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Abstract. Utilizing elementary properties of convergence of numerical sequences we prove
Nikodym, Banach, Orlicz-Pettis type theorems.

1. Introduction. Nikodym type theorems on set functions; Banach and Banach-
Steinhaus type theorems on families and sequences of mappings; Orlicz-Pettis type the-
orems on subseries convergence of series are basic theorems in set function theory and
functional analysis. In modern text books they are usually proved by using the Baire
category method. The method requires knowledge of elements of topology and functional
analysis, which makes the theory difficult for average users.

A more recent approach consists in using sequential methods based on properties of
convergence of sequences and matrices (double sequences) ([14], [1], [3], [4], [5], [19]). The
sequential approach is not only simpler, but also more in agreement with the intuition of
physicists, chemists, engineers and average users. The method is accessible for students
at early stage of their studies. The simplicity of the method and its generality make it
suitable for teaching mathematics at engineers type of schools. It should be also a good
introduction to deeper study of mathematics.

The way of presenting the results goes from particularities to generalities. We do not
pretend to formulate results in their possible generalities. The first part of the paper
consists of the basic theorems. The second part is devoted to applications of the results
in the first part. In the following subsection we give extensive summary of the paper.

1.1. Summary. We observe that a family M of countably additive set functions
on a σ-field X to the real number system R is uniformly countably additive iff, for each
sequence {fi} in M , fi(xj)→ 0 uniformly for i ∈ N as j →∞ whenever {xj} is a pairwise
disjoint sequence of sets in X. Similarly, a family M of mappings on a topological group

2000 Mathematics Subject Classification: Primary 40A3D; Secondary 28A33, 46A19, 46B125.
Key words and phrases: uniform strong additivity; equicontinuity; subseries convergent series.
The paper is in final form and no version of it will be published elsewhere.

[89]



90 P. ANTOSIK

X is sequentially equicontinuous at zero iff, for each sequence {fi} in M , fi(xj) → 0
uniformly for i ∈ N as j →∞ whenever xj → 0. Following these two examples we adopt
the following definition.

Assume that {fi} is a sequence of mappings on a set X to R and {xi} is a sequence in
X. We say that sequence {fi} is equivanishing on {xi} if fi(xj)→ 0 uniformly for i ∈ N
as j →∞.

A family M of countably additive set functions on a σ-field X is uniformly countably
additive iff each sequence {fi} in M is equivanishing on pairwise disjoint sequences in X;
a family M of mappings on a topological group X is sequentially equicontinuous at zero
iff, each sequence in M is equivanishing on sequences converging to zero in X. In view
of the above examples we are interested in conditions under which a sequence {fi} of
mappings on a set X to R is equivanishing on a sequence {xi} in X.

We note that if {fi} is a sequence of linear mappings on R to R and xi → 0, then the
following condition holds:

(K{fi}) For each subsequence {xmi
} of {xi} there exists a further subsequence {xni

}
of {xmi

} and x in X such that
∞∑
j=1

fi(xnj ) = f(x)

for each i in N.

Assume that {fi} is a sequence of mappings on a set X to R. We say that {xi} is
a K{fi}-null sequence in X if the condition (K{fi}) holds.

In general, the sequence {fi} is not equivanishing on K{fi}-null sequences in X.
For instance, sequence {fi} such that fi(x) = ix is not equivanishing on K{fi}-null
sequence

{
i−1
}

. It appears that pointwise precompactness of {fi} and (K{fi}) property
of a sequence {xi} in X stand for sufficient conditions for {fi} to be equivanishing on
{xi}. More exactly, let {fi} be a sequence of mappings on a set X to R. The sequence
is said to be X-precompact if each its subsequence {fmi

} has an X-Cauchy subsequence
{fni}, i.e. for each subsequence {fvi} of {fni} we have fvi+1(x)− fvi(x)→ 0 for each x

in X as i→∞. In section 4.1 we prove the following

Equivanishing Theorem I. Each X-precompact sequence {fi} of mappings on a set
X to R is equivanishing on K{fi}-null sequences.

If S(X,R) is an admissible topological group of mappings on a set X to R (i.e., group
operations in S(X,R) are defined pointwise and the topology for S(X,R) is finer than
the topology of pointwise convergence), then sequentially precompact sequences in S are
X-precompact. However, relatively countably compact sequences in S(X,R) may not be
X-precompact, and conversely, X-precompact sequences of S(X,R) may not be relatively
countably compact. A sequence {fi} is relatively countably compact in S(X,R) if each
its subsequence {fmi} has an adherent point in X, i.e., there exists f in S such that each
neighbourhood of f contains a subsequence {fni

} of {fmi
} ([12], [21]).

