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Abstract. The aim of this paper is to use an abstract realization of the Weyl correspondence
to define functions of pseudo-differential operators. We consider operators that form a self-adjoint
Banach algebra. We construct on this algebra a functional calculus with respect to functions
which are defined on the Euclidean space and have a finite number of derivatives.

1. Introduction. The aim of this paper is to use an abstract realization of the Weyl
correspondence to define functions of pseudo-differential operators. We will start with a
brief discussion of the Weyl correspondence and its abstract realization, leaving for later
to discuss the classes of pseudo-differential operators we are going to consider.

The Weyl correspondence was introduced by Hermann Weyl in [23]. An English trans-
lation of this book was published by Methuen, London in 1931 and reprinted by Dover,
New York in 1950.

The Weyl correspondence was Hermann Weyl’s very successful attempt to go from
classical observables to the quantum observables introduced by John von Neumann
around 1924 in his axiomatic formulation of quantum mechanics.

A classical observable is a real function defined on the phase space, typically R2n,
where the position-momentum coordinates (x1, . . . , xn, ξ1, . . . , ξn) live. Using von Neu-
mann’s spectral theorem one can identify quantum observables with self-adjoint, in gen-
eral unbounded, operators on some Hilbert space, usually L2(Rn). For instance, the coor-
dinate xj of the position vector is identified with the operator Xj of multiplication by xj .
The coordinate ξj of the momentum operator is identified with the operator Dj = h

2πi∂xj

where h is the Planck’s constant.
To proceed with his correspondence, Weyl postulated that given p, q ∈ Rn, the expo-

nential function e−2πi(q•x+p•ξ) should be assigned to the operator e−2πi(q•X+p•D) defined
by the spectral theorem.
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Given a function a defined on the phase space, the Fourier inversion formula gives the
formal representation

a(x, ξ) =
∫

R2n

e−2πi(q•x+p•ξ)â(p, q)dpdq

from which a(X,D) can be defined formally as

a(X,D) =
∫

R2n

e−2πi(q•X+p•D)â(p, q)dpdq. (1)

This is Weyl’s quantization rule, usually called Weyl correspondence. The right hand
side of (1) is in fact well defined as a Bochner integral with values in L2(R2n), provided
that a and â are both integrable functions. In fact, it can be shown that the operator
e−2πi(q•X+p•D) is a unitary operator. For the proof, we refer to the book by G. B. Fol-
land [10], where many other insights and connections of the Weyl correspondence are
discussed. We also refer to [19] for a presentation of the mathematical aspects of the
Weyl correspondence.

An abstract realization of the Weyl correspondence means to replace the n-tuples X
and D in (1) with other operators. It seems fair to say that E. Nelson [17] was the first
to considered an abstract realization of (1), followed by M. E. Taylor [22] and R. F. V.
Anderson [7]. A. McIntosh and A. Pryde [15] used the abstract realization of (1) in the
context of Clifford algebras.

Following these authors, we will now present an abstract realization of the Weyl
correspondence that is relevant to the application we have in mind.

Given a complex Banach algebra X and given elements A1, . . . , Ak ∈ X, the expo-
nential e2πiξ•A makes sense in X for any complex value of the parameters ξ1, . . . , ξk, and
defines a continuous function of ξ with values in X. So, the Bochner integral∫

Rk

e−2πiξ•Af̂(ξ)dξ (2)

will exist provided that ‖e−2πiξ•Af̂(ξ)‖X is a Lebesgue integrable function of ξ ∈ Rk.
Formally, (2) is obtained by making the substitution x→ A in the right hand side of the
Fourier inversion formula

f(x) =
∫

Rk

e−2πiξ•xf̂(ξ)dξ. (3)

In some cases, this substitution becomes a way of defining the action of the function f
on the k-tuple A. To check this assertion, let us look at the following case. Suppose that
X is the Banach algebra of linear bounded operators on a complex Hilbert space H. In
other words, X = L(H). Assume also that A is a k-tuple of self-adjoint operators in L(H).
Then, one can observe that (2) is, in the sense of vector valued tempered distributions,
the Fourier transform of the function of exponential type ξ → e−2πiξ•A. Paley-Wiener
theorem implies that this Fourier transform is a distribution of compact support. Thus,
we can apply the distribution(e−2πiξ•A)∧ to any polynomial P in k variables. After some
calculations, one can conclude ([22], p. 94) that this action is Ps(A), where Ps indicates
the symmetrization of P . When k = 1, this action is simply P (A).
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Going back to our initial setting, it becomes clear that to know for which functions f
is f(A) defined, one needs to obtain the best possible estimate for ‖e−2πiξ•A‖X in terms
of ξ ∈ Rk. For example, when X = L(H) and A is a k-tuple of self-adjoint operators, the
exponential e−2πiξ•A is a unitary operator. So, it suffices to consider integrable functions
f whose Fourier transform is also integrable. We will see in Section 3 that this is not
always the case.

