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Search linear models, introduced in Srivastava [1] (1975), are now well known.
R _ Consider the model '

! o E(y) = A1E1+ 428, V(§) = 0%y,

where y(N'x 1) is a vector of observations, A;(V x»,), and A,(Nx»,), are known
matrices, §,(» x 1), and E,(y, x 1) are vectors of unknown parameters, and o2 is
a known or unknown constant. On &,, we have the following partial information.
It is known that at most % elements of E, are non-negligible. The problem is to
search the non-negligible elements of £, and draw inferences on them as well as
on the elements of §;. For work on the design or inference aspects of this problem,
see the references at the end. In this paper, we consider a variation of the above
problem. We assume that interest lies in estimating the fixed set of parameters
E: alone. In other words, although some elements of €, are non-negligible, we do
not need to search or estimate them. This problem is very important since in many
applications a solution to this problem may be considered adequate. We prove
fundamental results concerning this new problem under a model which is more
general than (1).

1. Introduqtion

Search linear models of the type (1) are well known. They were introduced in Sriva-
stava [1], where the noiseless case (i.e. when o2 = 0) was specially developed. Of
course, in all statistical problems, some noise is present (i.e. ¢2 > 0). However,
it is clear that if we cannot do the search correctly, or estimate the parameters
*precisely’ (i.e. with variance zero) in the noiseless case, there is no hope of doing
s0 when noise is present. Indeed, as is elaborated in the papers of the author on the

* This research was supported by the National Science Foundation Grant No. MCS76-23282.
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subject, a sample of which is listed at the end for illustration, the design aspect
is connected largely with the noiseless case. Broadly speaking, a situation is said
to correspond to a search design if the structure of the observations (and hence
of the matrices 4; and 4,) is such that, in the noiseless case, all the parameters
of interest can be estimated precisely. Thus, a search design corresponds to the
case where, essentially, the parameters of interest are estimable (i.e. possess unbiased
estimates).

In Srivastava [1], the following fundamental theorem on search designs was
proved. (We assume k is known.)

THEOREM 1. A necessary and sufficient condition that under (1), in the noise-
less case, the non-negligible parameters in €, can be searched correctly, and these
and the elements of §; can be estimated precisely is that we have
) Rank (4;* Ayo) = v, +2k,

Sor every (N x2k) submatrix A,y of A,.

Thus, (2) gives a necessary and sufficient condition that the model (1) cor-
responds to a search design. In Srivastava [I], the subject of search designs was
further developed in the direction of application of the model (1) to factorial ex-
periments. Problems concerning the development of search designs from a given
design (which is not a search design) by the possible addition of future observa-
tions, and certain sequential or rather multi-stage design concepts, were considered
in Srivastava [2] (1976). Factorial designs where (1) is applicable with E, correspond-
ing to the general mean, main effects, and two-factor interactions, and €, to the
remaining factorial effects, and where k = 1, were developed in Srivastava and
Ghosh [3] (1977). It has been pointed out in these and other papers that the real
life situations where linear models are often used, are usually such that the search
linear model actually holds there, and should be employed. This also indicates
that the usual theory of optimal designs is really not bias-free, since it is based
on ordinary linear models, which correspond to the search linear model with the
assumption that k = 0. It may be argued that usually k will not be known ; however,
it is intuitively clear that using search designs with k > 0, and thus taking into
account at least some non-negligible parameters out of &,, should be better than
assuming k = 0. Some new concepts relating to a theory of ‘bias-free’ optimal
designs were introduced and developed in Srivastava [4] (1977).

The inference aspect of search models (for o > 0) is studied in Srivastava
[1], and Srivastava and Mallenby [5] (1977). In this paper, we consider the situ-

ation where, under (1), interest lies only in E, . This is studied under a more general
model. )

2. Search linear model with nuisance parameters

Consider the model
(€) R E(y) = A8+ 4,E,+ 4,3 E,, V(y) = oy,
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where y, A;, 42, &1, E,, and o? are as in (1), 45(N xv,) is a known matrix, and
E3(v3x 1) is a vector of unknown parameters. We now assume that interest lies
in the estimation of (or, other inference problems concetning) only the »; parameters
€. Under the above assumptions, the model (3) will be called a search linear model
with nuisance parameters of type I. There is a variation of the above model, namely
type II. In a type II model, the elements of §; and the non-negligible elements of
&, are of interest. Other seeming variations of the above model are essentially special
cases of these two models. It is clear that these nuisance parameter models also
are of wide applicability. Block-treatment designs are, for example, a large area
of application. We now establish some basic results. We assume % known.

THEOREM 2. Consider a type I model of the form (3), and assume o* = 0. A
necessary and sufficient condition that the model corresponds to a search design (i.e. €,
is estimable precisely) is that both conditions (a) and (b) below are satisfied.

" (a) Rank (4,) = »,, )
@ (b) Rank (4, 4,07 43) = Rank(4,)+Rank (4,0 43)
Jor every (N x2k) submatrix A,y of 4,.