We observe that if S(X,R) is a topological space, {fi} is a relatively sequentially
compact sequence in S, then the following condition holds:
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(∗) For each subsequence {fmi
} of {fi} and for each countable subset Q of X there

exists a subsequence {fni
} of {fmi

} and f in S(X,R) such that

fni
(x)→ f(x)

for each x in Q.

A sequence {fi} in a set S(X,R) is said to be relativelyX-countably compact whenever
the condition (∗) holds.

In section 3.5 we show that relatively countably compact sequences in a topological
space S(X,R) are relatively X-countably compact.

In section 4.2, we prove the following

Equivanishing Theorem II. Relatively X-countably compact sequences in a set
S(X,R) of mappings on a set X to R are equivanishing on KS-null sequences in X.

We explain that a sequence {xi} is a KS-null sequence in X if for each subsequence
{xmi

} of {i} there exists a subsequence {xni
} of {xmi

} and x in X such that
∞∑
i=1

f(xni
) = f(x)

for each f in S.
Suppose that {fi} is a sequence of additive and continuous mappings on X to R,

(X = R) and xj → 0. Then the following condition holds:

(KM{fi}) There exists a scalar sequence {αj} such that αj → ∞ and for each sub-
sequence {mj} of {j} there exists a subsequence {nj} of {mj} and x in X

such that
∞∑
j=1

αnj
fi(xnj

) = fi(x)

for each i in N.

Following this example we adopt the definition. Let {fi} be a sequence of mappings
on a set X to R and let {xi} be a sequence in X. We say that {xi} is a KM{fi}-null
sequence in X if condition (KM{fi}) holds.

In section 4.3 we prove the following

Equivanishing Theorem III. Each X-bounded sequence {fi} of mappings on a set
X to R is equivanishing on KM{fi}-null sequences.

We explain that {fi} is X-bounded if {fi(x)} is a bounded sequence for each x in X.
As direct corollaries of the theorems on equivanishing of sequences we get: theorems

on equivanishing of families of mappings; generalizations of theorems of uniform count-
able additivity; Banach type theorems on equicontinuity; Orlicz-Pettis type theorems on
subseries convergent series.

2. The basic tools. As it was mentioned the basic tools for this paper are to be
properties of convergence of numerical sequences and numerical matrices. By R is denoted
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the set of real numbers with the convergence of sequences induced by the absolute value.
These properties are:

(F) (Fréchet) Limits of sequences are limits of their subsequences;

(L) (Linearity) Sums and products of sequences converge to sums and products of their
limits.

(U) (Urysohn) If each subsequence of a given sequence has a subsequence converging to
a given point, then the sequence converges to the point.

(S) (Stability) Constant sequences converge to their terms.

(H) (Hausdorff) Each sequence may have at most one limit.

Now, two properties concerning matrices.
By a matrix or, equivalently, double sequence we mean a function defined on the Carte-

sian product N × N. It is denoted by {xi,j}. The sequence {xi,i} is called the principal
diagonal of the matrix {xi,j}. By a square submatrix of {xi,j} we mean a matrix

{
xmi,mj

}
where {mi} is a subsequence of {i}.

Assume that {xi,j} is a numerical matrix.

(A) If xi,j → 0 for i ∈ N as j →∞, then there exists a square submatrix
{
xmi,mj

}
such

that for each subsequence {ni} of {mi} with mi < ni for i ∈ N we have xmi,ni → 0
as i→∞.

(Y) If for each square submatrix
{
xmi,mj

}
there exists a square submatrix

{
xni,nj

}
of{

xmi,mj

}
and a subsequence {vi} of {ni} such that

(i) xvi,nj → 0 for j ∈ N as i→∞,

(ii)
∞∑
j=1

xvi,nj → 0 as i→∞,

then xi,i → 0.

The properties FLUSH are well known and there is no need to prove them. The
properties (A) and (Y) are to be proved. We precede their proofs by the following lemma.

Lemma 1. Assume that xi,j → 0 for i ∈ N as j → ∞ and xi,j → 0 for j ∈ N as
i → ∞ and assume that εi,j is a matrix of positive numbers. Then there exists a square
submatrix

{
xmi,mj

}
of {xi,j} such that

|xmi,mj
| < εi,j

for i, j,∈ N and i 6= j.