To keep our presentation on target, we will not allude to any of the very interesting
ideas connected with the notion of functional calculi in several variables. A good reference
for further study is the paper by Z. S lodkowski and W. Żelazko [21]. We will not mention
either the algebraic formalization of the notion of functional calculus [1].

We remark that (2) is an extension to the non-commutative case of classical rules used
to define functions of a single operator, for instance the holomorphic calculus discussed
in [20]. However, unlikely the one variable case, the functional calculus given by (2) is
not multiplicative in the variable f . That is to say, the product f1f2 is not mapped in
general to f1(A)◦ f2(A). For instance, the polynomial T1T2 is mapped to the operator
(A1A2 +A2A1)/2.

A remarkable feature of (2) is that one only needs to establish its validity for single
operators. In fact, one can write∫

Rk

e−2πiξ•Af̂(ξ)dξ =
∫
|ξ|≤1

e−2πiξ•Af̂(ξ)dξ +
∫ ∞

1

∫
Sk−1

e−2πir($•A)f̂(r$)rn−1d$dr.

(4)
It only remains to observe that ‖$ •A‖X is uniformly bounded for $ ∈ Sk−1.
It is interesting to point out that (2) can be studied also in connection with operants,

a term coined by E. Nelson to indicate the new mathematical objects he introduced to
study the functional calculus of non-commuting operators. The abstract realization of the
Weyl correspondence is also related to the work of M. L. Lapidus [14] and V. Nazaikinskii,
V. Shatalov and B. Sternin [16].

Pseudo-differential operators appear in more than one way in connection with the
Weyl correspondence (1). In fact, pseudo-differential operators were introduced, (see for
instance [13]), to provide a refinement of the theory of singular integrals developed by
Calderón and Zygmund. The idea was to associate a so called symbol to an operator, in
such a way that operations among symbols would carry considerable information about
corresponding operations among operators. This idea was a refinement of ideas already
present in some of the work by Calderón and Zygmund. The Weyl correspondence works
in the opposite direction, associating operators to functions. Furthermore, the action of
the Weyl correspondence on smooth functions f with sufficient decay at infinity is given
by the following oscillatory integral ([10], p. 79)

a(X,D)(f) =
∫ ∫

e−2πi(x−y)•ξa

(
x+ y

2
, ξ

)
f(y)dydξ.

This is precisely the representation of pseudo-differential operators that L. Hörmander
[11] called the Weyl calculus of pseudo-differential operators.

The use of (2) to define functions of pseudo-differential operators goes back to the
work of J. Alvarez, A. P. Calderón, and J. Hounie ([2], [4], [5], [6]). In [2], [4], [5] we
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construct Banach algebras of pseudo-differential operators and we define the action of
functions with finitely many derivatives. We consider in [2] L2-continuous operators in
the framework of Euclidean space. In [4] we consider L2-continuous operators on compact
manifolds without border. In [5] we extend these results to the case of operators that are
bounded on Lp. The purpose of [6] is to define the action of C∞ functions on a single
pseudo-differential operator of non-positive order in the Hörmander class [12].

The operators we will consider here form a self-adjoint Banach algebra. This algebra
was introduced in [2], p. 24. Our goal is to define a functional calculus without resorting
to the notion of characteristic used in [2], [4], [5]. As we will see later, the fact that we do
not use characteristics, implies that we lose the star representation of the operator Banach
algebra into a space of differential operators. However, from the functional calculus point
of view, our approach will render a more direct way of defining functions of the operators.

