ALGEBRAIC ANALYSIS AND RELATED TOPICS BANACH CENTER PUBLICATIONS, VOLUME 53 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2000

NORMED BARRELLED SPACES

CHRISTOPHER E. STUART

Department of Mathematical Sciences, Eastern New Mexico University Station 18, Portales, NM 88130, U.S.A. E-mail: Christopher.Stuart@enmu.edu

Introduction. In this paper we present a general "gliding hump" condition that implies the barrelledness of a normed vector space. Several examples of subspaces of l^1 are shown to be barrelled using the theorem. The barrelledness of the space of Pettis integrable functions is also implied by the theorem (this was first shown in [3]).

Results. The following theorem generalizes that given in [8].

DEFINITION. Let X be a normed space. $S \subset X$ is a bounding set if $S \subset Sphere(X)$ and if $(f_n) \subset X'$ is an unbounded sequence in the dual space of X, there exists $(x_n) \subset S$ such that $\sup_n |f_n(x_n)| = \infty$.

THEOREM. Let S be a bounding set in a normed space X. If for any sequence $(x_n) \subset S$, there exist a sequence $(d_k) \in Ball(l^1)$, $d_k \neq 0$, integers $N_k \geq 0$, C > 0, such that for every subsequence (x_{n_k}) of (x_n) there is a further subsequence $(x_{n_{k_l}})$ and $x \in X$ with $x = \sum_{j=1}^{\infty} t_j x_j$ and

$$\|t_{n_{k_l}}x_{n_{k_l}}\| - \sum_{\substack{j=n_{k_{l-1}}+N_{k_{l-1}}+1\\j\neq n_{k_l}}}^{\infty} \|t_jx_j\| \ge C|d_{k_l}|, \qquad (\star)$$

then X is barrelled. (The condition needs to hold only for the index l greater than some integer).

PROOF. Suppose X is not barrelled. Let $(f_n) \subset X'$ be a pointwise bounded sequence that is unbounded in norm, and let $(x_n) \subset S$ satisfy $\sup_n |f_n(x_n)| = \infty$. We will use the notation

$$||f||_* = \sup_{x \in S} \{|f(x)|\}.$$
(1)

The paper is in final form and no version of it will be published elsewhere.

^[205]

Note that $||f||_* \leq ||f||$. Choose n_1 and x_{n_1} such that $||f_{n_1}||_* > \frac{1}{|d_1|}$ and $||f_{n_1}|| - |f_{n_1}(x_{n_1})| < C\frac{|d_1|}{2}$. Fix N_1 . We will also use the notation

$$M_k = \sup\{|f_n(x_i)| : n \in \mathbf{N}, \ 1 \le i \le n_k + N_k\} \ (1)$$

Note that M_k is finite by the pointwise boundedness of (f_n) , and that M_k depends on n_k and N_k . Choose $n_2 > n_1 + N_1$ and x_{n_2} such that $||f_{n_2}||_* > M_1 \frac{2}{|d_2|}$ and $||f_{n_2}||_* - |f_{n_2}(x_{n_2})| < C \frac{|d_2|}{2}$. Continue inductively to get

$$||f_{n_k}||_* > M_{k-1} \frac{k}{|d_k|} \tag{2}$$

and

$$||f_{n_k}||_* - |f_{n_k}(x_{n_k})| < C \frac{|d_k|}{2}.$$
(3)

Now choose $x \in X$ that satisfies the hypotheses of the theorem. Then

$$\begin{split} |f_{n_{k_{l}}}(x)| &= \left| f_{n_{k_{l}}} \Big(\sum_{j=1}^{n_{k_{l-1}}+N_{k_{l-1}}} t_{j} x_{j} \Big) + f_{n_{k_{l}}} (t_{n_{k_{l}}} x_{n_{k_{l}}}) + f_{n_{k_{l}}} \Big(\sum_{j=n_{k_{l-1}}+N_{k_{l-1}}+1}^{\infty} t_{j} x_{j} \Big) \right| \\ &\geq |f_{n_{k_{l}}}(t_{n_{k_{l}}} x_{n_{k_{l}}})| - \left| f_{n_{k_{l}}} \Big(\sum_{j=1}^{n_{k_{l-1}}+N_{k_{l-1}}} t_{j} x_{j} \Big) \right| - \left| f_{n_{k_{l}}} \Big(\sum_{j=n_{k_{l-1}}+N_{k_{l-1}}+1}^{\infty} t_{j} x_{j} \Big) \right| \\ &\geq |f_{n_{k_{l}}}(t_{n_{k_{l}}} x_{n_{k_{l}}})| - M_{k_{l-1}} - \|f_{n_{k_{l}}}\|_{*} \Big(\sum_{j=n_{k_{l-1}}+N_{k_{l-1}}+1}^{\infty} \|t_{j} x_{j}\| \Big) \\ &\geq |f_{n_{k_{l}}}(t_{n_{k_{l}}} x_{n_{k_{l}}})| - M_{k_{l-1}} - \|f_{n_{k_{l}}}\|_{*} \Big(\sum_{j=n_{k_{l-1}}+N_{k_{l-1}}+1}^{\infty} \|t_{j} x_{j}\| \Big) \end{split}$$

