropriate probability distribution can easily be obtained
through the canonical parameters. On the other hand, the natural parameters have
an exact mathematical meaning [3].

THEOREM 5. If the smooth probability distribution family & admits a (jointly)
efficient estimate of a vector parameter then F is an exponential in a natural par-
ametrization, and vice versa.

A natural parametrization differs from a canonical one as a rule. The family
of normal laws with a constant covariance matrix is the only exception.

We have described families which admit a parameter estimate -efficient with
respect to the Fréchet-Darmois—Cramér—Rao information inequality. But there
exists other inequalities of the same type for a somewhat different loss function.

PROBLEM 3. Do there exist families which admit an efficient estimate of a par-
ameter with respect to other information inequalities? What is their characterization?

Now let us discuss what the properties of the distance between probability
distributions which would specify the unlikeness of appropriate random phenomena
should be. First of all, note that the likeness relation of two objects is asymmetric.
One object may have its own additional distinctive features which the other object
lacks. Now we want to tell a false coin with heads on both sides from a real one by
tossing results, The real coin has an additional quality. Therefore, tossing it at
random, we shall sometimes see a tail and correctly conclude that the coin is real.
In tossing a false coin, only heads will show. And no matter how many times we set
the test, we cannot draw a faultless conclusion since the possibility would always
remain of a chance run of heads. Thus the false coin resembles the real one. On the
contrary, the real coin does not resemble the false one too much.

We have taken an extreme case, which is particularly obvious. Now let us apply
to the classical theory of testing two random phenomena. Let two simple hypotheses
Py(dw) and P,(dw) compete.
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If one requires the probability of the second kind error not to exceed a fixed
value b, where 0 < b < 1, then for the optimal decision rule the probability of the
first kind error would decrease according to exp{—N-I(P,: P;)}. Here N is the
number of independent observations of a phenomenon, and I(P; : Po) is the Kulback~
Leibler-Sanov information deviation:

dP;

dp P
09 1ei:po =[G g e @) @ = {[m 2 | Prn.
In general, I(Py: Py) # I(Po: Py).

This non-symmetric invariant of the pair of laws possesses so many remark-
able properties that it can be taken naturally for an asymmetric likeness character-
istic.

Here the most interesting thing perhaps is that the information deviation has
been implicitly used in that capacity for a long time. The maximum likelihood
method is well known. We shall assume that independent observations w‘®, ..., o™

1 . e
have been made, Ry(+) = w > 8, (+) isanempirical distribution and an a priori
i=1

family of hypotheses P, is given by the smooth family of densities p(cw; 6). Then

IR: Py = S []n 7%— (w)] R(do)
n
= I(R: P0)+S [Inp(w; 0)—Inp(w; B)] R(da)

2
) N
= I(R: : - .
(R Po)+§1np(w,0)R(da>) i fél Inp(w®; 6).

Thus the minimum of the information deviation takes place at the likelihood
maximum. Certainly the computation carried out above is only correct for the
discrete space £2 of events.

The information deviation is an asymmetric analogy of the distance square
{not a distance), or, it is better to say, an asymmetrical analogy of half the square
of the distance between probability measures. With small deviations this value
concurs, for example, with half of the Fisher distance square:

Chal

_—ij]n(]-f. ) .
2

' The most remarkable thing is that the following version"of Pythagorean theorem
1s correct for the information deviation: the square of the slant height equals the
square of the projection length plus the square of the perpendicular length. Two
formulations of the theorem are possible (see Problems A. and B, § 22 in [5]). We
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shall need that one in which the rdle of a plane (or a line) will be played by an ex-
ponentlal family.

THEOREM 6. Let {Py} be an exponential family given by (10), let a probability
measure R be absolutely continuous w.r. Pe (R < Py) and let the distribution Py
be such that

(15) §q,-<w)R(dw> =40 = {g@)Psdw), V).
o

Then for all Py

16) I(R: Py) = I(R: P3)+I(P;: Py).

COROLLARY. The measure Py is the I-closest to point R of the family.
From formula (10) and definition (15) of the projection it follows that

dR

HR: Py) = §[ (w)+1n (co)] R(de)

= IR: P)+{ [0~ ) 4,0)~ P&+ POIR (@)

2
= I(R: P;,»)+S [ 1Ps(dw) = I(R: P3)+1(P5: Py).

