
ALGEBRAIC ANALYSIS AND RELATED TOPICS
BANACH CENTER PUBLICATIONS, VOLUME 53

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2000

HILBERT TRANSFORM AND SINGULAR INTEGRALS
ON THE SPACES OF

TEMPERED ULTRADISTRIBUTIONS

ANDRZEJ KAMIŃSKI
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Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

E-mail: pilipovic@unsim.ns.ac.yu

Abstract. The Hilbert transform on the spaces S ′∗(Rd) of tempered ultradistributions is
defined, uniquely in the sense of hyperfunctions, as the composition of the classical Hilbert
transform with the operators of multiplying and dividing a function by a certain elliptic ultra-
polynomial. We show that the Hilbert transform of tempered ultradistributions defined in this
way preserves important properties of the classical Hilbert transform. We also give definitions
and prove properties of singular integral operators with odd and even kernels on the spaces
S ′∗(Rd), whose special cases are the Hilbert transform and Riesz operators.

1. Introduction. The Hilbert transform on distribution and ultradistribution spaces
has been studied by many mathematicians, see e.g. Tillmann [17], Beltrami and Wohlers
[1], Vladimirov [18], Singh and Pandey [15], Ishikawa [2], Ziemian [20] and Pilipović [11].
In all these papers the Hilbert transform is defined by one of the two methods: by the
method of adjoints or by considering a generalized function on the kernel which belongs
to the corresponding test function space.
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Ziemian [20] defined the right and left Hilbert transform of a tempered distribution
T ∈ S ′(R) as an element of S ′(R), using the kernel

G(z) =
∫ ∞

0

χ(x)x−z−1 dx, z ∈ C \ {0},

where χ ∈ C∞0 (R) and χ = 1 in a neighbourhood of zero.
Koizumi in [4] and [5] considered the generalized Hilbert transform H defined by

Hf(x) := lim
ε→0+

x+ i

π

∫
|t|>ε

f(x− t)
t(x− t+ i)

dt

for f ∈ W 2(R), where W 2(R) denotes the space of all functions f such that f̃ ∈ L2(R)
with the corresponding function f̃ given by

f̃(x) :=
f(x)

1 + |x|
, x ∈ R.

A generalization of the same type was given by Ishikawa [2] who extended the defini-
tion of the Hilbert transform to the space of tempered distributions.

We follow this way and generalize Ishikawa’s Hilbert transform to the spaces of tem-
pered ultradistributions first in the one-dimensional and then in the d-dimensional case.
Our generalization is defined as the composition of the classical Hilbert transform with
the operators ϕ 7→ Pϕ and ϕ 7→ (1/P )ϕ, where P is an elliptic ultrapolynomial.

The first section is devoted to the generalized Hilbert transform defined on the spaces
S ′(Mp)(R) and S ′{Mp}(R). Structural properties of the basic spaces imply that the Hilbert
transform of a tempered ultradistribution is defined uniquely in the sense of hyperfunc-
tions.

In the second section we define the Hilbert transform on the spaces S ′∗(Rd). The
simple structure of the kernel enables us to define this transform as the iterations of the
one-dimensional Hilbert transform.

In the third section we consider the general singular integrals with odd and even ker-
nels of tempered ultradistributions. For the L2-theory of singular integrals we refer to [16].
We use the classical results of Pandey [9] and follow his ideas in our definition of singular
integral operators on the spaces of tempered ultradistributions with values in certain
spaces of ultradistributions which contain S ′(Mp)(Rd) and S ′{Mp}(Rd), respectively.

This paper is a continuation of the paper [3] and we will not recall the notation,
referring the reader to [3] also for the basic definitions and the main results. As in [3],
we will assume throughout the paper that a given sequence (Mp) of positive numbers,
defining the spaces of ultradifferentiable functions and their duals, satisfies only conditions
(M.1) and (M.3′) from the list of the standard conditions (see [6], [7] and [3]); if we will
need additional conditions, it will be marked every time in the text.

2. Hilbert transform, one-dimensional case. In this section, all functions and
ultradistributions are considered on the real line.

We represent the space S(Mp) (resp. S{Mp}) as the projective limit of the spaces D(Mp)
a ,

where a > 0 (resp. D{Mp}
(ap) , where (ap) is a sequence of positive numbers increasing to ∞)

in order to define the Hilbert transform on S ′∗.
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We follow here Ishikawa’s way of notation (see [2]) using the symbols D(Mp)
a with

a > 0 (resp. D{Mp}
(ap) with (ap) being a sequence of positive numbers increasing to ∞)

instead of the symbol S with respective indices to avoid too many spaces denoted by
the symbol S in the paper. Consequently, it should be remembered that elements of the
space D(Mp)

a , (resp. D{Mp}
(ap) ) do not have compact supports, in general .