Although we can define in a similar way a Banach algebra of Lp-bounded operators,
our functional calculus do not extend to this case. The obstruction is that it remains
unknown how to obtain an optimal estimate for the norm of the exponential operator
e−2πiξ•A in terms of ξ ∈ Rk. This problem is solved in [5] in the case of operators acting
on functions defined on a compact manifold without border. In [6] the problem is solved
in the case of one operator, not a Banach algebra structure. The method of proof requires
to consider symbols with infinitely many derivatives.

Our work is organized as follows. In Section 2 we introduce our Banach algebra of
pseudo-differential operators. Actually, in the notation of [12], p. 139, we will consider
the case ρ = 1, δ = 0. With no extra work but with some notational complications, we
could consider the case 0 ≤ δ < ρ ≤ 1.

In Section 3 we use the abstract realization of the Weyl correspondence to construct
a functional calculus with respect to functions with finitely many derivatives. To keep
the technicalities to a minimum, we will explain in detail the case of translation invariant
operators and we will discuss afterwards what modifications are needed in the general
case. The treatment of the translation invariant case will also allow us to justify what
type of estimate for the exponential operator could be considered optimal.

2. The classes M and R. Given m = 1, 2, . . . we consider operators A acting on
the Schwartz class S(Rn) as

A(f) =
m−1∑
j=0

∫
Rn

e−2πix•ξaj(x, ξ)f̂(ξ)dξ +R(f) (5)

where:

1. The function aj(x, ξ) has continuous derivatives in x, ξ up to the orders Mj =
2([n2 ] + m + 1) − j and Nj = n + m + 1 − j, respectively. Moreover, the quantity
‖aj‖j defined as

‖aj‖j = sup
x,ξ∈Rn

∑
0≤|α|≤Mj ,0≤|β|≤Nj

(1 + |ξ|)j+|β||∂αx ∂
β
ξ aj(x, ξ)| (6)

is finite.
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2. The operator R is linear and continuous on L2(Rn). Furthermore, for each n-tuple α
with |α| = m, the operators ∂αR andR∂α are also continuous on L2(Rn). Because of
these continuity properties, operators in the class R are usually called regularizing
operators of order m.

We indicate with M and R the classes of operators A and R, respectively.
On R we define the norm

‖R‖R = ‖R‖L(L2) + sup
|α|=m

(‖∂αR‖L(L2) + ‖R∂α‖L(L2)). (7)

In the language of [12], the function aj belongs to the class S−j1,0 defined in terms of a
finite number of derivatives. We define in M the norm

‖A‖M = inf
{m−1∑
j=0

‖aj‖j + ‖R‖R
}
.

where the infimum is taken over all possible representations of A as in (5). With this
norm, the space M becomes a normed space.

Sometimes we will indicate

Op(aj) =
∫

Rn

e−2πix•ξaj(x, ξ)f̂(ξ)dξ.

When R = 0 in (5), the operator A defines uniquely the function
∑m−1
j=0 aj(x, ξ), which

then can be considered the symbol of the operator. However, each function aj in the sum
is not uniquely determined by A. So, if one wants to have a fine tuned notion of symbol
attached to each operator, it is necessary to consider the notion of characteristic (see
for instance [2], p. 45). Roughly speaking, a characteristic is a differential operator with
vector valued coefficients. The operations among these differential operators are defined
in such a way that there is a continuous homomorphism of algebras between operators
and differential operators. Moreover, this homomorphism is a ∗-homomorphism ([9], p.88)
of the operator algebra onto the space of characteristics.

For future reference we state the following continuity result, adapted from [2], p. 4.

Theorem 1. Assume that the function a(x, ξ) has continuous derivatives in x, ξ up
to the orders [n2 ] + 1 and n+ 1 respectively, satisfying

sup
x,ξ∈Rn

∑
0≤|α|≤[ n

2 ]+1,0≤|β|≤n+1

(1 + |ξ|)j+|β||∂αx ∂
β
ξ a(x, ξ)| = M <∞.

Then, the pseudo-differential operator

A(f) =
∫

Rn

e−2πix•ξa(x, ξ)f̂(ξ)dξ

initially defined on S(Rn), extends to a continuous operator on L2(Rn). Moreover, there
exists C = C(n) > 0 such that

‖A‖L(L2) ≤ CM.

Remark 2. Theorem 1 implies that each term Op(aj) in (5) is continuous on L2(Rn).