Proof. Suppose that m1 = 1. Since xm1,j → 0 as j →∞ and xi,m1 → 0 as i→∞,
there exists m2 ∈ N such that m1 < m2 and

(1) |xmi,mj
| < εi,j

for i, j = 1, 2 and i 6= j. Since xmi,j → 0 for i = 1, 2 as j →∞ and xi,mj → 0 for j = 1, 2
as i→∞, there exists m3 ∈ N such that m2 < m3 and (1) holds fr i, j = 1, 2, 3 and i 6= j.
By induction we select a subsequence {mi} of {i} such that (1) holds for i, j = 1, 2, . . .
and i 6= j.
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Proof of (A). Letting zi,j = xi,j for i, j ∈ N, i ≤ j and zi,j = 0 for i, j ∈ N, i > j,
we see that the matrix {zi,j} satisfies the conditions of Lemma 1. Therefore there exists
a square submatrix

{
zmi,mj

}
of {zi,j} such that |zmi,mj | < 2−i−j for i, j ∈ N and i 6= j.

Hence, xmi,nj
→ 0 for each subsequence {ni} of {mi} such that mi < ni for i ∈ R.

Proof of (Y). Let {mi} be a subsequence of {i}. Let {ni} be a subsequence of {mi}
and let {vi} be a subsequence of {ni} such that the conditions (i) and (ii) hold. Then
the matrix

{
xvi,vj

}
satisfies the conditions of Lemma 1. Therefore, there exists a square

submatrix
{
xri,rj

}
of
{
xvi,vj

}
such that |xri,rj

| < 2−i−j for i, j ∈ N and i 6= j. By the
assumption, there exists a square submatrix

{
xpi,pj

}
of
{
xri,rj

}
and a subsequence {psi

}
of {pi} ∑

j=1

xpsi
,pj → 0

as i→∞. By the triangle inequality, we have

|xpsi
psi
| ≤

∣∣∣ ∞∑
j=1

xpsi
pj

∣∣∣+
∞∑

j=1, j 6=si

|xpsi
pj
|.

Consequently, xpsi
psi
→ 0. By (U), xii → 0.

In the sequel we shall refer to the following

Lemma 2. If for each square submatrix
{
xmimj

}
of a matrix {xij} there exists a fur-

ther square submatrix
{
xninj

}
of
{
xmimj

}
and a subsequence {vi} of {ni} such that

(i) lim
i→∞

∞∑
j=1

xvinj
=
∞∑
j=1

lim
i→∞

xvinj

then xii → 0.

Proof. Let {mi} be a subsequence of {i}, let {ni} be a subsequence of {mi} and let
{vi} be a subsequence of {ni} such that (i) holds. We put

lim
i→∞

xvi,vj
= xvj

for j ∈ N. We note that xvj
→ 0 and we may assume that series

∞∑
j=1

xvj

is subseries convergent in R. Consider matrix
{
xvi,vj − xvj

}
. We claim that the matrix

satisfies conditions of property (Y). In fact, let {pi} be a subsequence of {vi}. By the as-
sumption there exists a subsequence {qi} of {pi} and a subsequence {ri} of {qi} such
that

lim
i→∞

∞∑
j=1

xri,qj =
∞∑
j=1

lim
i→∞

xri,qj =
∞∑
j=1

xqj

Hence,

lim
i→∞

∞∑
j=1

(xri,qj
− xqj

) =
∞∑
j=1

lim
i→∞

(xri,qj
− xqj

) = 0,
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moreover, xri,qj
− xqj

→ 0 for j ∈ N as i → ∞. Hence, by (Y), xvi,vi
− xvi

→ 0. Since
xvj
→ 0, we have xvi,vi

→ 0. By (U), xii → 0.

3. Basic definitions. We recall the definitions of: K{fi}-null sequence; KS-null se-
quence; KM{fi}-null sequence; X-precompact sequence; relatively X-countably compact
sequence. We define: K-null sequence; M -null sequence and KM-null sequence. We point
out some of their properties and give examples.

3.1. Null sequences, K, M and KM-null sequences. Assume that X is a topological
group (vector space). A sequence {xj} in X is said to be:

(a) a null sequence if xj → 0;
(b) a K-null sequence if for each subsequence {mj} of {j} there exists a further sub-

sequence {nj} of {mj} and x in X such that
∞∑
j=1

xnj
= x;

(c) an M -null sequence if there exists a scalar sequence {αj} such that αj →∞ and
{αjxj} is a K-null sequence.

(d) a KM -null sequence if there exists a scalar null sequence {αi} such that αi →∞
and {αixi} is a K-null sequence.

We say that a topological group (vector space) X is a K, M or KM-topological group
(vector space) if null sequences in X are K, M or KM-null sequences, respectively.