In contrast to the case of tempered distributions, the space S(Mp) (resp. S{Mp}) is
not dense in the space D(Mp)

a (resp. D{Mp}
(ap) ), in general. We overcome this difficulty due

to the parts 4 and 5 of Theorem 1.4.
Let us give now the definitions and a structural characterization of basic spaces which

will be used in further investigations of the Hilbert transform.
By R we denote the family of all sequences of positive numbers increasing to∞. For a

given b > 0 (resp. (bp) ∈ R), we denote by Pb (resp. by P(bp)) an arbitrary entire function
such that there exist positive constants C and L such that the following inequalities are
satisfied

|Pb(ζ)| ≤ C exp[M(L|ζ|)]
(
resp. |P(bp)(ζ)| ≤ C exp[N(bp)(L|ζ|)]

)
(1)

for all ζ ∈ C and

exp[M(b|ζ|)] ≤ Pb(ζ)
(
resp. exp[N(bp)(|ζ|)] ≤ P(bp)(ζ)

)
(2)

for all ζ ∈ C such that |Re ζ| ≥ |Im ζ|.
We recall that M means here the so-called associated function for the sequence (Mp)

and N(bp) is the associated function for the corresponding sequence (Np), given by Np :=
Mp

∏p
j=1 bj for p ∈ N, i.e.

M(t) := sup
p∈N0

log+(tp/Mp), N(bp)(t) := sup
p∈N0

log+(tp/Np)

for t > 0, where log+ t := max (log t, 0). Since we assume that the sequence (Mp) satisfies
conditions (M.1) and (M.3′) (clearly, (Np) also fulfills these conditions), it is easy to
see that the associated function M (and so N(bp)) is a nondecreasing function on [0,∞),
equal to 0 in a right neighbourhood of 0.

In case conditions (M.1), (M.2) and (M.3) are satisfied, an example of such an entire
function is given by

Pb(ζ) :=
∞∏
p=1

(
1 +

ζ2

b2m2
p

) (
resp. P(bp)(ζ) :=

∞∏
p=1

(
1 +

ζ2

bp
2m2

p

))
for ζ ∈ C, where mp := Mp/Mp−1 for p ∈ N. It follows from (1) (see Proposition 4.5 in
[6]) that Pb(D) (resp. P(bp)(D)) is an ultradifferential operator of the class (Mp) (resp.
{Mp}). It is easy to see that

|Pb(ζ)| ≤ Pb(|ζ|) (resp. |P(bp)(ζ)| ≤ P(bp)(|ζ|))(3)

and the functions Pb and P(bp) are non-decreasing on the positive halfline of the real axis.
In the sequel, we shall need some estimates of the derivatives of both Pb (resp. P(bp))

and 1/Pb (resp. 1/P(bp)). We will formulate and prove these estimates in the lemma below
for the functions P(bp) and 1/P(bp), but the corresponding inequalities hold for Pb and
1/Pb can be proved in a similar way.
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Lemma 2.1. If P(bp) fulfills (1) and (2), then
(a) for every r > 0 there is a positive constant C (depending on r) such that

|
(
P(bp)(ζ)

)(γ) | ≤ C γ!
rγ
P(bp/2)(|ζ|), ζ ∈ C, γ ∈ N0,(4)

in particular,

|
(
P(bp)(ξ)

)(γ) | ≤ C γ!
rγ
|P(bp/2)(ξ)|, ξ ∈ R, γ ∈ N0,(5)

(b) there exist an r > 0 and a C > 0 such that∣∣∣∣∣
(

1
P(bp)(ξ)

)(γ)
∣∣∣∣∣ ≤ C γ!

rγ
exp[−N(2bp)(|ξ|)], ξ ∈ R, γ ∈ N0.(6)

The corresponding inequalities hold for Pb.

Proof. (a) Fix r > 0. Applying Cauchy’s formula and (3), we get∣∣∣(P(bp)(ζ)
)(γ)

∣∣∣ =

∣∣∣∣∣ γ!
2πi

∫
|z−ζ|=r

P(bp)(z)dz
(z − ζ)γ+1

∣∣∣∣∣
≤ γ!
rγ
P(bp)(|ζ|+ r) ≤ Cr

γ!
rγ
P(bp/2)(|ζ|)

for ζ ∈ C, where Cr := P(bp/2)(r), i.e. (4) holds true. To obtain (5) it is enough to notice
that

0 ≤ P(bp/2)(|ξ|) = P(bp/2)(ξ)

for every ξ ∈ R.
(b) Since P(bp)(0) 6= 0, there exist positive r and C1 such that |P(bp)(ζ)| ≥ C1 for

|ζ| ≤ (1 +
√

2)r. By the Cauchy formula,∣∣∣∣∣
(

1
P(bp)(ξ)

)(γ)
∣∣∣∣∣ ≤ γ!

2π

∫
|ζ−ξ|=r

dζ

|P(bp)(ζ)| · |ζ − ξ|γ+1

≤ γ!
C1rγ

≤ C2
γ!
rγ

exp[−N(2bp)(|ξ|)](7)

for ξ ∈ R such that |ξ| ≤
√

2r, where C2 := C−1
1 exp[N(2bp)(

√
2r)]. Now let ξ ∈ R,

|ξ| >
√

2r and let Kξ be the circle with the radius |ξ|/
√

2 and the center at ξ. Evidently,
every point ζ of Kξ satisfies the inequality |Re ζ| ≥ |Im ζ|. Applying the Cauchy formula
for the circle Kξ and the estimate (2), we obtain∣∣∣∣∣

(
1

P(bp)(ξ)

)(γ)
∣∣∣∣∣ ≤ γ!