The asymmetric information Pythagorean geometry was first developed by the
author in [6] (see also [5]). Recently the same considerations but in somewhat
different way have been presented by Csiszar [4].

PROBLEM 4. Is an axiomatic description of the asymmetrical Pythagorean geometry
possible?

From Theorem 6 a curious geometrical corollary follows Let Py and P; be
two mutually absolutely continuous probability measures. The exponential family
{P,} passing through them is specified with the likelihood function

amn Inp(e; 1) = Inpe(w)+ullnp, (@) —Inpe(@)]—Fw).
Then the function ¥(u), which is convex by (13), bas the only maximum at a certain
value of u = v, 0 < v < 1, and also

av
(1) du |,

=0 = S [Inp(w)—1npo(@)]P,(dw).
Q

From (17) and (18) it can be found that for u = v

(19 I(P,: P) = KP,: Po) = — ¥ (w) = J(Po, Po)-
The point P, divides the family {P,} into two parts:
I(P,: Po) > I(P,: P) for u<w,
I(P.: Po) < I(By: P)  for u>wv.
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From this and Theorem 6, the point P, defines the bound between the domains
of “attraction” of the points P, and P,. The measure R is “closer” to P, or to P,
depending on whether its projection on {P,} lies to the left or to the right of P,,
ie. whether the appropriate natural coordinate is negative or positive:

§ lInp, (@)~ Inpo(@)] R(do).
2

Hence, according to (16),

(20) J(Py, P,) = min maxJ(R: Py).

ReP k=0,1
This formula permits us to give a geometric interpretation to Chernoff’s result
[2] about the minimax testing of two simple hypotheses.

THEOREM 7. Under the optimal minimax testing of two simple hypotheses the
probabilities of the first and second kind errors, equal fo each other, decrease as
exp{~N+ J(Po, Py)} where N is the number of independent observations and J(P,, P,)
is the minimum size of the domains of “attraction” according to (20).

The maximum likelihood criterion will be the simplest asymptotically optimal
test. It can easily be seen that the null hypothesis has more likelihood iff

{ np. (@) —In Po(@)] Ra(do) < 0,
0 N

N
ie. iff the empirical distribution Ry(:) = —}\7 ZI doth (+) belongs (generally speak-
=

ing in a generalized sense) to the domain of “attraction™ of the distribution P,.

As follows from [7] analogous formulations appear in testing three or more
simple hypotheses. Depending on the statement of the problem, the maximum
rate of decreasing the logarithm of an error probability is defined by the set of
sizes of the Dirichlet domains of testing laws and by their deviations from each
other.

PROBLEM 5. Extend Theorem 7T to the testing of two composite hypotheses, as-
suming that a null fomily and an alternative one are compact and smooth, and the
minimum size of the domain of attraction is defined by

J = min max min I(R: P,).
R<P k=0,1 PecH

Let us now consider the possible advantages of a geometrical approach applied
to the classical problems of a parameter estimation. Let us assume that a certain
smooth family {Py, 8@} of a priori possible laws on (2, S) is known. From N
independent observations we must estimate the value 0 for the law P of the observed
phenomenon.

Connected with Cramér, Rao, Darmois, Fréchet and other names, there exists
an information inequality which sets the lower bound of the estimate accuracy.
However, for the statistician the problem statement mentioned above may not
be fully adequate for his aims. Indeed, we mostly need to estimate the law P, itself

icm
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and not its “name” 6. But a smooth family can be smoothly reparametrized; for
example, from parametrizing the family of normal laws by a dispersion one can
pass to parametrizing by a mean-root-square error. From a formal point of view
this can be explained by observing that it is contrayariant but not invariant. Never-
theless let us derive an invariant corollary which will be an absolute limitation
of the estimate accuracy.

First of all we shall measure the deviation of the “true” law P, from the estimate
Q in an invariant way. So we take

L(Py, Q) = 21(Q: Py)

as an appropriate loss function. We shall further let the estimate Q take a value

in the whole totality Cap(R2, S) of distributions on ({2, S) but not only in the family

{Py}. Note that for some problems this extension can be justified and even useful.
We shall make it evident by using an example from the theory of shooting. Suppose
we must hit a pin-point target placed in some line in a plane (for example, a machine-
gun placed behind an embankment). If the embankment has the form of an arc,
it is more advantageous to aim at point shifted a little along the arc radius; in this
case the probability of hitting the target by a shell splinter increases.