Theorem 3. (R, ‖ ‖R) and (M, ‖ ‖M) are self-adjoint Banach algebras.
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Proof. For the proof of this result we refer to Theorem 3.1 in [2], p. 25.

Remark 4. As part of the proof of Theorem 3 one is able to conclude that R is an
ideal of M.

3. Functions of self-adjoint operators in the class M. We start by observing
that in the previous section we used the letter ξ to indicate the momentum variable in the
representation (5) of the operator A and we used the letter f to indicate the functions
on which the operator A acts. To avoid any confusion with the notation used in the
introduction, we will now write the abstract realization of the Weyl correspondence (2)
as ∫

Rk

e−2πit•Aϕ̂(t)dt (8)

for appropriate functions ϕ. As we observed in the introduction, the bulk of the work of
defining functions of operators using (8) is in the treatment of the case k = 1.

We will consider translation invariant operators, that is to say operators of the form

A(f) =
∫

Rn

e−2πix•ξa(ξ)f̂(ξ)dξ (9)

where a(ξ) =
∑m−1
j=0 aj(ξ). While avoiding excessive technical details, this case exemplifies

all the important features of the general case, which we will discuss afterwards.

Theorem 5. Given an operator A as in (9), assume that A is self-adjoint as an op-
erator acting on L2(Rn). Then, given a function ϕ that is continuous and has continuous
derivatives up to the order 3m+n−1, the abstract realization of the Weyl correspondence∫ ∞

−∞
e−2πitAϕ̂(t)dt

defines an operator in M.

Proof. As we mentioned in the introduction, it suffices to show that

‖e−2πitA‖M ≤ C(1 + |t|)3m+n−1. (10)

When m = 1 we can write e−2πitA = Op(e−2πita0). Since A is self-adjoint, we can
assume that a0 is a real function. So, we obtain

‖e−2πitA‖M = ‖Op(e−2πita0)‖M ≤ C(1 + |t|)m+n−1. (11)

We now assume that m ≥ 2. According to Theorem 3, the operator e−2πitA is well
defined, by the power series

∑∞
l=0

(−2πi)l

l! Al, as an operator inM. Moreover, we can write

e−2πitA = Op(e−2πita) = Op(e−2πitao . . . e−2πitam−1). (12)

To obtain a representation of e−2πitA as in (5), we observe that

e−2πitao . . . e−2πitam−1 =
m−1∑
j=0

e−2πitao

∑
α1+2α2+...+(m−1)αm−1=j

(−2πit)|α|

α!
aα1
1 . . . a

αm−1
m−1 + b(t)
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where b(t) includes all the terms of order ≤ −m. Because the operator R(t) = Op(b(t))
belongs to R, we have the representation

e−2πitA =

Op

(m−1∑
j=0

e−2πitao

∑
α1+2α2+...+(m−1)αm−1=j

(−2πit)|α|

α!
aα1
1 . . . a

αm−1
m−1

)
+R(t). (13)

Since A is a self-adjoint operator, we can assume that ao(ξ) is a real valued function.
Thus, we obtain the following estimate for ‖e−2πitA‖M.

‖e−2πitA‖M ≤ C(1 + |t|)m+n+1 + ‖R(t)‖R. (14)

It remains to estimate the norm ‖R(t)‖R as a function of t. To do this we write

E(t) =
m−1∑
j=0

e−2πitao

∑
α1+2α2+...+(m−1)αm−1=j

(−2πit)|α|

α!
aα1
1 . . . a

αm−1
m−1

and

R(t) = e−2πitA −Op(E(t)). (15)

We observe that e−2πitA and Op(E(t)) are smooth functions of t with values in M
and that R(t) is a smooth function of t with values in R. So, if we differentiate with
respect to t both sides of (15) we obtain

R′(t) = e−2πitA(−2πiA)−Op(E ′(t)). (16)

We can write (16) as

R′(t) = R(t)(−2πiA) +Op(E(t))(−2πiA)−Op(E ′(t)).

We claim that Op(E(t))(−2πiA)−Op(E ′(t)) is a regularizing operator. In fact, after
some straightforward computations we have

Op(E(t))(−2πiA)−Op(E ′(t)) =

Op

(
e−2πitao

m−1∑
j=0

m−1∑
l=1

∑
α1+2α2+...+(m−1)αm−1=j

(−2πi)
(−2πit)|α|

α!
aα1
1 . . . aαl+1

l . . . a
αm−1
m−1

)
−

Op

(
e−2πitao

m−1∑
j=1

∑
α1+2α2+...+(m−1)αm−1=j

(−2πi)|α| (−2πit)|α|−1

α!
aα1
1 . . . a

αm−1
m−1

)
.

