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Introduction. In this paper we present a general “gliding hump” condition that
implies the barrelledness of a normed vector space. Several examples of subspaces of l1

are shown to be barrelled using the theorem. The barrelledness of the space of Pettis
integrable functions is also implied by the theorem (this was first shown in [3]).

Results. The following theorem generalizes that given in [8].

Definition. Let X be a normed space. S ⊂ X is a bounding set if S ⊂ Sphere(X)
and if (fn) ⊂ X ′ is an unbounded sequence in the dual space of X, there exists (xn) ⊂ S
such that supn |fn(xn)| =∞.

Theorem. Let S be a bounding set in a normed space X. If for any sequence (xn) ⊂ S,
there exist a sequence (dk) ∈ Ball(l1), dk 6= 0, integers Nk ≥ 0, C > 0, such that for
every subsequence (xnk

) of (xn) there is a further subsequence (xnkl
) and x ∈ X with

x =
∑∞
j=1 tjxj and

‖tnkl
xnkl
‖ −

∞∑
j=nkl−1+Nkl−1+1

j 6=nkl

‖tjxj‖ ≥ C|dkl
|, (?)

then X is barrelled. (The condition needs to hold only for the index l greater than some
integer).

Proof. Suppose X is not barrelled. Let (fn) ⊂ X ′ be a pointwise bounded sequence
that is unbounded in norm, and let (xn) ⊂ S satisfy supn |fn(xn)| =∞. We will use the
notation

‖f‖∗ = sup
x∈S
{|f(x)|}. (1)

The paper is in final form and no version of it will be published elsewhere.
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Note that ‖f‖∗ ≤ ‖f‖. Choose n1 and xn1 such that ‖fn1‖∗ > 1
|d1| and ‖fn1‖ −

|fn1(xn1)| < C |d1|2 . Fix N1. We will also use the notation

Mk = sup{|fn(xi)| : n ∈ N, 1 ≤ i ≤ nk +Nk} (1)

Note that Mk is finite by the pointwise boundedness of (fn), and that Mk depends on
nk and Nk. Choose n2 > n1 + N1 and xn2 such that ‖fn2‖∗ > M1

2
|d2| and ‖fn2‖∗ −

|fn2(xn2)| < C |d2|2 . Continue inductively to get

‖fnk
‖∗ > Mk−1

k

|dk|
(2)

and

‖fnk
‖∗ − |fnk

(xnk
)| < C

|dk|
2
. (3)

Now choose x ∈ X that satisfies the hypotheses of the theorem. Then

|fnkl
(x)| =

∣∣∣fnkl

( nkl−1+Nkl−1∑
j=1

tjxj

)
+ fnkl

(tnkl
xnkl

) + fnkl

( ∞∑
j=nkl−1+Nkl−1+1

j 6=nkl

tjxj

)∣∣∣

≥ |fnkl
(tnkl

xnkl
)| −

∣∣∣fnkl

( nkl−1+Nkl−1∑
j=1

tjxj

)∣∣∣− ∣∣∣fnkl

( ∞∑
j=nkl−1+Nkl−1+1

j 6=nkl

tjxj

)∣∣∣
≥ |fnkl

(tnkl
xnkl

)| −Mkl−1 − ‖fnkl
‖∗
( ∞∑
j=nkl−1+Nkl−1+1

j 6=nkl

‖tjxj‖
)

using (1) and the fact that (tj) ∈ Ball(l1). Continuing,

≥ ‖tnkl
xnkl
‖‖fnkl

‖∗
(

1− C |dkl
|

2

)
−Mkl−1 − ‖fnkl

‖∗
( ∞∑
j=nkl−1+Nkl−1+1

j 6=nkl

‖tjxj‖
)

using (3). Then,

≥ ‖tnkl
xnkl
‖‖fnkl

‖∗
(

1− C |dkl
|

2

)
−Mkl−1 − ‖fnkl

‖∗(‖tnkl
xnkl
‖ − C|dkl

|)

using (?) on the third term. Simplifying we get

= ‖fnkl
‖∗C|dkl

|
(

1−
‖tnkl

xnkl
‖

2

)
−Mkl−1 .

Since ‖tnkl
xnkl
‖ will eventually be less than one we can write

≥ ‖fnkl
‖∗C
|dkl
|

2
−Mkl−1 ≥

(
C
kl
2
− 1
)
Mkl−1

using (2). This goes to infinity as l→∞, which contradicts the assumption of pointwise
boundedness.
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There are several examples of barrelledness in normed spaces that are implied by the
theorem.