2π

∫
Kξ

dζ

|P(bp)(ζ)| · |ζ − ξ|γ+1

≤ γ!2γ/2|ξ|−γ sup
Θ∈[0,2π]

exp[−N(bp)(|ξ + |ξ|eΘi|/
√

2)]

≤ γ!r−γ exp[−N(bp)(|ξ|/2)] ≤ γ!r−γ exp[−N(2bp)(|ξ|)]

for every γ ∈ N0 and ξ ∈ R, |ξ| >
√

2r. This and (7) imply (6) and the proof is finished.
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For the sake of convenience, we will use in the sequel the following notation for given
(ap), (bp) ∈ R :

Aα :=
α∏
p=1

ap, Bβ :=
β∏
p=1

bp (α, β ∈ N), A0 := B0 := 1.(8)

Definition 2.1. Let a, b > 0 and let (ap), (bp) ∈ R. The spaces D(Mp),b
a , D(Mp)

a,b ,

D{Mp},(bp)

(ap) , and D{Mp}
(ap),(bp) are defined to be the sets of all smooth functions ϕ on R such

that

pa,b(ϕ) := sup
α∈N0

aα

Mα
‖(Pbϕ)(α)‖∞ <∞,

qa,b(ϕ) := sup
α∈N0

aα

Mα
‖Pbϕ(α)‖∞ <∞,

p(ap),(bp)(ϕ) := sup
α∈N0

‖(P(bp)ϕ)(α)‖∞
MαAα

<∞,

q(ap),(bp)(ϕ) := sup
α∈N0

‖P(bp)ϕ
(α)‖∞

MαAα
<∞,

respectively, where Aα, Bα are defined in (8), equipped with the topologies induced by
the norms pa,b, qa,b, p(ap),(bp) and q(ap),(bp), respectively. Further, we define

D(Mp)
a := proj limb>0D(Mp),b

a , D{Mp}
(ap) := proj lim(bp)∈RD

{Mp},(bp)

(ap) ,

D(Mp),b := proj lima>0D(Mp),b
a , D{Mp},(bp) := proj lim(ap)∈RD

{Mp},(bp)

(ap) .

Theorem 2.2. If condition (M.2′) is satisfied, then

S(Mp) = proj lima>0D(Mp)
a = proj limb>0D(Mp),b

and

S{Mp} = proj lim(ap)∈RD
{Mp}
(ap) = proj lim(bp)∈RD(Mp),(bp).

Proof. We shall prove the assertion only in the case ∗ = {Mp}, which is more
complicated than the other one, but the ideas of the proof in both cases are similar.

First recall that every sequence (Mp) satisfying conditions (M.1) and (M.3′) tends
very quickly to infinity. More precisely, it follows from these conditions that pMp−1/Mp →
0 as p→∞ (see [6], (4.6)) and this implies that

app!
Mp
→ 0 as p→∞(9)

for an arbitrary a > 0.
Define

γ(ap),(bp)(ϕ) := sup
α,β∈N0

sup
x∈R

〈t〉β |ϕ(α)(t)|
MαAαMβBβ

,
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where 〈t〉 := (1 + t2)1/2 for t ∈ R. Since 〈t〉β ≤ 2β/2(1 + |t|β) for t ∈ R, we get from (9)
and the definition of the functions N(bp) the following estimate:

γ(ap),(bp)(ϕ) ≤ sup
α,β∈N0

2β/2‖ϕ(α)‖∞
MαAαMβBβ

+ sup
α,β∈N0

sup
t∈R

2β/2|t|β |ϕ(α)(t)|
MαAαMβBβ

≤ C

(
sup
α∈N0

‖ϕ(α)‖∞
MαAα

+ sup
α∈N0

‖ exp[N(bp/
√

2)]ϕ
(α)‖∞

MαAα

)

≤ C sup
α∈N0

‖P(bp/
√

2)ϕ
(α)‖∞

MαAα
= Cq(ap),(bp/

√
2)(ϕ)

for each ϕ ∈ C∞, where the constants Aα, Bα are defined in (8). On the other hand,
inequality (1) yields

q(ap),(bp)(ϕ) ≤ C sup
α∈N0

sup
t∈R

exp[N(bp)(L|t|)]|ϕ(α)(t)|
MαAα

≤ C sup
α∈N0

sup
β∈N0

sup
t∈R

|〈t〉βϕ(α)(t)|
MαAαMβ(Bβ/Lβ)

≤ Cγ(ap),(bp/L)(ϕ)

for every ϕ ∈ C∞. The two estimates just proved show that the families {q(ap),(bp) :
(ap), (bp) ∈ R} and {γ(ap),(bp) : (ap), (bp) ∈ R} of seminorms are equivalent.

Let us prove now the equivalence of the families {p(ap),(bp) : (ap), (bp) ∈ R} and
{q(ap),(bp) : (ap), (bp) ∈ R}. First notice that for an arbitrary (ap) ∈ R we have ApAq ≤
Ap+q and, because of condition (M.1), MpMq ≤Mp+q for p, q ∈ N. Therefore, applying
(5) for a fixed r > 0 and (9), we have

p(ap),(bp)(ϕ) = sup
α∈N0

‖
(
P(bp)ϕ

)(α) ‖∞
MαAα

≤ sup
α∈N0

1
MαAα

∑
γ≤α

(
α

γ

)
‖P (γ)

(bp)ϕ
(α−γ)‖∞

≤ C sup
α∈N0

∑
γ≤α

(
α

γ

)
γ!