Quasi-normed groups have property M , complete quasi-normed groups have property
KM.

3.2. {fi}-null sequences, K{fi}, M{fi} and KM{fi}-null sequences. Assume that
{fi} is a sequence of mappings on a set X to R. A sequence {xj} is said to be:

(a) an {fi}-null sequence if fi(xj)→ 0 for each i ∈ N as j →∞;
(b) a K{fi}-null sequence if for each subsequence

{
xmj

}
of {xj} there exists a further

subsequence
{
xnj

}
of
{
xmj

}
and x in X such that
∞∑
j=1

fi(xnj ) = fi(x)

for each i in N;
(c) an M{fi}-null sequence if there exists a scalar sequence {αj} such that αj → ∞

and αjfi(xj)→ 0 for i ∈ N as j →∞;
(d) a KM{fi}-null sequence if there exists a scalar null sequence {αj} such that

αj → ∞ and for each subsequence
{
xmj

}
of {xj} there exist a further subse-

quence
{
xnj

}
of
{
xmj

}
and x in X such that

∞∑
j=1

αnjfi(xnj ) = fi(x)

for i ∈ N.
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(1) If {fi} is a sequence of strongly additive set functions on a σ-field X to R, then
pairwise disjoint sequences in X are K{fi}-null sequences in X.

We recall that an additive set function f on a σ-field X is strongly additive if it is
vanishing on pairwise disjoint sequences in X, i.e., f(xi) → 0 for each pairwise disjoint
sequence {xi} in X. By Drewnowski’s lemma ([9]) for each sequence {fi} of strongly
additive set functions on a σ-field X to R and for each pairwise disjoint sequence {xj} in
X, there exists a subsequence

{
xnj

}
such that for each i ∈ N, fi is a countably additive

set function on a σ-field X ′ generated by members of the subsequence
{
xnj

}
. Hence we

get (1).

(2) If {fi} is a sequence of additive (linear) sequentially continuous mappings on a topo-
logical group (vector space) X, then null sequences, K, M and KM-null sequences in
X are, respectively, {fi}, K{fi}, M{fi}, and KM{fi}-null sequences.

3.3. S, KS, MS and KMS-null sequences. Assume that S(X,R) is a set of mappings
on a set X to R. A sequence {xj} is said to be:

(a) an S-null sequence if f(xj)→ 0 for each f in S as j →∞;
(b) a KS-null sequence if for each subsequence

{
xmj

}
of {xj} there exists a further

subsequence
{
xnj

}
of
{
xmj

}
and x in X such that
∞∑
j=1

f(xnj
) = f(x)

for each f in S;
(c) an MS-null sequence if there exists a scalar sequence {αj} such that αj →∞ and

αjf(xj)→ 0 for each f in S as j →∞;
(d) a KMS-null sequence if there exists a scalar sequence {αj} such that αj →∞ and

for each subsequence {mj} of {j} there exists a further subsequence {nj} of {mj}
and x in X such that

∞∑
j=1

αnj
f(xnj

) = f(x)

for each f in S.

(1) S, KS, MS and MKS-null sequences in S are {fi}, K{fi}, M{fi} and KM{fi}-null
sequences in S.

(2) If S(X,R) is a countable set of strongly additive set functions on a σ-field X, then
pairwise disjoint sequences in X are KS-null sequences.

(3) If S(X,R) is a set of countably additive set functions on a σ-field X to R, then pairwise
disjoint sequences in X are KS-null sequences in S.

(4) If S(X,R) is a set of additive (linear) sequentially continuous mappings on a topo-
logical group (vector space) X, then null sequences, K, M , KM-null sequences in X

are, respectively, S, KS, MS and KMS-null sequences.

3.4. X-precompact sequences. A sequence {fi} of mappings on a set X to R is an
X-null sequence if fi(x) → 0 for each x in X as i → ∞. If for each subsequence {fmi

}
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of {fi},
{
fmi+1 − fmi

}
is an X-null sequence, i.e., fmi+1(x)−fmi

(x)→ 0 for each x in X,
then we say that {fi} is an X-Cauchy sequence ([15]).

We say that a sequence {fi} of mappings on a set X to R is X-precompact if each its
subsequence {fmi

} has an X-Cauchy subsequence {fni
}.

Subsequences of X-precompact squences are X-precompact.

(1) If S(X,R) is an admissible topological space (group), then sequentially relatively com-
pact (sequentially precompact) sequences in S(X,R) are X-precompact.

