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1. Introduction. In this paper we present a survey on the investigation of the con-
volution structure of the Hermite transform

H[f ](n) =
∫ ∞
−∞

f(x)H̃n(x)e−x
2
dx,(1)

where H̃n are the standardized Hermite polynomials, defined by

H̃2n(x) = H2n(x)/H2n(0), H̃2n+1(x) = H2n+1(x)/DH2n+1(0), n ∈ N0,(2)

D is the operator of differentiation and

Hn(x) = (−1)nex
2
Dn(e−x

2
), n ∈ N0,(3)

are the (ordinary) Hermite polynomials (N0 is the set of nonnegative integers). They are
connected with the standardized Laguerre polynomials of order α, namely

Rαn(x) = Lαn(x)/Lαn(0), n ∈ N0, α > −1(4)

(Lαn are the Laguerre polynomials of order α) by means of{
H̃2n(x) = R

−1/2
n (x2)

H̃2n+1(x) = xR
1/2
n (x2), n ∈ N0.

(5)

A basis for the construction of a convolution of the Hermite transform are product
formulas for Hermite polynomials and they are based because of (5) on product formulas
for Laguerre polynomials derived first by Watson [13].

In form of the standardized Laguerre polynomials Rαn the result of Watson can be
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written as follows:

Rαn(x)Rαn(y) =
2αΓ(α+ 1)√

2π

∫ π

0

Rαn(x+ y + 2
√
xy cosϑ)e−

√
xy cosϑ ·

·
Jα−1/2(

√
xy sinϑ)

(
√
xy sinϑ)α−1/2

sin2α ϑ dϑ, α > −1/2.
(6)

Since it was established only for α > −1/2 one can derive product formulas only for
Hermite polynomials of odd degree (see (5)). It was used in 1968 by Debnath [3] to define
a convolution for the Hermite transform of odd functions. For a long time there was no
progress.

First attempts were given in 1983, see [5], where a product formula for Hermite
functions

Hz(t) = 2zG(−z/2, 1/2; t2), t ∈ R+, z ∈ C
was proved. Here R+ denotes the set of positive real numbers, C the set of complex
numbers. G is the confluent hypergeometric function of the second kind. It is identical
with the Hermite polynomials if z = n ∈ N0. The product formula could be proved only
for Re(z) < 0 and so the specialization to this case was not possible. In 1984 (see [6]) the
problem was solved for all classical orthogonal polynomials, but only in suitable chosen
spaces of distributions.

A first solution of the problem was given by Dimovski and Kalla in 1988, see [4] in a
somewhat artifical construction (see section 2).

The solution of the problem in final form was given by Markett [11]. At first he estab-
lished a convolution theorem for a generalized Hermite transform, with the generalized
Hermite polynomials H(µ)

n in the kernel, using their connection with the Laguerre poly-
nomials and formula (6), see sections 3 to 6. Then by means of the extension of the
product formula (6) to the critical case α = −1/2 in [10] he succeeded to obtain also a
convolution for the (ordinary) Hermite transform (1), see section 7.

2. A first solution. In [3] Debnath defined a convolution for the Hermite transform
(1), but only for odd functions. Let f, g be odd functions. Then Debnath defined the
convolution for the transform (1) (after some corrections given in [4] and after some
changes because of the use of standardized Hermite polynomials H̃n) as

(f
o∗ g)(t) = t

∫ ∞
−∞

(∫ π

0

f([x2 + t2 + 2xt cosϑ]1/2)
(x2 + t2 + 2xt cosϑ)1/2

e−xt cosϑ ·

· J0(xt sinϑ) sinϑ dϑ
)
g(x)xe−x

2
dx,

(7)

where Jν is the Bessel function of first kind and order ν.
Now let f, g be even functions. Then Dimovski and Kalla introduced in [4] the integral

operator l by

(lf)(x) =
∫ x

0

f(t)dt

and defined the convolution for the Hermite transform (1) by

f
e∗ g = D(lf

o∗ lg).
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In general case it is used that every function f defined on R can be written as a sum
of an odd function f0 and an even function fe. Then the convolution is defined by means
of

f ∗ g = f0
o∗ g0 + fe

e∗ ge,(8)

in easily understandable notation. Then in [4] it is proved:

Theorem 2.1. Let f, g be locally integrable on R and of order O(eax
2
) as |x| → +∞

with a < 1. Then there exists the Hermite transform (1) of f ∗ g, defined by formula (8),
and

H[f ∗ g] = H[f ] H[g].(9)

3. Generalized Hermite Polynomials (GHP). In [12], Problems and Exercises
25, Szegö introduced generalized Hermite polynomials which was investigated by Chihara
[1], see also [2]. By means of the Laguerre polynomials they can be defined as follows:

H(µ)
n (x) =

{
(−1)k22kk!L(µ−1/2)

k (x2), n = 2k

(−1)k22k+1k!xL(µ+1/2)
k (x2), n = 2k + 1,

(10)

µ > −1/2, k ∈ N0.

In another standardization, see [11], we write

H̃(µ)
n (x) =

{
H

(µ)
2k (x)/H(µ)

2k (0), n = 2k

H
(µ)
2k+1(x)/DH(µ)

2k+1(0), n = 2k + 1
(11)

and from (4) we obtain

H̃(µ)
n (x) =

{
R

(µ−1/2)
k (x2), n = 2k

xR
(µ+1/2)
k (x2), n = 2k + 1.

(12)

Obviously H(0)
n = Hn and H̃

(0)
n = H̃n, see (2), (3) and (5).

The GHP are solutions of second order linear differential equations, which are different
for polynomials of odd resp. even degree (if µ 6= 0):

xy′′(x) + (2µ− x2)y′(x) + (2nx−Θnx
−1) y(x) = 0,(13)

with

Θn =
{

0, n = 2k
2µ, n = 2k + 1.

(14)

The spectral analysis of these polynomials was given by Krall in [9]. The following
has been proved:

Theorem 3.1. {H̃(µ)
n }∞n=0, µ > −1/2 forms a complete orthogonal system (COS) on

R with weight

%(µ)(x) = |x|2µe−x
2
.(15)

More precisely we have∫ ∞
−∞

H̃(µ)
n (x)H̃(µ)

m (x)%(µ)(x) dx = h̃(µ)
n δnm,(16)
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where

h̃(µ)
n =

{
Γ(µ+ 1/2)k!/(µ+ 1/2)k, n = 2k
Γ(µ+ 3/2)k!/(µ+ 3/2)k, n = 2k + 1,

(17)

and (a)0 = 1, (a)k = a(a+ 1) . . . (a+ k − 1) is the Pochhammer symbol.

There exist recurrences, differentiation formulas etc., see Chihara [1], [2].

4. Generalized Hermite transform (GHT)

Definition 4.1. The GHT is defined by means of

H(µ)[f ](n) = f∧(n) =
∫ ∞
−∞

f(x)H̃n(x)%(µ)(x) dx, µ > −1/2, n ∈ N0(18)

provided that the integral exists.

Remark. Move precisely we have to write f∧µ (n), but we omit the letter µ, since in
this paper µ is some arbitrary fixed number.

As space of originals we choose

Lp,(µ)(R) = Lp,(µ) = {f : f measurable on R, ‖f‖p,(µ) <∞},(19)

where

‖f‖p,(µ) =


{∫ ∞
−∞
|f(x)e−x

2/2|p|x|2µdx
}1/p

, 1 ≤ p <∞

ess supx∈R |f(x)ex
2/2|, p =∞.

(20)

Obviously we have:

Theorem 4.1. If f ∈ Lp,(µ) then H(µ)[f ] exists and it is a linear transformation.

Since {H̃(µ)
n }∞n=0 form a COS on L2,(µ) inversion by series expansion in L2,(µ) with

respect to this COS is possible. Many rules of operational calculus can be derived using
properties of the GHP, such as differentiation rules and others. We consider here further
only the convolution theorem.