Mα−γAα−γMγAγrγ
‖P(bp/2)ϕ

(α−γ)‖∞

≤ C sup
α∈N0

1
2α

sup
γ≤α

γ!
MγA′γ

‖P(bp/2)ϕ
(α−γ)‖∞

Mα−γA′α−γ

∑
γ≤α

(
α

γ

)
≤ Cq(ap/2),(bp/2)(ϕ),

where Aα, Bα are defined in (8) and

A′γ :=
γ∏
p=1

ap/2, γ ∈ N; A′0 := 1.(10)

Let (ap) and (bp) be given sequences in R and choose (b′p) ∈ R such that b′p ≤ bp/(2L)
for p ∈ N, where L is the constant from (1). This implies that

Ñ(t) := exp[N(bp)(L|t|)−N(2b′p)(|t|)] ≤ 1, t ∈ R.(11)
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Inequalities (1), (6), (11) and the properties of the sequences (Mp) and (Ap) mentioned
above imply that there exist constants C > 0 and r > 0 such that, for every ϕ ∈ C∞, we
have

q(ap),(bp)(ϕ) = sup
α∈N0

1
MαAα

‖P(bp)ϕ
(α)‖∞

= sup
α∈N0

1
MαAα

∥∥∥∥P(bp)

∑
γ≤α

(
α

γ

)
(1/P(b′p))(α−γ)(P(b′p)ϕ)(γ)

∥∥∥∥
∞

≤ C sup
α∈N0

∑
γ≤α

(
α

γ

)
(α− γ)!

rα−γMαAα
‖(P(b′p)ϕ)(γ)‖∞

≤ C sup
α∈N0

1
2α
∑
γ≤α

(
α

γ

)
(α− γ)!

Mα−γA′α−γ

1
MγA′γ

‖(P(b′p)ϕ)(γ)‖∞

≤ C sup
β∈N0

1
MβA′β

‖(P(b′p)ϕ)(β)‖∞ = Cp(ap/2),(b′p)(ϕ),

where Aγ and A′γ are defined in (8) and (10).

Remark 2.1. From the preceding proof it follows that for every a > 0 (resp.
(ap) ∈ R) there exists a b > 0 (resp. (bp) ∈ R) with a < b (resp. (ap) � (bp), i.e. ap ≤ bp
for sufficiently large p ∈ N) such that D(Mp)

b ⊆ D(Mp)
a (resp. D{Mp}

(bp) ⊆ D{Mp}
(ap) ) and the

inclusion mapping is continuous.

Definition 2.2. For given a > 0 and (ap) ∈ R, we define the Hilbert transforms Ha
and H(ap) on D(Mp)

a and D{Mp}
(ap) , respectively, in the following way:

(Haϕ)(x) :=
1

πPa(x)
pv
∫ ∞
−∞

Pa(x− t)ϕ(x− t)
t

dt, ϕ ∈ D(Mp)
a , x ∈ R

and

(H(ap)ϕ)(x) :=
1

πP(ap)(x)
pv
∫ ∞
−∞

P(ap)(x− t)ϕ(x− t)
t

dt, ϕ ∈ D{Mp}
(ap) , x ∈ R.

Theorem 2.3. For given a > 0 and (ap) ∈ R, the Hilbert transforms Ha : D(Mp)
a →

D(Mp)
a and H(ap) : D{Mp}

(ap) → D
{Mp}
(ap) are linear continuous surjections such that

HaHaϕ = −ϕ, ϕ ∈ D(Mp)
a ;

H(ap)H(ap)ϕ = −ϕ, ϕ ∈ D{Mp}
(ap) .

Proof. We give the proof only in the case ∗ = {Mp}; the proof in the case ∗ = (Mp)
is analogous. The linearity and the continuity of H(ap) follow immediately from the fact

that H(ap) is a composition of the three linear and continuous mappings T(ap) : D{Mp}
(ap) →

D{Mp}
L2 , H : D{Mp}

L2 → D{Mp}
L2 and T−1

(ap) : D{Mp}
L2 → D{Mp}

(ap) , defined by the formulas:

T(ap)(ϕ)(x) := P(ap)(x)ϕ(x), ϕ ∈ D{Mp}
(ap) ;(12)

(Hϕ)(x) :=
1
π

pv
∫ ∞
−∞

ϕ(t) dt
t− x

, ϕ ∈ D{Mp}
L2 ;(13)



146 A. KAMIŃSKI ET AL.

T−1
(ap)(ϕ) := ϕ(x)/P(ap)(x), ϕ ∈ D{Mp}

L2(14)

for x ∈ R. Note that the Hilbert transform is considered in [11] only on D(Mp)

L2 , i.e. in the
Beurling case, but it can be examined in a similar way in the Roumieu case.

From the definition of H(ap) and the properties of the classical Hilbert transform on

D{Mp}
L2 , it follows that

H(ap)(H(ap)ϕ) = T−1
(ap)(HT(ap)(T−1

(ap)(H(T(ap)ϕ))))

= T−1
(ap)(H(H(T(ap)ϕ))) = T−1

(ap)(−T(ap)ϕ) = −ϕ

for every (ap) ∈ R and ϕ ∈ D{Mp}
(ap) . This completes the proof.