3.5. Relatively X-countably compact sequences in S(X,R). Asume that S(X,R) is
a sequence of mappings on a set X to R. We recall that a sequence {fi} in S(X,R) is
relatively X-countably compact in S if for each its subsequence {fmi} and each countable
subset Q of X there exists a further subsequence {fni

} of {fmi
} and a mapping f in S

such that
fni

(x)→ f(x)

for each x in Q as i→∞.
Subsequences of relatively X-countably compact sequences are relatively X-countably

compact.

(1) Relatively compact sequences in a topological space S(X,R) are relatively X-countably
compact.

(2) Relatively countably compact sequences in an admissible topological space S(X,R) are
relatively X-countably compact.

Proof. Assume that {fi} is a relatively countably compact sequence in a topological
space S(X,R) and Q is a countable subset of X. Let {fmi

} be a subsequence of {fi} and
let {xi} be a sequence of all members of Q. We note that for each j ∈ N {fmi

(xj)} is
a bounded sequence. Therefore, for j = 1, there exists a subsequence {m1i} of {mi} such
that {fm1i(x1)} is a convergent sequence, so, it is a Cauchy sequence. For j = 2, there
exists a subsequence {m2i} of {m1i} such that {fm2i

(x2)} is a convergent sequence. By
induction we select a sequence {mji}∞i=1, of sequences such that {mj+1,i} is a subsequence
of {mj,i} and

{
fmj+1,i

(xj+1)
}

is a convergent sequence as i → ∞. Letting mii = ni for
i ∈ N we see that {fni

(xj)} is a convergent sequence for each j ∈ N. Therefore, it is
a Cauchy sequence for each j ∈ N. Let f be an adherent point of {fni

}. We claim that

fni(xj)→ f(xj)

for each j ∈ N as i→∞. Otherwise, there exists ε > 0, an index j ∈ N and a subsequence
{fvi
} of {fni

} such that

(1) |fvi
(xj)− f(xj)| > 2ε

for i ∈ N. On the other hand, let V = {h ∈ S : |f(xj)− h(xj)| < ε}. Since S(X,R) is
an admissible topological space, V is a neighbourhood of f and since f is an adherent
point for {fni}, there exists a subsequence {fwi} of {fni} such that fwi ∈ V for i ∈ N.
In particular,

(2) |fwi
(xj)− f(xj)| < ε
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for i ∈ N. By (1) and (2), we have

|fvi(xj)− fwi(xj)| > |fvi(xj)− f(xj)| − |fwi(xj)− f(xj)| > ε

for each i ∈ N. This contradicts the fact that {fni(xj)} is a Cauchy sequence.

4. Proofs of the equivanishing theorems. In the sequel we shall refer to the
following.

Proposition 1. A sequence {fi} of mappings on a set X to R is equivanishing on
a sequence {xj} in X, iff for any two subsequences {mi} and {ni} of {i} fmi(xni)→ 0.

Proof. We are to show that
fi(xj)→ 0

uniformly for i ∈ N as j →∞ or, equivalently, for each sequence {mi} in N,

(1) fmi
(xi)→ 0.

Let {mi} be a sequence in N. We note that

(2) fmi
(xj)→ 0

for i ∈ N as j →∞. Let {ni} be a subsequence of {i}. If {mni
} is a bounded sequence,

then, by (2),
fmni

(xni
)→ 0.

If {mni
} is an unbounded sequence, then there exists a subsequence {ri} of {ni} such

that {mri
} is a subsequence of {i}. By the assumption

fmri
(xri

)→ 0.

Hence, by (U), we get (1).

4.1. The proof of Equivanishing Theorem I. We are to show that if {fi} is an X-
precompact sequence of mappings on a set X to R and {xj} is a K{fi}-null sequence in
X, then {fi} is equivanishing on {xj} or, equivalently,

(1) fi(xj)→ 0

uniformly for i ∈ N as j →∞. By Proposition 4.1, (1) holds if for any two subsequences
{mi} and {ni} of {i} we have

(2) fmi
(xni

)→ 0

as i → ∞. Let {mi} and {ni} be subsequences of {i} and let {si} be a subsequence of
{i} such that

{
fmsi

}
is an X-Cauchy sequence. Consider a matrix {hi(tj)} with

hi = fmsi
and ti = xnsi

for i ∈ N. Note that hi(tj)→ 0 as j →∞ for i ∈ N. By (A), there exists a subsequence
{vi} of {i} such that

(3) hvi
(xvi+1)→ 0.