using (1) and the fact that $(t_j) \in Ball(l^1)$. Continuing,

$$\geq \|t_{n_{k_{l}}}x_{n_{k_{l}}}\|\|f_{n_{k_{l}}}\|_{*}\left(1-C\frac{|d_{k_{l}}|}{2}\right)-M_{k_{l-1}}-\|f_{n_{k_{l}}}\|_{*}\left(\sum_{\substack{j=n_{k_{l-1}}+N_{k_{l-1}}+1\\j\neq n_{k_{l}}}}^{\infty}\|t_{j}x_{j}\|\right)$$

using (3). Then,

$$\geq \|t_{n_{k_l}} x_{n_{k_l}}\| \|f_{n_{k_l}}\|_* \left(1 - C \frac{|d_{k_l}|}{2}\right) - M_{k_{l-1}} - \|f_{n_{k_l}}\|_* (\|t_{n_{k_l}} x_{n_{k_l}}\| - C|d_{k_l}|)$$

using (\star) on the third term. Simplifying we get

$$= \|f_{n_{k_l}}\|_* C |d_{k_l}| \left(1 - \frac{\|t_{n_{k_l}} x_{n_{k_l}}\|}{2}\right) - M_{k_{l-1}}.$$

Since $||t_{n_{k_l}}x_{n_{k_l}}||$ will eventually be less than one we can write

$$\geq \|f_{n_{k_l}}\|_* C \frac{|d_{k_l}|}{2} - M_{k_{l-1}} \geq \left(C\frac{k_l}{2} - 1\right) M_{k_{l-1}}$$

using (2). This goes to infinity as $l \to \infty$, which contradicts the assumption of pointwise boundedness.

There are several examples of barrelledness in normed spaces that are implied by the theorem.

COROLLARY 1. Let S be a bounding set in a normed space X. Suppose that for any sequence $(x_n) \subset S$ and any null sequence (t_n) of real numbers, we have for every subsequence $(t_{n_k}x_{n_k})$ of (t_nx_n) there is a further subsequence $(t_{n_{k_l}}x_{n_{k_l}})$ such that $\sum t_{n_{k_l}}x_{n_{k_l}}$ converges in X. Then X is barrelled.

PROOF. Choose $t_n = \frac{1}{n!}$, $d_k = \frac{1}{k!}$ and $N_k = 0$ in the theorem. Let $(n_k) = (k)$, and $x = \sum t_{k_l} x_{k_l}$. Then we can show that

$$||t_{n_{k_l}} x_{n_{k_l}}|| - \sum_{\substack{j=n_{k_{l-1}}+1\\j\neq n_{k_l}}}^{\infty} ||t_j x_j|| \ge \frac{1}{2} \frac{1}{k_l!}.$$

We have $||t_{n_{k_l}}x_{n_{k_l}}|| = \frac{1}{k_l!}$ and noting that $t_j = 0$ for $j \neq k_l$, it is easy to check that

$$\sum_{\substack{j=n_{k_{l-1}}+1\\j\neq n_{k_l}}}^{\infty} \|t_j x_j\| = \sum_{j=1}^{\infty} \frac{1}{(k_{l+j})!} < \frac{1}{2} \frac{1}{k_l!}$$

for $k_l \geq 3$, so the result follows from the theorem.

A topological vector space X is a K-space if for every null sequence (x_n) in X, every subsequence of (x_n) has a further subsequence (x_{n_k}) such that $\sum_{k=1}^{\infty} x_{n_k}$ converges in X. X is an A-space if for every bounded sequence (x_n) in X and every null sequence of real (or complex) numbers (t_n) , every subsequence of $(t_n x_n)$ has a subsequence $(t_{n_k} x_{n_k})$ such that $\sum_{k=1}^{\infty} t_{n_k} x_{n_k}$ converges in X. The corollary above implies that normed A-spaces, and thus normed K-spaces, are barrelled. (See [9] for more information on these spaces).