Definition 2.3. The generalized Hilbert transforms Ha and H(ap) are defined for

f ∈ D′(Mp)
a and f ∈ D′{Mp}

(ap) by

〈Haf, ϕ〉 := −〈f,Haϕ〉, ϕ ∈ D(Mp)
a ,

and

〈H(ap)f, ϕ〉 := −〈f,H(ap)ϕ〉, ϕ ∈ D{Mp}
(ap) ,

respectively.

In the theorem below, we list several properties of the Hilbert transforms Ha and
H(ap) defined above. In particular, we shall prove that

〈F(H∗f), ϕ〉 =
{
−i〈Ff, ϕ〉, if supp ϕ ⊂ (0,∞),
i〈Ff, ϕ〉, if supp ϕ ⊂ (−∞, 0)

(15)

for every ϕ ∈ D(Mp) if f ∈ D′(Mp) and for every ϕ ∈ D{Mp} if f ∈ D′{Mp}, where the
symbol H∗ means H(Mp) and H{Mp} in the respective cases.

Theorem 2.4. The defined above Hilbert transforms Ha : D′(Mp)
a → D′(Mp)

a and
H(ap) : D′{Mp}

(ap) → D
′{Mp}
(ap) have the following properties:

1. Ha and H(ap) are linear continuous surjections;

2. Ha(Haf) = −f for f ∈ D′(Mp)
a and H(ap)(H(ap)f) = −f for f ∈ D′{Mp}

(ap) ;

3. If f ∈ D′(Mp)
a , then formula (15) holds for all ϕ ∈ D(Mp) and if f ∈ D′{Mp}

(ap) , then

formula (15) holds for all ϕ ∈ D{Mp};

4. Under conditions (M.2) and (M.3), if f ∈ D′(Mp)
a (resp. f ∈ D′{Mp}

(ap) ) with 0 < a < b

(resp. (ap) � (bp)) such that f |D(Mp)
b

∈ D′(Mp)
b (resp. f |D{Mp}(bp)

∈ D′{Mp}
(bp) ) (see Remark

2.1). Then Haf −Hbf |D(Mp)
b

(resp. H(ap)f −H(bp)f |D{Mp}(bp)

) is an ultrapolynomial of the

class (Mp) (resp. {Mp});

5. If f, g ∈ D′(Mp)
a (resp. f, g ∈ D′{Mp}

(ap) ) and f |D(Mp) = g|D(Mp) (resp. f |D{Mp} =
g|D{Mp}), then Haf − Hag (resp. H(ap)f − H(ap)g) is an ultrapolynomial of the class
(Mp) (resp. {Mp}).
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Proof. We shall prove the assertion only in the case ∗ = {Mp}. Parts 1 and 2
follow immediately from the previous theorem. Let us prove part 3. Let ϕ ∈ D{Mp} and
supp ϕ ⊂ (0,∞). From the properties of the classical Fourier and Hilbert transforms of
functions in L2, we have

〈F(H(ap)f), ϕ〉 = 〈H(ap)f,Fϕ〉 = 〈f, T−1
(ap)HT(ap)Fϕ〉

= 〈f, T−1
(ap)HF(P(ap)(D)ϕ)〉 = 〈f, T−1

(ap)F(−iP(ap)(D)ϕ)〉

= −i〈f, T−1
(ap)T(ap)Fϕ〉 = −i〈f,Fϕ〉 = −i〈Ff, ϕ〉.

In a similar way we can prove part 3 in the case ϕ ∈ D{Mp} and supp ϕ ⊂ (−∞, 0).
Let us prove now part 4. For each ϕ ∈ D(Mp) with supp ϕ ⊂ (0,∞), we have

〈F(H(ap)f −H(bp)f), ϕ〉 = 〈F(H(ap)f), ϕ〉 − 〈F(H(bp)f), ϕ〉
= −i〈Ff, ϕ〉 − (−i)〈Ff, ϕ〉 = 0.

Analogously, we have

〈F(H(ap)f −H(bp)f), ϕ〉 = 0

for ϕ ∈ D{Mp} with supp ϕ ⊂ (−∞, 0). Therefore supp F(H(ap)f − H(bp)f) ⊆ {0}.
Theorem 3.1 in [7] implies the existence of an ultradifferential operator P (D) such that

F(H(ap)f −H(bp)f) = P (D) δ.(16)

Applying the inverse Fourier transform on (16), we obtain

(H(ap)f −H(bp)f)(x) = P (x), x ∈ R,

i.e. property 4 holds.
Assertion 5 follows from the fact that

supp F(H(ap)f −H(ap)g) ⊆ {0},

which can be proved analogously as part 4.

Definition 2.4. Using the fact that for every f ∈ S ′(Mp) (resp. f ∈ S ′{Mp}) there is
an a > 0 (resp. (ap) ∈ R) such that f has a linear and continuous extension F on D(Mp)

a

(resp. D{Mp}
(ap) ), we define the Hilbert transform H(Ma)f (resp. H{Ma}f) of f ∈ S ′(Mp)

(resp. f ∈ S ′{Mp}) by

H(Mp)f := HaF (resp. H{Mp}f := H(ap)F ).