5. Product formulas. The starting point for product formulas for GHP is the lin-
earization formula for the product of Laguerre polynomials (6). Substituting

z(ϑ) = x+ y + 2
√
xy cosϑ

after some calculations we obtain the kernel form of (6):

Rαn(x)Rαn(y) =
∫ ∞

0

Rαn(z)Kα
L(x, y, z)zαe−zdz, α > −1/2,(21)

where

Kα
L(x, y, z) =


2α−1Γ(α+ 1)√

2π(xyz)α
exp

(
x+ y + z

2

)
Jα−1/2(%(x, y, z)[%(x, y, z)]α−1/2

if z ∈ ([
√
x−√y]2, [

√
x+
√
y]2)

0 elsewhere

(22)

and

%(x, y, z) =
1
2

[2(xy + xz + yz)− x2 − y2 − z2]1/2.(23)
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Setting

J̃ν(z) = 2νΓ(ν + 1)Jν(z), ν > −1(24)

∆(x, y, z) = %(x2, y2, z2)(25)

and

S(x, y) =
(
− |x| − |y|,−

∣∣∣|x| − |y|∣∣∣) ∪ (∣∣∣|x| − |y|∣∣∣, |x|+ |y|),(26)

using the connection (12) between GHP and Laguerre polynomials, Markett in [11] de-
rived a linearization formula for GHP.

Theorem 5.1. Let µ ∈ R+, n ∈ N0, x, y ∈ R \ {0}. Then

H̃(µ)
n (x)H̃(µ)

n (y) =
∫ ∞
−∞

H̃(µ)
n (z)K(µ)

H (x, y, z)%(µ)(z)dz,(27)

where

K
(µ)
H (x, y, z) =

{
K

(µ)
H (x, y, z)e(x

2+y2+z2)/2, z ∈ S(x, y)
0 , z ∈ R \ S(x, y)

(28)

and

K
(µ)
H (x, y, z) =

Γ(µ+ 1/2)∆2µ−2

2
√
πΓ(µ)|xyz|2µ−1

[
J̃µ−1(∆) +

2µ+ 1
2µ

∆2

xyz
J̃µ(∆)

]
.(29)

Remarks. 1. Important for the following is the symmetrization of the support of the
kernel K(µ)

H .
2. Obviously the product on the left of (27) equals the GHT of K(µ)

H .

From (28) resp. (27) with n = 0 we have immediately

Conclusion. (a) The kernel K(µ)
H is symmetrical with respect to x, y, z.

(b) We have ∫ ∞
−∞

K
(µ)
H (x, y, z)%(µ)(z)dz = 1.(30)

Moreover Markett proved:

Theorem 5.2. There exists no value of µ, µ ∈ R+ such that K(µ)
H is nonnegative for

all x, y ∈ R \ {0}, z ∈ S(x, y).

6. Convolution structure. According to a general method one defines a generalized
translation operator (GTO) of the GHT by means of Theorem 5.1 in the following manner:

Definition 6.1. As GTO for GHT we define the operator T (µ)
y , y ∈ R, µ ∈ R+ by

means of

(T (µ)
y f)(x) =

∫ ∞
−∞

f(z)K(µ)
H (x, y, z)%(µ)(z)dz, xy 6= 0(31)

and

(T (µ)
0 f)(x) =

1
2

[f(x) + f(−x)], (T (µ)
y f)(0) =

1
2

[f(y) + f(−y)],(32)

provided that the integral in (31) exists.

In [11] it was proved:
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Theorem 6.1. (a) If µ ≥ 1/2 then the GTO is a bounded linear operator from Lp,(µ)

into itself with

‖T (µ)
y f‖p,(µ) ≤Mµe

y2/2‖f‖p,(µ), y ∈ R.
(b) If 0 < µ < 1/2 one has for any f ∈ L1,(µ) ∩ L1,(µ/2+1/4)

‖T (µ)
y f‖p,(µ) ≤Mµe

y2/2
[
‖f‖1,(µ) + |y|1/2−µ‖f‖1,(µ/2+1/4)

]
From Definition 6.1 and by means of the results of section 5 one proves straightfor-

wardly:

Proposition 6.1. The GTO has the proporties

(T (µ)
y f)(x) = (T (µ)

x f)(y),(33)

(T (µ)
y H̃(µ)

n )(x) = H̃(µ)
n (x)H̃(µ)

n (y)(34)

and

(T (µ)
y f)∧(n) = f∧(n)H̃(µ)

n (y).(35)

Remark 1. The GTO is not a positive one, see Theorem 5.2.

As usual the convolution of the GHT is defined as follows

Definition 6.2. As convolution of the GHT one defines

(f ∗ g)(y) =
∫ ∞
−∞

(T (µ)
y f)(x)g(x)%(µ)(x)dx,(36)

provided that the integral exists.