Progf. (i) Necessity. Condition (4a) is clearly necessary, for otherwise even under
an ordinary linear model (where v, = »; = 0), the parameters &, will not be estim-
able. Now, suppose (4b) does not hold. Then there exist vectors 0, (v, x 1), 0,(2k x 1),
and 05(vs x 1), and a submatrix A,,(N x 2k) of 4, such that 8, # 0, and (8, 05) # 0,
and
%) A0, +A4550,+4:0; =0,

where the various zero-vectors (denoted by 0) are of appropriate sizes. Let A,o
= (ay, -+, Oay), and let the columns e;(Nx 1), (j =1, ..., 2k), of 4,, correspond
respectively to the elements &y, ..., &s,1,, Of ;. Let 05 = (6%, ..., 0%). Then,
if 0F(r,.x1), 8%5(y3x 1) are any real vectors, it follows from (5) that
6) 4,07+ 405+ (0D e+ ... +(—0) e,
= A, (0, +07)+ A3 (05 +05) + 07, s oty 1+ ... 030z

This shows that the situation where we have §; = 0%, E; = 0% and the elements
of §, are all negligible except possibly for £, ,, ..., £, 5, Which have values 63, ..., 6%
respectively, is not distinguishable from the one where £, = 0,+0%, £; = 65+0%
and the (possibly) non-zero element of &, are &,, 4., ... &2, 1, With values 62, 4, ...
--+» 03¢, Tespectively, in the sense that both will give rise to the same value of y
(or of E(y), when o > 0). Now, in one of these situations, we have ¥, = 0%, and
in the other §, = 8, +6%. Since 0, # 0, these two values of £, are different. Hence,
if (4b) does not hold, the true value of E; cannot be determined. Thus, conditions
(4a, b) are necessary. .

(i1) Sufficiency. We claim that if (4) holds under the model (3), then y has
a unique representation in terms of the columns of A, 43, and a set of at most
k& columns of 4,. For if there are two such representations, then it is clear that
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a condition like (6) will hold, contradicting (4). On the other hand, the unique
representation of y in terms of the above columns will clearly give the value of s
whose elements will just be the coefficient of the colummns of 4, in this representa-
tion. This completes the proof.

THEOREM 3. Consider a type Il model of the form (3), with ¢* = 0. 4 necessary
and sufficient condition that the model corresponds to a search design (i.e. the non-
negligible elements of ¥, can be searched correctly, and these and the elements of &,
can be estimated precisely) are that both conditions (a) and (b) below be satisfied:
o (a) Rank (4, Az) = »,+2k,

(b) Rank(d;: 4y0° A3) = Rank(4, : Ay0)+ Rank (43)
Jor every (Nx2k) submatrix Ay, of 4.

Proof. The proof of this result follows on lines similar to that of the last one,

and will be omitted for brevity.

3. Search and estimation techniques

We now present some simple techniques for dealing with search and/or estima-
tion problems arising under model (3). First, we introduce some notation. For
any matrix M, the matrix M* will denote @ conditional inverse of M ; note that M*
is not necessarily unique, and has merely to satisfy MM*M = M. Also, G(M)
will denote the matrix [I,— M(M'M)*M'], where M is of size (pxq), and I, is the
(p x p) identity matrix. Note that, given M, the matrix G(M) is uniquely determined,
and is symmetric and idempotgnt. The following result can easily be established.

THEOREM 4. Let P(mx p) and Q(mx q) be two matrices over the real field with
m 2 p, q. Then the following three conditions are equivalent:

(82) Rank(Q) =g, and Rank(P: Q) = Rank(P)+ Rank(Q),
(8b)  Rank{[G(P)]Q} = ¢,
(8c)  The matrix Q'[G(P)]Q is non-singular.

THEOREM 5. Consider a type I model of the form (3) with ¢ = 0. Suppose (4)
are satisfied. Let

® ¥ = [G(di 43)ly.

() Then there exists a (N'x ky) submatrix Ay; of Ay, and a (k, x 1) ve
, , ector ,
with ky < k, such that w4 D

10$) ) Y1 = [G(4y} 43)] 4240
(i) The matrix (A;[G (4, ! A3 A1) is symmetric and of full rank.
(iii) The equation
an = (41[G(4,, i A3)] A1) (A1 [G(4yy (Aa))y,
holds, so that E1 can be computed using it.
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Proof. 1t is well known that for any matrix M, we have [G(M)]M = 0. Since
¢? = 0, we have E(y) =y. Now, we know that y has the form as at (3), where
g, is unique, &5 is not necessarily unique, and where for some &; (say E; = E3),
there exists a value of §, (say E%) such that at least (N—k) elements of E¥ are zero.
Let the nonzero elements of £ be k, in number (where k, < k), and let these be
denoted by 0,,0,, ..., 0,; let the &, columns of A, corresponding to these be
denoted by a¥, ..., af ; finally, let ¢* = (@y, ..., @&,), and A%, = [oF, ..., of ]
Then

(12 y = A4, E + A ES+ 45 ¢,
so that
(13) ¥ = [G(41: 43)ly = [G(4y: 4)] 43, %,

which satisfies (10) with 4,; = 4%,, and u = ¢*, and k, = k,. This proves (i).