It is shown in the paper [3] that the space of Pettis integrable functions defined on an atomless measure space satisfies property K with respect to a bounding set and so is barrelled. We refer the interested reader to the paper for details.

The following corollary is a general condition for a dense subspace of l^1 to be barrelled. Φ denotes the span of $\{e^i : i \in \mathbf{N}\}$, the canonical unit vectors.

COROLLARY 2. Let $\Phi \subset E \subset l^1$. E is barrelled if there exist a sequence $(d_k) \in Ball(l^1)$ with $d_k \neq 0$ for all k, C > 0, and integers $N_k \geq 0$ such that for every increasing sequence of integers (n_k) , there is a subsequence (n_{k_l}) , and $x \in E$ such that

$$\|x_{n_{k_l}}e^{n_{k_l}}\| - \sum_{\substack{j=n_{k_{l-1}}+N_{k_{l-1}}+1\\j\neq n_{k_l}}}^{\infty} \|x_j e^j\| \ge C|d_{k_l}|$$

(Again, the condition need only hold for the index l greater than some integer).

PROOF. The canonical unit vectors form a bounding set in l^1 , so the result follows directly from the theorem.

There are many examples of dense, barrelled subspaces of l^1 . See [6] for an application of these spaces. We next show that some of these examples are implied by the corollary. COROLLARY 3. Let $\Phi \subset E \subset l^1$. Suppose that E is monotone (that is, $\chi_A \cdot x \in E$ for all $A \subset \mathbf{N}$ and $x \in E$, where \cdot stands for coordinatewise multiplication) and there is a fixed sequence $(b_k) \in l^1 \setminus \Phi$ such that for any increasing sequence of integers (i_k) there is a subsequence (i_{k_l}) and $x \in E$ for which $x_{i_{k_l}} = b_{k_l}$. Then E is barrelled.

PROOF. We need to find a subsequence of (b_k) that satisfies the hypotheses of the Corollary 2. We can find $A \subset \mathbf{N}$ such that $\chi_A \cdot (b_k) = (g_k e^{i_k})$, where $(|g_k|)$ is a non-zero, decreasing sequence that satisfies $|g_k| > \sum_{j>k} |g_j|$. Now let $d_k = |g_k|$. Then, since E is monotone, we can find an infinite subset B and $x \in E$ such that $\chi_B \cdot (|x_{i_k}|) = d_{k_l}$. Let $N_k = 0$. Note that $x_j = 0$ for $j \neq i_{k_l}$. Then

$$|x_{i_{k_l}}| - \sum_{\substack{j=i_{k_{l-1}}+1\\j \neq i_{k_l}}}^{\infty} |x_j| \ge d_k$$

So the result follows from Corollary 2. \blacksquare

The following result is due to Bennett [2].

COROLLARY 4. $l^0 = \bigcap_{0 is a barrelled subspace of <math>l^1$.

PROOF. l^0 is monotone and satisfies the hypotheses of Corollary 3 (say with $b_k = 2^{-k}$) so this result follows.

Bennett actually showed that scarce copies of l^0 (copies that satisfy a sparseness condition) are also barrelled. See [1] for details. This follows easily from the above result.

The following example is due to Ruckle [4]. A sequence space is symmetric if $x_{\pi(n)} \in E$ for all $(x_n) \in E$ and for any permutation π of **N**.

COROLLARY 5. Let $\Phi \subset E \subset l^1$, $E \neq \Phi$, and E symmetric. Then E is a dense, barrelled subspace of l^1 .

PROOF. Actually, Ruckle's proof contains ideas similar to those used in the main Theorem. We will need to define N_k to be something other than 0 for the first time. We essentially follow his construction and notation.

Let $x \in E \setminus \Phi$, and (h_j) an increasing sequence in **N** such that

$$h_j - h_{j-1} > 1$$
 and $|x_{h_j}| < |x_{h_{j-1}}|$.

Let π be the permutation of the integers which interchanges h_{2n-1} and h_{2n} and leaves the other integers the same.