We have

(4) hvi+1(tvi+1) = hvi+1(tvi+1)− hvi
(tvi+1) + hvi

(tvi+1).
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We claim that the matrix {
hvi+1(tvi+1)− hvi

(tvi+1)
}

satisfies conditions of (Y). In fact, let {mi} be a subsequence of {i}. Since {ti} is a KS-
null sequence in X, there exists a subsequence {ni} of {mi} and t in X such that

∞∑
j=1

h(tvnj+1) = h(t)

for each h in S. In particular,
∞∑
j=1

hvni+1(tvnj+1) = hvni+1(t) and
∞∑
j=1

hvni
(tvnj+1) = hvni

(t)

for i ∈ N. Therefore,
∞∑
j=1

(hvni+1(tvnj+1)− hvni
(tvnj

)) = hvni+1(t)− hvni
(t)

Since {hi} is an X-Cauchy sequence, we have

hvni+1(tvnj+1)− hvni
(tvnj

)→ 0 and hvni+1(t)− hvni
(t)→ 0

for i ∈ N as j →∞. This proves our claim. Consequently, by (Y),

hvi+1(tvi+1)− hvi
(tvi+1)→ 0.

Hence, by (4) and (3),
hvi+1(tvi+1)→ 0.

By (U), hi(ti)→ 0 or, equivalently, fmsi
(xnsi

)→ 0. Again, by (U), we get (2).

4.2. The proof of Equivanishing Theorem II. We are to show that a relatively X-
countably compact sequence {fi} in a set S(X,R) of mappings on a set X to R is equiv-
anishing on KS-null sequences in X. Assume that {xi} is a KS-null sequence in X and
consider a matrix {fi(xj)}. We are to show that

(1) fi(xj)→ 0

uniformly for i ∈ N as j →∞. By Proposition 4.1, (1) holds if for any two subsequences
{mi} and {ni} of {i}

(2) fmi
(xni

)→ 0.

as i→∞. Let {mi} and {ni} be subsequences of {i}. Consider a matrix {hi(tj)} with

hi = fmi
and tj = xnj

for i, j ∈ N. We claim that the matrix satisfies conditions of Lemma 2.2. In fact, let
{pi} be a subsequence of {i}. Since {xj} is a KS-null sequence, its subsequence {tj} is
a KS-null sequence in X. Therefore, there exists a subsequence {qi} of {pi} and t in X

such that

(3)
∞∑
j=1

f(tqj ) = f(t)
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for each f in S. In particular,
∞∑
j=1

hqi(tqj ) = hqi(t).

Let Q =
{
tqj

: j ∈ N
}
∪ {t}. Since {fi} is a relatively X-countable compact sequence in

S, {hqi} is its subsequence and Q is a countable set, there exists a subsequence {ui} of
{qi} and h in S such that

hui(tqj )→ h(tqj ) and hui(t)→ h(t)

for j ∈ N as i→ N. Hence, by (3), we get

lim
i→∞

∞∑
j=1

hui(tqj ) = lim
i→∞

hui(t) = h(t) =
∞∑
j=1

h(tqj ) =
∞∑
j=1

lim
i→∞

hui(tqi)

This proves the claim. Consequently, by Lemma 2.2, hi(ti)→ 0. By (U), we get (2) which
was to be proved.

4.3. The proof of Equivanishing Theorem III. Assume that {fi} is an X-bounded
sequence of mappings on a set X to R and {xi} is a KM{fi}-null sequence. We are to
show that

(1) fi(xj)→ 0

uniformly for i ∈ N as j → N. By Proposition 4.1, (1) holds if for any two subsequences
{mi} and {ni} of {i}

(2) fmi
(xni

)→ 0

Assume that {mi} and {ni} are subsequences of {i} and {αj} is a scalar sequence such
that the condition (KM{fi}) in 3.2(d) holds. Consider matrix

(3)
{
αnjα

−1
ni
f(xnj )

}
.

Let {pi} be a subsequence of {ni}, let {qi} be a subsequence of {pi} and let x be a member
of X such that

∞∑
j=1

αnqj
fi(xnqj

) = fi(x)

for i ∈ N. In particular
∞∑
j=1

α−1
nqi
αnqj

fmqi
(xnqj

) = α−1
nqi
fmqi

(x)

for i ∈ N. Since {fi} is X-bounded and α−1
nqi
→ 0, we have

α−1
nqi
αnqj

fmqi
(xnqj

)→ 0 and α−1
nqi
fmqi

(x)→ 0

as i→∞ for j in N. Hence, by (Y) and (3), we get (2).