The above theorem shows that the Hilbert transform of an element of the space S ′∗
is defined uniquely up to an ultrapolynomial of class ∗.

3. Hilbert transform, multi-dimensional case. We now extend the definition of
the Hilbert transform given in the preceding section to the d-dimensional case. We shall
show that all the results of section 2, i.e. Lemma 2.1, Theorem 2.2, Theorem 2.3 and
Theorem 2.4 remain true in the d-dimensional case.

If a = (a1, . . . , ad) ∈ Rd and α = (α1, . . . , αd) ∈ Nd
0, we denote

aα := (a1)α1 · . . . · (ad)αd ; Mα := Mα1+...+αd .
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By Rd we denote the family of all sequences (ap) of elements of Rd of the form

ap = (a1
p, . . . , a

d
p), (ajp) ∈ R (j = 1, . . . , d).(17)

For a given sequence (ap) ∈ Rd of the form (17) and α = (α1, . . . , αd) ∈ Nd
0, we shall

use the following extension of the notation (8): Aα := Aα1 · . . . ·Aαd , where A0 := 1 and

Aαj :=
αj∏
p=1

ajp whenever αj ∈ N

for j = 1, . . . , d.
Let a = (a1, . . . , ad) ∈ Rd

+, i.e. aj > 0 for j = 1, . . . , d, and let (ap) ∈ Rd with
elements of the form (17). Then we define

Pa(ζ) := Pa1(ζ1) · . . . · Pad(ζd); P(ap)(ζ) := P(a1
p)(ζ1) · . . . · P(adp)(ζ

d)

for ζ = (ζ1, . . . , ζd) ∈ Cd.

Remark 3.1. The d-dimensional version of Lemma 2.1 is true and the estimates (4)
and (6) in the multi-dimensional case follow easily from the one-dimensional case.

Now the definitions of the seminorms pa,b and qa,b for a = (a1, . . . , ad) ∈ Rd
+ and

b = (b1, . . . , bd) ∈ Rd
+, and the definitions of the seminorms p(ap),(bp) and q(ap),(bp) for

(ap) ∈ Rd and (bp) ∈ Rd are the obvious modifications of ones given in Definition 2.1
(all the least upper bounds should be taken over α ∈ Nd

0). The definitions of all spaces
given in Definition 2.1 are modified accordingly.

Remark 3.2. With the above conventions, the d-dimensional analogue of Theorem
2.2 is true and its proof goes in the same way as in the one-dimensional case.

Definition 3.1. For given a ∈ Rd
+ and (ap) ∈ Rd, we define the Hilbert transforms

Ha and H(ap) on the spaces D(Mp)
a and D{Mp}

ap , respectively, by the formulas:

(Haϕ)(x) :=
1

πdPa(x)
pv
∫ ∞
−∞

. . .

∫ ∞
−∞

Pa(x− t)ϕ(x− t)∏d
j=1 t

j
dt1 . . . dtd

for ϕ ∈ D(Mp)
a and

(H(ap)ϕ)(x) :=
1

πdP(ap)(x)
pv
∫ ∞
−∞

. . .

∫ ∞
−∞

P(ap)(x− t)ϕ(x− t)∏d
j=1 t

j
dt1 . . . dtd

for ϕ ∈ D{Mp}
(ap) , where x = (x1, . . . , xd), t = (t1, . . . , td) ∈ Rd.

Remark 3.3. The above defined Hilbert transforms Ha and H(ap) have the same
properties as those mentioned in Theorem 2.3 and their proof are analogous. In particular,
H(ap) is the composition of the mappings given by formulas (12), (14) and the following
extension of formula (13):

(Hϕ)(x) =
1
πd

pv
∫ ∞
−∞

. . .

∫ ∞
−∞

ϕ(t1, . . . , td) dt1 . . . dtd∏d
j=1(tj − xj)

for x = (x1, . . . , xd) ∈ Rd. Though in [11] only the one-dimensional Hilbert transform is
considered on D{Mp}

L2 , one can easily extend it to the d-dimensional case and prove that
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this is an isomorphism of the space D{Mp}
L2 (Rd), because there is a constant C > 0 such

that
‖H(ϕ(α))‖L2 ≤ C‖ϕ(α)‖L2 , α ∈ Nd, ϕ ∈ D{Mp}

L2 .

Definition 3.2. For given a ∈ Rd
+ and (ap) ∈ Rd, we define the d-dimensional Hilbert

transforms Ha and H(ap) on the dual spaces D′(Mp)
a and D′{Mp}

(ap) by

〈Haf, ϕ〉 := −〈f,Haϕ〉, ϕ ∈ D(Mp)
a

for f ∈ D′(Mp)
a and

〈H(ap)f, ϕ〉 := −〈f,H(ap)ϕ〉, ϕ ∈ D{Mp}
(ap)

for f ∈ D′{Mp}
(ap) .