Corollary 1. Let S be a bounding set in a normed space X. Suppose that for any
sequence (xn) ⊂ S and any null sequence (tn) of real numbers, we have for every subse-
quence (tnk

xnk
) of (tnxn) there is a further subsequence (tnkl

xnkl
) such that

∑
tnkl

xnkl

converges in X. Then X is barrelled.

Proof. Choose tn = 1
n! , dk = 1

k! and Nk = 0 in the theorem. Let (nk) = (k), and
x =

∑
tkl
xkl

. Then we can show that

‖tnkl
xnkl
‖ −

∞∑
j=nkl−1+1

j 6=nkl

‖tjxj‖ ≥
1
2

1
kl!

.

We have ‖tnkl
xnkl
‖ = 1

kl!
and noting that tj = 0 for j 6= kl, it is easy to check that
∞∑

j=nkl−1+1

j 6=nkl

‖tjxj‖ =
∞∑
j=1

1
(kl+j)!

<
1
2

1
kl!

for kl ≥ 3, so the result follows from the theorem.

A topological vector space X is a K-space if for every null sequence (xn) in X, every
subsequence of (xn) has a further subsequence (xnk

) such that
∑∞
k=1 xnk

converges in X.
X is an A-space if for every bounded sequence (xn) in X and every null sequence of real
(or complex) numbers (tn), every subsequence of (tnxn) has a subsequence (tnk

xnk
) such

that
∑∞
k=1 tnk

xnk
converges in X. The corollary above implies that normed A-spaces,

and thus normed K-spaces, are barrelled. (See [9] for more information on these spaces).
It is shown in the paper [3] that the space of Pettis integrable functions defined on

an atomless measure space satisfies property K with respect to a bounding set and so is
barrelled. We refer the interested reader to the paper for details.

The following corollary is a general condition for a dense subspace of l1 to be barrelled.
Φ denotes the span of {ei : i ∈ N}, the canonical unit vectors.

Corollary 2. Let Φ ⊂ E ⊂ l1. E is barrelled if there exist a sequence (dk) ∈ Ball(l1)
with dk 6= 0 for all k, C > 0, and integers Nk ≥ 0 such that for every increasing sequence
of integers (nk), there is a subsequence (nkl

), and x ∈ E such that

‖xnkl
enkl ‖ −

∞∑
j=nkl−1+Nkl−1+1

j 6=nkl

‖xjej‖ ≥ C|dkl
|.

(Again, the condition need only hold for the index l greater than some integer).

Proof. The canonical unit vectors form a bounding set in l1, so the result follows
directly from the theorem.

There are many examples of dense, barrelled subspaces of l1. See [6] for an application
of these spaces. We next show that some of these examples are implied by the corollary.
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Corollary 3. Let Φ ⊂ E ⊂ l1. Suppose that E is monotone (that is, χA · x ∈ E for
all A ⊂ N and x ∈ E, where · stands for coordinatewise multiplication) and there is a
fixed sequence (bk) ∈ l1\Φ such that for any increasing sequence of integers (ik) there is
a subsequence (ikl

) and x ∈ E for which xikl
= bkl

. Then E is barrelled.

Proof. We need to find a subsequence of (bk) that satisfies the hypotheses of the
Corollary 2. We can find A ⊂ N such that χA · (bk) = (gkeik), where (|gk|) is a non-zero,
decreasing sequence that satisfies |gk| >

∑
j>k |gj |. Now let dk = |gk|. Then, since E is

monotone, we can find an infinite subset B and x ∈ E such that χB · (|xikl
|) = dkl

. Let
Nk = 0. Note that xj = 0 for j 6= ikl

. Then

|xikl
| −

∞∑
j=ikl−1+1

j 6=ikl

|xj | ≥ dkl

So the result follows from Corollary 2.

The following result is due to Bennett [2].

Corollary 4. l0 = ∩0<p<1l
p is a barrelled subspace of l1.

Proof. l0 is monotone and satisfies the hypotheses of Corollary 3 (say with bk = 2−k)
so this result follows.

Bennett actually showed that scarce copies of l0 (copies that satisfy a sparseness
condition) are also barrelled. See [1] for details. This follows easily from the above result.

The following example is due to Ruckle [4]. A sequence space is symmetric if xπ(n) ∈ E
for all (xn) ∈ E and for any permutation π of N.

Corollary 5. Let Φ ⊂ E ⊂ l1, E 6= Φ, and E symmetric. Then E is a dense,
barrelled subspace of l1.