5. Corollaries to the equivanishing theorems. First, we prove theorems on equi-
vanishing of families of mappings.

Assume that F is a family of mappings on a set X to R and {xi} is a sequence in
X. We say that F is equivanishing on {xi} if fi(xi)→ 0 uniformly for f in F as i→∞.
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5.1. X-precompact, relatively X-countably compact and X-bounded subfamilies of
S(X,R). Assume that S(X,R) is a set of mappings on a set X to R. A subfamily F
of S is said to be:

(a)X-precompact if sequences in F are X-precompact;
(b) relatively X-countably compact in S if sequences in F are relatively X-countably

compact in S;
(c) X-bounded if sequences in F are X-bounded.

If S(X,R) is an admissible tpological group (topological space), then sequentially
precompact (relatively countably compact) subsets of S are X-precompact (relatively
X-countably compact). If S(X,R) is a topogical vector space, then bounded subset of S
are X-bounded.

5.2. Theorems on equivanishing of families of mappings. As simple corollaries
of the above definitions and the equivanishing theorems we get:

Theorem 1. If S(X,R) is a set (countable set) of strongly additive set functions on
a σ-field X to R, then setwise precompact (relatively X-countably compact) subsets of S
are equivanishing on pairwise disjoint sequences in X or, equivalently, they are uniformly
strongly additive.

Proof. Let F be a setwise precompact (relatively X-countably compact) subset of S
and let {xi} be a pairwise disjoint sequence in X. We are to show that each sequence {fi}
in F is equivanishing on {xi}. Let {fi} be a sequence in F . By the definition of F , {fi} is
an X-precompact (relatively X-countably compact) sequence in S. Hence, by Equivan-
ishing Theorem I and 3.2(1) (Equivanishing Theorem II and 3.3(2)) {fi} is equivanishing
on {xi}.

Theorem 2. If S(X,R) is a set of mappings on a set X to R. Then:

(a)X-precompact (relatively X-countably compact) subsets of S are equivanishing on
KS-null sequences;

(b)X-bounded subsets of S are equivanishing on KMS-null sequences.

Proof. Let F be an X-precompact (relatively X-countably compact, X-bounded)
subset of S and let {xi} be a KS-null sequence in X (KMS-null sequence in X). We are
to show that each sequence {fi} in F is equivanishing on {xi}. Let {fi} be a sequence in
F . By the definition of F , {fi} is an X-precompact (relatively X-countably compact, X-
bounded) sequence in S. Hence, by Equivanishing Theorem I (Equivanishing Theorem II,
Equivanishing Theorem III) {fi} is equivanishing on {xi}.

5.3. Subseries S-convergent series. Assume that X is a set,
∑
xi is a formal series of

elements of X and M is a set of mappings on a set X to R. Consider a series

(1)
∞∑
i=1

f(xi)

for each f in M .
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We say that the series
∑
xi is subseries convergent uniformly on a subset M if series

(1) is subseries convergent uniformly on M .
We are interested in conditions under which

∑
xi is subseries convergent uniformly

on M . To this end we assume that
∑
xi is subseries Cauchy uniformly on M if for each

pairwise disjoint sequence {σi} of finite subsets of N, there exists a sequence {ti} in X

such that ∑
j∈σi

f(xj) = f(ti)

for each f in M and f(ti)→ 0 uniformly for f in M .

Proposition 1. Series in X which are subseries Cauchy uniformly on a set M are
subseries convergent uniformly on M .

A simple proof of Proposition 1 is omitted.

Theorem 1. Assume that S(X,R) is a set (a countable set) of strongly additive set
functions on a σ-field X to R. Then series of pairwise disjoint sets in X are subseries
convergent uniformly on X-precompact (relatively X-countably compact) subsets of S.

Proof. Assume that
∑
xi is a series of pairwise disjoint sets in X and M is an X

precompact (relatively X-countably compact) subsets of S. We claim that
∑
xi is sub-

series Cauchy uniformly on M . In fact, let {σi} be a pairwise disjoint sequence of finite
subsets of N and let

ti =
⋃
j∈σi

xj

for i ∈ N. Then
f(ti) =

∑
j∈σi

f(xj)

for each f in M and {ti} is a pairwise disjoint sequence. By Theorem 5.2.1 M is equivan-
ishing on {ti} or, equivalently, f(ti)→ 0 uniformly for f in M . Hence, by Proposition 1,
we get the theorem.

Assume that S(X,R) is a set of mappings on a set X to R and
∑
xi is a series of

members of X. We say the series is subseries S-convergent in X if for each (finite or
infinite) subset σ ∈ N there exists an x in X such that

f(x) =
∑
j∈σ

f(xj)

for each f in S.