Remark 3.4. Theorem 2.4 remains true in the d-dimensional case and the proof of
parts 1 - 3 and 5 can be easily transferred to this case. We shall give below the proof of
part 4 for the Hilbert transform Haf of an arbitrary f ∈ D′(Mp)

a .
For given a = (a1, . . . , ad) ∈ Rd and b = (b1, . . . , bd) ∈ Rd, we have

Haf −Hbf :=
d∑
j=1

(Hajf −Haj−1f),

where a0 := b and aj := (a1, . . . , aj , bj+1, . . . , bd) for j = 1, . . . , d. Moreover

Hajf = Hãj (Hajf),(18)

where ãj := (a1, . . . , aj−1, bj+1, . . . , bd) ∈ Rd−1 for j = 1, . . . , d. By part 4 of Theorem
2.4, it follows from (18) that Hajf −Haj−1f is equal to

Hãj (1x1 ⊗ . . .⊗ 1xj−1 ⊗ P (xj)⊗ 1xj+1 . . .⊗ 1xd),(19)

where P (xj) is an ultrapolynomial in xj . Since we have

‖(H 1
Pb

)(α)‖L2 ≤ C‖( 1
Pb

)(α)‖L2

for some constant C > 0, Lemma 2.1 implies that (19) is an entire function.

4. Singular integral operators. Let Ω be an arbitrary function on Rd, homoge-
neous of degree zero, such that Ω ∈ C∞(Rd \ {0}). Clearly, this function is integrable
and square integrable on Σd−1 = {x : |x| = 1}. Put

K(t) :=
Ω(t′)
|t|d

, t ∈ Rd, t 6= 0, t′ = t/|t|.(20)

If the mapping t′ 7→ Ω(t′) is an odd function on Σd−1, we say that K is an odd kernel.
If
∫

Σd−1 Ω(t′) dt′ = 0, we say that K is an even kernel. Clearly, an odd kernel is also an
even kernel (see [16], Ch. IV and VI).

Let the symbol pvK denote the principal value of K (clearly, it is a tempered distri-
bution). Let

K̃ := F(pvK),(21)
where F is understood as the Fourier transform of a tempered distribution.
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The convolution ϕ ∗ (pvK), where ϕ ∈ Lp (1 < p < ∞), yields the singular integral
operator K with the kernel K. More precisely, the singular integral operator K on Lp

with the kernel K is defined by

(Kϕ)(x) := lim
ε→0
δ→∞

∫
δ≥|t|≥ε>0

ϕ(x− t)K(t) dt, ϕ ∈ Lp.(22)

If the dimension of the space is d = 1 and Ω(t) = sgn t/π then the singular integral
operator K defined by (22) is the Hilbert transform.

The operator K defined on Lp (1 < p < ∞) by (22), where K is an even kernel, is
called an integral operator with even kernel.

We denote by S∗(
◦
Rd) the set of all elements of S∗(Rd) whose supports are contained

in Rd \ {0} with the topology induced by the space S∗(Rd) and let

S∗F (
◦
Rd) := F(S∗(

◦
Rd)),

where F denotes the classical Fourier transform of a function.

Theorem 4.1. Let K be of the form (20) with the corresponding K̃ and Kϕ, given by
(21) and (22), respectively.

Then
1. K̃ is homogeneous of order zero on Rd and K̃ ∈ C∞(Rd \ {0});
2. We have Kϕ ∈ S∗(Rd) for every ϕ ∈ S∗F (

◦
Rd) and K̃ψ ∈ S∗(

◦
Rd) for every ψ ∈

S∗(
◦
Rd); moreover, the mappings

S∗F (
◦
Rd) 3 ψ 7→ Kψ ∈ S∗(Rd); S∗(

◦
Rd) 3 ψ 7→ K̃ψ ∈ S∗(

◦
Rd)

are continuous;

3. The space S∗F (
◦
Rd) is dense in S∗(Rd).

Proof. 1. For this assertion we refer to Corollary 9.5 in [10], p. 108.

2. If ϕ ∈ S∗F (
◦
Rd), then we have

Kϕ = (pvK) ∗ ϕ = F−1(F(pvK) · F(ϕ)) = F−1(K̃ · F(ϕ)),

so Kϕ ∈ S∗(Rd). Now, if ψ ∈ S∗(
◦
Rd), then ϕ := F−1(ψ) ∈ S∗F (

◦
Rd), so Kϕ ∈ S∗(Rd), as

we have just shown. Hence

F(Kϕ) = F((pvK) ∗ ϕ) = K̃ · ψ ∈ S∗(
◦
Rd).

The above and the continuity of the Fourier transform and its inverse imply the
assertion.

3. Let ψ be an arbitrary function in E∗ such that

ψ(x) =
{

1, if |x| ≥ 1;
0, if |x| ≤ 1/2

and let ψk(x) := ψ(kx) for x ∈ R.

Fix θ ∈ S∗(Rd) and put κ := F−1(θ). Then κψk ∈ S∗(
◦
Rd) for k ∈ N and κψk → κ

as k → ∞ in S∗(
◦
Rd). This implies that F(κψk) ∈ S∗F (

◦
Rd) for k ∈ N and F(κψk) → θ

as k →∞ in S∗(Rd), which completes the proof of Theorem 4.1.
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We define now the singular integral with an even kernel of a given tempered ultradis-

tribution f ∈ S ′∗ as an element of (S∗F (
◦
Rd))′ by

〈Kf, θ〉 := 〈f,Kθ〉, θ ∈ S∗F (
◦
Rd).(23)

It is easy to prove the following theorem:

Theorem 4.2. Suppose that K is an even kernel of the form (20) with the men-

tioned properties. Then the mapping K : S ′∗(Rd)→ (S∗F (
◦
Rd))′ defined by (23) is linear,

continuous and injective.