Thus we have come to the risk function

@D Ru(Py) = g S 21(Q : PYI(w®, ..., 0™; d[Q(- )] Po(do™) ... Py(dw™).
¥ Cap(a,5)
Let dV be an invariant volume generated by the invariant Riemann-Fisher
metric (6'). Now define an average risk along the open domain
1

o\ Ra(Pdv(®).

@22) 7 )

MRy =
THEOREM 8. Let II(N) be a decision rule constructed from N independent observa-
tions to estimate an unknown law of distribution from the smooth family {Py,0 € 0}.
Then

(23) lim N« inf MRy = dim O.
N)

Noveo I

This beautiful theorem is a corollary of the classical information inequality,
i.e. it preserves only a part of the meaning of the inequality. Easily remepnbered
(since it is formulated in invariant terms), the asymptotic equality (23) has its c?wu
value. It shows that superefficient estimates [8] differ little from the usual efficient
ones and that super-efficiency is a property which diminishes while the number
of observations increases. : ‘

The fact that in (23) it is possible to put the sign of asymptotic equality mstc.:ad
of that of asymptotic inequality, which follows directly from t%le i‘nformatlon
inequality, shows that the Cramér-Rao—Darmois-Fréchet inequality is the only
essential restriction on the accuracy of estimating the smooth families of mutually
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absolutely continuous probability distributions. All the remaining inequalities
of the same type either are weaker or coincide with that asymptotically; the
Cramér-Rao-Darmois-Fréchet inequality can only be made more precise by
higher order corrections.

PROBLEM 6. Find the bound for the remainder term in (23) in terms of the maximum
of invariant curvature of the family {P,}.

Note that under the chosen loss function 2I(Q: P;) for exponential families
the problem of estimating the law P, reduces (due to Theorem 6) to the problem
of estimating its parameter, i.e. the estimates of Q € {Py}-type form a complete
class.

PROBLEM 7. In what natural terms family smoothness should be described in The-
orem 8?

It is completely obscure how to replace the usual sufficient conditions of smooth-
ness in terms of majorant existence in the third derivatives since the analysis then
requires to be developed in non-linear, non-topological space.

PROBLEM 8. How does the formulation of Theorem 8 change when the smooth
Jamily {Py} has points of self-intersection?

Acknowledgement. The author considers it his pleasant duty to thank Professor
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HSU’S THEOREM IN VARIANCE COMPONENT MODELS*

HILMAR DRYGAS**

J. W. Goethe-Universitit, Fachbereich Mathematik
6 Frankfurt am Main, Robert-Mayer-Strasse 6-10,» FRG

0. Introduction

This paper deals with linear models of the kind y = X0+ Ue, where ¢ is a random
k

vector composed of independent random variables, Therefore Cove = »,o? V;,

i=1
where V, = diag(0, ..., [;, ..., 0) and Z; is the unit matrix of appropriate order
(or any diagonal matrix). Much work has been done to investigate the problem
of existence of uniformly best (invariant) quadratic unbiassed estimators if ¢ is
normally or quasi-normally distributed. It is the purpose of this paper to extend
these results to the non-normal case. This extension is done in the case of best in-
variant quadratic unbiassed estimators. A complicated matrix-relation turns out to
ensure optimality. But in analogy to Hsu’s theorem ist can be shown that this rela-
tion can be replaced by requiring it only for the diagonal elements. The obtained
results still appear very complicated but it turns out that due to the diagonality
of the V, the verification of the obtained conditions is rather straightforward. This
is illustrated at two examples: the balanced one-way and the balanced two-way
clagsification model.

1. Notation, Hsu’s theorem

Let X be an nx s-matrix, let # be an sx l-vector and U an nx r-matrix. Consider
the linear model

1.1) y = X0+ Us,

where y = (¥, o, Pn)s & = (€1, ..., &)’ are random vectors. It is assumed that the
components of ¢ behave up to their moments of order 4 as independent random

* Paper presented at the conference on “Mathematical Statistics” Wisla, Poland, 13.-18.12.
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** OE 3 der GhK, Gesamthochschule Kassel, Department of Mathematics, Heinrich-Plett.
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