Theorem 2. Series which are subseries S-convergent in X are subseries convergent
uniformly on X-precompact (relatively X-countably compact) subsets of S.

Proof. Assume that
∑
xi is a subseries S-convergent series in X and M is an X-

precompact (relatively X-countably compact) subset of S. Let {σi} be a pairwise disjoint
sequence of finite subsets of N and {ti} be a sequence in X such that

f(ti) =
∑
j∈σi

f(xj)
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for each f in S. Since
∑
xi is subseries S-convergent in X, {ti} is a KS-null sequence in

X. Hence, by Theorem 5.2.2(a), M is equivanishing on {ti} or, equivalently, f(ti) → 0
uniformly for f in M . Hence, by Proposition 1,

∑
xi is subseries convergent uniformly

on M .

5.4. Uniform countable additivity, equicontinuity, subseries convergent series. Com-
bining Theorem 5.2.2(a) and Theorem 5.3.2 we get

Theorem 1. Assume that S(X,R) is a set of mappings on a set X to R. Then:

(a)X-precompact (relatively X-countably compact) subsets of S are equivanishing on
KS-null sequences in X;

(b) subseries S-convergent series in X are subseries convergent uniformly on X-pre-
compact (relatively X-countably compact) subsets of S.

Assume that S(X,R) is an admissible topological group. Then sequentially precom-
pact subsets of S are X-precompact, by 3.5(2), relatively countably compact subsets of
S are relatively X-countably compact. Hence, as a particular case of Theorem 1, we get:

Theorem 2. If S(X,R) is an admissible topological group, then:

(a) sequentially precompact (relatively countably compact) subsets of S are equivanish-
ing on KS-null sequences;

(b) subseries S-convergent series in X are subseries convergent uniformly on sequen-
tially precompact (relatively countably compact) subsets of S.

As particular interpretations of Theorem 2 we get the following corollaries.

Corollary 1. Assume that S(X,R) is an admissible topological group of countably
additive set functions on a σ-field X to R. Then:

(a) sequentially precompact (relatively countably compact) subsets of S are equivan-
ishing on pairwise disjoint sequences in X or, equivalently, they are uniformly
strongly additive;

(b) series of pairwise disjoint sets in X are subseries convergent uniformly on se-
quentially precompact (relatively countably compact) subsets of S or, equivalently,
sequentially precompact (relatively countably compact) subsets of S are uniformly
countably additive.

To prove the Corollary note that pairwise disjoint sequences in X are KS-null se-
quences and that they are subseries S-convergent in X.

Corollary 2. Suppose that S(X,R) is an admissible topological group of additive
and sequentially continuous mappings on a topological group X. Then:

(a) sequentially precompact (relatively countably compact) subsets of S are equivanish-
ing on K-null sequences in X or, equivalently, they are K-equicontinous;

(b) subseries S-convergent series are subseries convergent uniformly on a sequentially
precompact (relatively countably compact) subsets of S.

To prove Corollary 2 note that K-null sequences in X are KS-null sequences in X

and apply Theorem 2.
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Corollary 3. Assume that X is a locally convex space and X ′ is the dual space of
X with an admissible group topology. Then:

(a) sequentially precompact (relatively countably compact) subsets of X ′ are equivan-
ishing on K-null sequences in X or, equivalently, they are K-equicontinuous at
zero;

(b) subseries weakly convergent series in X are subseries convergent uniformly on
sequentially precompact (relatively countably compact) subsets of X ′.

We recall that complete quasi normed groups, complete paranormed linear spaces are
examples of KM-topological groups, i.e. for each null sequence {xi} in X there exists
a scalar sequence {αi} such that αi → ∞ and {αixi} is a K-null sequence. Hence, by
Theorem 5.2.2(b), we get:

Corollary 4. X-bounded subsets of a set S(X,R) of additive and sequentially con-
tinuous mappings on a KM-topological group are equivanishing on null sequences in X

or, equivalently, they are sequentially equicontinuous at zero.

If X is a complete metric linear space, then Corollary 4 reduces to the famous Ba-
nach theorem on equicontinuity of pointwise bounded families of linear and continuous
mappings on a complete metric linear space X ([12], §15.3(2)).

Finally, we note that the definitions and theorems in this paper are expressed in terms
of convergence of sequences. The proofs are based on FLYUSA – properties of convergence
of sequences. These made possible to reformulate the results in terms of mappings on a set
X with values in a group equipped with FLYUSA – convergence.
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