Proof. Actually, Ruckle’s proof contains ideas similar to those used in the main
Theorem. We will need to define Nk to be something other than 0 for the first time. We
essentially follow his construction and notation.

Let x ∈ E\Φ, and (hj) an increasing sequence in N such that

hj − hj−1 > 1 and |xhj
| < |xhj−1 |.

Let π be the permutation of the integers which interchanges h2n−1 and h2n and leaves
the other integers the same.

If v = x− xπ then v ∈ E and

vj = 0 for j 6∈ {h1, h2, . . .}
vh2n−1 = −vh2n

6= 0 for all n ∈ N.

Let {n1, n2, . . .} be an increasing sequence of integers for which∑
j>m

|vh2nj−1 |+ |vh2nj
| < 1

2
|vhnm

|. (4)
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Denote by θ the permutation which interchanges h2nj−1 and h2nj , and leaves the remain-
ing integers unchanged. Let u = 1

2 (v − vθ). Then u ∈ E,

uj = 0 for j 6∈ {h2nj−1, h2nj
, j = 1, 2, 3, . . .}

uh2nj−1 = −uh2nj
6= 0.

Note that if dk = |uh2nk−1 |, then ∑
k>m

dk <
1
4
dm. (5)

We will define a sequence y that is a permutation of u and that satisfies the hypotheses
of Corollary 2 with Nk = 1 for all k.

Let (ik) be any sequence of integers with ik > ik−1 + 1 and i1 > 2. Let

y1 = −d1, yi1 = d1, yik = dk, yik+1 = −dk+1, and yj = 0 otherwise.

Then y is a permutation of u since it exhausts ±ak and has infinitely many zeros. We
will show that y satisfies the hypotheses of Corollary 2.

We need to show that

‖yikeik‖ −
∞∑

j=ik−1+2
j 6=nk

‖yjej‖ ≥
1
2
|dk|.

This follows easily from conditions (4) and (5) above. Note that we need Nk = 1 for the
result to follow.

The following corollary uses the idea of a modulus. A modulus is a non-negative,
subadditive function q on [0,∞) which is continuous and 0 at 0.

Corollary 6. Subspaces of l1 determined by a modulus q are barrelled.

Proof. Ruckle shows in [5] that the space of all sequences s in l1 that satisfy∑
j q(sj) < ∞ is symmetric and properly contains Φ, so this result follows from the

previous corollary.

The following result is due to Saxon [7]. If b is any fixed sequence in l1 with infinite
support, then the dilation space Eb is the span of Φ and the vectors

∑
i bie

ni as (ni)
ranges through all increasing subsequences of N.

Corollary 7. Dilation subspaces of l1 that properly contain Φ are barrelled.

Proof. Let b be a fixed sequence in l1 with infinite support, and let bij = dj be a
subsequence of b that is non-zero, |dj | decreasing, and |dj | > 2

∑
l>j |dl|. We can construct

a sequence in Eb that satisfies the hypotheses of Corollary 2 by a cancellation process
similar to that used in the corollary above on symmetric spaces. In what follows, the
subsequence (bij ) is shown in brackets. We can define dilations of (bi), denoted (ci) and
(fi), as follows:

(bi) = b1 〈b2〉 b3 b4 〈b5〉 b6 〈b7〉 b8 . . .
(ci) = b1 0 〈b2〉 b3 b4 0 〈b5〉 b6 0 〈b7〉 b8 . . .
(fi) = b1 〈b2〉 0 b3 b4 〈b5〉 0 b6 〈b7〉 0 b8 . . .
(ci)− (fi) = 0 − b2 b2 0 0 − b5 b5 0 − b7 b7 . . .
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Let (xi) = (ci) − (fi) and Nj = ij+1 − ij . Note that the sequence Nj is fixed. Given
any increasing sequence of integers (ik) we can find a subsequence (ikl

) so that we can
dilate the sequence x to define a sequence that satisfies yikl

= dl, yikl−1+Nkl−1
= −dl,

and yj = 0 otherwise. This can be accomplished by adding zeros between the −dl and dl
terms. We can check that the hypotheses of the theorem are satisfied:

|yikl
| −

∞∑
j=ikl−1+Nkl−1+1

j 6=ikl

|yj | >
1
2
|dl| >

1
2
|dkl
|.

The last inequality follows from the definition of dk and the fact that |dk| is decreasing.

In fact, we do not know of a dense, barrelled subspace of l1 for which the barrelledness
is not implied by Corollary 2. It would be very interesting to have an example of such a
space or, even better, a gliding hump characterization of the dense, barrelled subspaces
of l1.
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