By means of Theorem 6.1 Markett proved in [11]:

Theorem 6.2. (a) Let µ ≥ 1/2, f ∈ Lp,(µ), g ∈ L1,(µ). Then f ∗ g ∈ Lp,(µ).
(b) Let 0 < µ < 1/2, f ∈ L1,(µ), g ∈ L1,(µ) ∩ L1,(µ/2+1/4). Then f ∗ g ∈ L1,(µ).
(c) Under the conditions of (a) or (b) we have

(f ∗ g)∧ = f∧g∧.(37)

Remarks. 2. The convolution appears to be commutative and associative.
3. The convolution is for no value of µ ∈ R+ a positive one, because the GTO is also

not a positive one for any value of µ ∈ R+, see Remark 1.

7. Limit case. In case µ = 0 of the ordinary Hermite transform the product formula
(27) of GHP is not correct in case of even degree n of the polynomials, since they are
connected with the Laguerre polynomials of order −1/2, see (5), and the product for-
mula (21) for Laguerre polynomials works only for polynomials of order α > −1/2. The
extension of formula (21) to the limit case α = 1/2 was obtained by Markett in [10]. His
proof uses a proof of J. Boersma in 1961, which was never published before. The result is

R−1/2
n (x)R−1/2

n (y) = 1
2

{
e−
√
xyR

−1/2
n ([

√
x+
√
y]2) + e

√
xyR

−1/2
n ([

√
x−√y]2)

−
∫ ∞

0

R−1/2
n (z)K−1/2

L (x, y, z)e−zz−1/2dz

}
,

x, y ∈ R+, n ∈ N0,

(38)
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with

K
−1/2
L (x, y, z) =


1
2

(xyz)1/2 exp
(
x+ y + z

2

)
J1(%(x, y, z))[%(x, y, z)]−1

if z ∈
(
[
√
x−√y]2, [

√
x+
√
y]2
)

0 elsewhere

(39)

where % is taken from (23).
By means of (5) and of the product formula (21) in case α = 1/2 for Hermite poly-

nomials of odd degree resp. (38) for Hermite polynomials of even degree Markett proved
in [11] the extension of the product formula (27) to the limit case µ = 0:

H̃n(x)H̃n(y) =
1
4
{e−xy[H̃n(−x− y) + H̃n(x+ y)]+

+ exy[H̃n(y − x) + H̃n(x− y)]} +

+
∫ ∞
−∞

H̃n(z)K(0)
H (x, y, z)e−z

2
dz, x, y ∈ R, n ∈ N0,

(40)

where

K
(0)
H (x, y, z) =

 −
xyz

8
J̃1(∆) +

1
4
J̃0(∆)sgn(xyz)e(x

2+y2+z2)/2, z ∈ S(x, y)

0 elsewhere.
(41)

The notations ∆, S and J̃ν can be taken from (25), (26) and (24) respectively.
The additional term {} in (40) vanishes obviously if n is odd.
The conclusion of Theorem 5.1 and Theorem 5.2 are also valid in case µ = 0.
The GTO T

(0)
y = Ty is according to this product formula defined by

(Tyf)(x) =
1
4
{e−xy[f(−x− y) + f(x+ y)] + exy[f(y − x) + f(x− y)]} +

+
∫ ∞
−∞

f(z)K(0)
H (x, y, z)e−z

2
dz.

(42)

It has the same properties as in case µ > 0, especially Theorem 6.1, (b) is valid also
in case µ = 0 and the GTO Ty is not a positive one. The definition of the convolution
follows the same line as in case µ > 0, especially Theorem 6.2, (b) is valid also in case
µ = 0 and (37) is fulfilled. The convolution is of course not a positive one.

8. Concluding remarks. The history of the investigation of the convolution struc-
ture of the Hermite transform, which was finished by the paper [11] of Markett in 1993, is
in some sense typical for mathematics nowadays. People interested in operational calculus
did not take notice of the extension of Watson’s product formula for Laguerre polyno-
mials of order α > −1/2 to the limit case α = −1/2 in 1982, see [10], since it appeared
in connection with approximation theory. So the papers [5], [6] and [4] appeared. Aston-
ishing enough that Markett only eleven years after his extension of Watson’s product
formula made his application to the Hermite transform. Moreover introducing at first
a parameter µ and considering the GHP H

(µ)
n , so a more general case, he succeeded to

define the convolution of the limit case µ = 0 of the (ordinary) Hermite polynomials in a
quite natural manner.
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