Now consider the operator K on D∗L2(Rd).

Theorem 4.3. If K is an even kernel, then the mapping

D∗L2 3 ϕ 7→ Kϕ ∈ D∗L2

is continuous.

Proof. By [16], Ch. VI (Theorem 3.1), the mapping

L2 3 ϕ 7→ Kϕ ∈ L2

is well defined and there exists a constant C > 0, depending on the dimension d, but not
on ϕ, such that

‖Kϕ‖L2 ≤ C‖ϕ‖L2 .

If ϕ ∈ D∗L2 , then for each α ∈ Nd
0 we have

(Kϕ)(α) = ((pvK) ∗ ϕ)(α) = (pvK) ∗ ϕ(α) = K(ϕ(α)),

in the sense of distributions. Since the functions ((pvK) ∗ ϕ)(α) and (pvK) ∗ ϕ(α) are
smooth, they are equal in the space L2. Therefore there exists a constant C > 0, which
does not depend neither on α or on ϕ, such that

‖(Kϕ)(α)‖L2 ≤ C‖ϕ(α)‖L2 .

This implies that

‖Kϕ‖D∗
L2
≤ C‖ϕ‖D∗

L2
.

Using relations (12) -(14) in the d-dimensional version (see Remark 3.3) and Theorem
4.2, we define, for a = (a1, . . . , ad) ∈ Rd

+ and (ap) ∈ Rd with ap = (ap1, . . . , ap
d) for

p ∈ N (where (ajp) ∈ R for j = 1, . . . , d), the transforms Ka and K(ap) which act from
the spaces S ′(Mp)(Rd) and S ′{Mp}(Rd) into themselves, respectively, by the formulas:

〈Kaf, ϕ〉 = 〈f,Kaϕ〉, Kaϕ = P−1
a KPaϕ

for f ∈ S ′(Mp)(Rd) and ϕ ∈ S(Mp)(Rd), and

〈K(ap)f, ϕ〉 = 〈f,K(ap)ϕ〉, K(ap)ϕ = P−1
(ap)KP(ap)ϕ

for f ∈ S ′{Mp}(Rd) and ϕ ∈ S{Mp}(Rd).
Theorem 4.3 implies the following property.

Corollary 4.4. The transform Ka (the transform K(ap)) is a continuous linear
mapping of the space S(Mp)(Rd) (resp. the space S{Mp}(Rd)) onto itself.
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Let us remark that, in general, we do not have unicity type result (up to ultrapoly-
nomials) as in the case of Hilbert transform for different a, b ∈ Rd

+ and (ap), (bp) ∈ Rd,
respectively.

Remark 4.1. If d = 1 and Ω(t) = sgn t/t, then formula (23) defines the Hilbert
transform on S ′∗. Notice that for every a > 0 and (ap) ∈ R, we have

Haf |
S(Mp)
F (

◦
Rd)

= Kf, H(ap)f |
S{Mp}F (

◦
Rd)

= Kf

for f ∈ S ′∗(Rd), where K is defined via K(t) := 1/πt.

Remark 4.2. An important class of singular integral operators with odd kernels is
the one consisting of the Riesz transforms. In d dimensions these are d singular integral
operators R1, R2, . . . , Rd defined by the kernels

Kj(x) :=
Γ((d+ 1)/2)
π(d+1)/2

xj
|x|d+1

for j = 1, 2, . . . , d, where x = (x1, . . . , xd) ∈ Rd.
It is well known that

∑d
j=1R

2
j = −I on L2(Rd). We can apply Corollary 4.3 to

Ka,j = T−1
a RjTa, K(ap),j = T−1

(ap)RjT(ap)

with a ∈ Rd
+ and (ap) ∈ Rd, respectively, for j = 1, 2, . . . , d. Put

K2
a,j := Ka,j ◦Ka,j , K2

(ap),j := K(ap),j ◦K(ap),j

for j = 1, 2, . . . , d. If f ∈ S ′(Mp) and ϕ ∈ S(Mp) with suppϕ ⊂ Rd \ {0}, then
d∑
j=1

〈FK2
a,jf, ϕ〉 =

d∑
j=1

〈f, T−1
a Rj

2Taϕ̂〉 = −〈f, ϕ̂〉 = 〈f̂ , ϕ〉.

Thus if a, b ∈ Rd
+ and a 6= b, then

d∑
j=1

(K2
a,j −K2

b,j)f = P,

where P is an ultrapolynomial of the class (Mp). Analogously if (ap), (bp) ∈ Rd and
(ap) 6= (bp), then

d∑
j=1

(K2
(ap),j −K2

(bp),j)f = P,

where P is an ultrapolynomial of the class {Mp}.

Remark 4.3. Let

Ω(x/|x|) :=
m∑
k=1

Yk(x/|x|),

where Yk are spherical harmonics of degree k, the kernel K(x) := Ω(x′)/|x| is an example
of a singular integral with an even kernel.

Other examples can be deduced on the base of Theorem 4.7 in [19], Ch. IV.
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