Part (ii) of the theorem follows from part (i), condition (4), and Theorem
4, part (c). To prove (iii), observe that in view of (12), the right-hand side of (9)
equals

(14) {41[G(dz1: A 4,3 {ALG (A2} A} {4181+ AES + 43,1 0%} = 4+,

say, where
(15a) § = LA{[G(A4z:: As)]AL o*,
(15b) L = {4][G(da1 i 4:)1 4137

Notice that in (14) and (15) we are stressing the fact that &; and &, are not necessatily
unique, so that the 4,; and u occurring in (10) may be distinct from 43, and ¢*.
However, in view of part (i), we must have the relationship

(16) [G(d1: Aa)lAzu = [G(A,: 4)]143, 9%,
since G(4;: 43), and hence y'3, are unique. But, (16) and (4) together imply that

(4,,u— 4%, &%) must belong to the column space of 45 . Thus, there exists w(v3 x 1)
such that

an A5 0% = Ajjut-Asw.

From (152) and (17), we find that § = 0. This completes the proof of the theorem.

In view of the above, the following procedure for determining §; may be used
in the noiseless case. Obtain y'3 and, by some procedure (including trial and error),
obtain 4,; and u (which may not be unique). Finally, obtain E, from (11). The same
procedure can be used in the noisy case (0 > 0), except that to determine A,
and u, some kind of least squares may be used ; notice that in this case the right-hand
side of (11) will not be unique, as expected.

THEOREM 6. Consider a type X1 model of the form (3), with ¢* = 0. Suppose (5)
is satisfied. Let

(18) y® = [G(4a)]y.

\
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Then the following ordinary search linear model of the form (1) holds:
19 y* = {[G(43)]} &+ {[G(43)] 42} E..

Furthermore, (19) can be used to determine §; and ¥, as under ordinary search linear
models.

Proof. Equation (19) is obvious in view of (18) and (3). To show that y* at
.(19) has the structure of a search design, we have to show that conditions correspond-
ing to (2) in Theorem 1 hold; thus we need to show that

(20)  Rank{[G(4:)] 4, [G () 4z0} = Rank{[G(4s)] A, }+Rank {[G (43)] 50},

for all (N x 2k) submatrices 4,, contained in 4,. From (7b), (8b), and (7a), taking
Q = d;, and P = [A;: Ay0], we find that the Lh.s. of (20) equals », + 2k. Similarly,
the two terms on the r.h.s. of (20) are respectively v, and 2k. This completes the proof
of the theorem. ‘

We close the paper by recalling, for the sake of completeness, one procedure
for search and estimation under the ordinary search linear model (1) when con-
ditions (2) hold. We first compute [G(4)]y = y*, say. Clearly,

D E(y") = {[G(4)]14,}E,,

where in view of (2) and (8b), we have Rank [G(4,)]4,o = 2k, for all (Nx 2k)
submatrices 4,o of 4,. Then, we project ¥y’ on the sets of k columns of [G(4)]4,,
until (in the noiseless case) we obtain a set of k columns of A, which gives a perfect
fit. In the noisy case, ordinary least squares projection may be used. Notice that

the technique mentioned in this paragraph is essentially equivalent to method I in
Srivastava [1].
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DEVIATIONS FROM TOTAL INFORMATION AND FROM TOTAL
IGNORANCE AS MEASURES OF INFORMATION ‘

ERIK N. TORGERSEN
University of Oslo, Institute of Mathematics, Oslo, Norway

1. Introduction, notations and basic facts

Many interesting possibilities of quantifying the content of information in a stat-
istical experiment have been proposed and studied in the literature. Among the
most prominent are Fisher information and Kullback~Leibler information numbers.
Several of the principles for comparing designs of experiments are based on ideas
of measuring information. Most of the quantifications are designed for particular
problems. It is, therefore, not surprising that comparison by different measures
may lead to conflicting results. There is, of course, no hope to remedy this and no
single real valued quantity is likely to qualify as “the information number”. Any
measure is bound to be useful within limited scopes only. The particular measures
which I shall shortly describe are not exceptions — on the contrary they might
even appear quite artificial. I find them more interesting because of their construc-
tion than because of their usefulness in concrete applications.

Before proceeding let me at once remark that limitations of time as well as
on space, force me to present most of our results without proofs. Anyone interested
will find proofs and other information on the subject in [14].

Our point of departure shall be the view of statistical decision theory, i.e. that
the performance of a decision procedure is to be judged on the basis of the risk
it inicures. In order to give precise definitions, let us agree that a statistical experiment
& with parameter set @ is a family (Py; 0 € &) of probability measures on a common
measurable space, say (y, /). We may then write:

E=(y,4;P;0€0) = (Py;0€0).

Itis often convenient to identify experiments with the random variables defining
them. Thus, if our observation X is y-valued and o/-measurable and the distribution
of X under 8 is Py, then & may be considered as the experiment obtained by observ-
ing X.

If 8= (Ps,;0€0), i=1,...,n, are experiments, then their product is the

. n n
experiment ([] Py, ;;0 € ©) and we shall use notations as &; % ... X&, ot ‘]_[1 &1
=1 -
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