With the change of variable (β1, . . . βl, . . . , βm−1) = (α1, . . . , αl+1, . . . , αm−1) we can
write

m−1∑
j=0

m−1∑
l=1

∑
α1+2α2+...+(m−1)αm−1=j

(−2πit)|α|

α!
aα1
1 . . . aαl+1

l . . . a
αm−1
m−1 =

m−1∑
j=0

m−1∑
l=1

∑
β1+2β2+...+(m−1)βm−1=j+l

βl
(−2πit)|β|−1

β!
aβ1
1 . . . a

βm−1
m−1 =

2m−2∑
s=1

m−1∑
l=1

∑
β1+2β2+...+(m−1)βm−1=s

βl
(−2πit)|β|−1

β!
aβ1
1 . . . a

βm−1
m−1 =
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2m−2∑
s=1

∑
β1+2β2+...+(m−1)βm−1=s

|β| (−2πit)|β|−1

β!
aβ1
1 . . . a

βm−1
m−1 .

Thus, we obtain that

Op(E(t))(−2πiA)−Op(E ′(t)) =

Op

(
e−2πitao

2m−2∑
s=m

∑
β1+2β2+...+(m−1)βm−1=s

(−2πi)|β| (−2πit)|β|−1

β!
aβ1
1 . . . a

βm−1
m−1

)
.

This is a regularizing operator, R1(t), as claimed. Moreover

‖R1(t)‖R ≤ C(1 + |t|)3m+n−2.

Since R(0) = 0, from the formula

R′(t) = R(t)(−2πiA) +R1(t)

we can obtain by integration

R(t) =
∫ t

0

e−2πi(t−s)AR1(s)ds.

Because the operator A is self-adjoint as an operator acting on L2(Rn), we have the
estimate

‖e−2πi(t−s)A‖L(L2) = 1. (17)

So, we obtain

‖R(t)‖R ≤ C(1 + |t|)3m+n−1.

Thus, according to (14),

‖e−2πitA‖M ≤ C(1 + |t|)3m+n−1.

This concludes the proof of Theorem 5.

Remark 6. Theorem 5 shows that in the case of pseudo-differential operators one
cannot expect to obtain anything better than a polynomial estimate for the exponential
operator. As expected in the case of translation invariant operators, the estimate (10)
provides a significant improvement over the analogous estimate proved in [2].

When the operator A is not translation invariant, the exponential e−2πitA no longer
coincides with Op(e−2πita), as shown by the calculus of pseudo-differential operators ([12],
p. 147). Moreover, one has to take into account in general the regularizing term R. These
are the technical complications added to the method by which we proved Theorem 5.
However, once we obtain the correct representation of e−2πitA to use instead of (13), the
idea of the proof applies quite directly. The price to pay is the need to increase the power
of (1+|t|) in (10), because there are already derivatives used in obtaining a representation
of the operator e−2πitA. The form of this symbol can be obtained in a way similar to the
work done in [1], p. 66.

Theorem 5 does not apply to the case of a Banach algebra of Lp-bounded operators
because the problem of finding an alternative to estimate (17) remains open.
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We observed in the introduction that Paley-Wiener’s theorem implies that ϕ(A) is
zero when supp(ϕ) ⊂ {|z| > 2π‖A‖M}. Furthermore, if we consider the set ( [1], p. 39)

Γ =
⋂
R≥0

{a0(x, ξ) : x ∈ Rn, |ξ| ≥ R}

it can be shown that Γ is contained in the spectrum of A. Moreover, the operator ϕ(A)
is a regularizing operator if the function ϕ is zero in a neighborhood of Γ.

The k-dimensional version of Theorem 5 follows from (4) and the fact that the operator
$ •A belongs to M uniformly with respect to $ ∈ Sk−1. We obtain the estimate

‖e−2πir($•A)f(r$)rk−1‖M ≤ C(1 + r)3m+n+k−2.

In the case of k commuting operators, we need to consider the joint spectrum [21] in
order to obtain a result analogous to the one mentioned above ([2], p. 58).
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