If $v = x - x_{\pi}$ then $v \in E$ and

$$v_j = 0 \text{ for } j \notin \{h_1, h_2, \ldots\}$$
$$v_{h_{2n-1}} = -v_{h_{2n}} \neq 0 \text{ for all } n \in \mathbf{N}.$$

Let $\{n_1, n_2, \ldots\}$ be an increasing sequence of integers for which

$$\sum_{j>m} |v_{h_{2n_j-1}}| + |v_{h_{2n_j}}| < \frac{1}{2} |v_{h_{n_m}}|.$$
(4)

Denote by θ the permutation which interchanges h_{2n_j-1} and h_{2n_j} , and leaves the remaining integers unchanged. Let $u = \frac{1}{2}(v - v_{\theta})$. Then $u \in E$,

$$u_j = 0 \text{ for } j \notin \{h_{2n_j-1}, h_{2n_j}, j = 1, 2, 3, \ldots\}$$
$$u_{h_{2n_j-1}} = -u_{h_{2n_j}} \neq 0.$$

Note that if $d_k = |u_{h_{2n_k}-1}|$, then

$$\sum_{k>m} d_k < \frac{1}{4} d_m. \tag{5}$$

We will define a sequence y that is a permutation of u and that satisfies the hypotheses of Corollary 2 with $N_k = 1$ for all k.

Let (i_k) be any sequence of integers with $i_k > i_{k-1} + 1$ and $i_1 > 2$. Let

 $y_1 = -d_1$, $y_{i_1} = d_1$, $y_{i_k} = d_k$, $y_{i_k+1} = -d_{k+1}$, and $y_j = 0$ otherwise.

Then y is a permutation of u since it exhausts $\pm a_k$ and has infinitely many zeros. We will show that y satisfies the hypotheses of Corollary 2.

We need to show that

$$\|y_{i_k}e^{i_k}\| - \sum_{\substack{j=i_{k-1}+2\\j\neq n_k}}^{\infty} \|y_je^j\| \ge \frac{1}{2}|d_k|.$$

This follows easily from conditions (4) and (5) above. Note that we need $N_k = 1$ for the result to follow.

The following corollary uses the idea of a *modulus*. A modulus is a non-negative, subadditive function q on $[0, \infty)$ which is continuous and 0 at 0.

COROLLARY 6. Subspaces of l^1 determined by a modulus q are barrelled.

PROOF. Ruckle shows in [5] that the space of all sequences s in l^1 that satisfy $\sum_j q(s_j) < \infty$ is symmetric and properly contains Φ , so this result follows from the previous corollary.

The following result is due to Saxon [7]. If b is any fixed sequence in l^1 with infinite support, then the *dilation space* E_b is the span of Φ and the vectors $\sum_i b_i e^{n_i}$ as (n_i) ranges through all increasing subsequences of **N**.

COROLLARY 7. Dilation subspaces of l^1 that properly contain Φ are barrelled.

PROOF. Let b be a fixed sequence in l^1 with infinite support, and let $b_{i_j} = d_j$ be a subsequence of b that is non-zero, $|d_j|$ decreasing, and $|d_j| > 2 \sum_{l>j} |d_l|$. We can construct a sequence in E_b that satisfies the hypotheses of Corollary 2 by a cancellation process similar to that used in the corollary above on symmetric spaces. In what follows, the subsequence (b_{i_j}) is shown in brackets. We can define dilations of (b_i) , denoted (c_i) and (f_i) , as follows:

$$\begin{array}{ll} (b_i) &= b_1 \ \langle b_2 \rangle \ b_3 \ b_4 \ \langle b_5 \rangle \ b_6 \ \langle b_7 \rangle \ b_8 \ \dots \\ (c_i) &= b_1 \ 0 \ \langle b_2 \rangle \ b_3 \ b_4 \ 0 \ \langle b_5 \rangle \ b_6 \ 0 \ \langle b_7 \rangle \ b_8 \ \dots \\ (f_i) &= b_1 \ \langle b_2 \rangle \ 0 \ b_3 \ b_4 \ \langle b_5 \rangle \ 0 \ b_6 \ \langle b_7 \rangle \ 0 \ b_8 \ \dots \\ (c_i) - (f_i) &= 0 \ - b_2 \ b_2 \ 0 \ 0 \ - b_5 \ b_5 \ 0 \ - b_7 \ b_7 \ \dots \end{array}$$

Let $(x_i) = (c_i) - (f_i)$ and $N_j = i_{j+1} - i_j$. Note that the sequence N_j is fixed. Given any increasing sequence of integers (i_k) we can find a subsequence (i_{k_l}) so that we can dilate the sequence x to define a sequence that satisfies $y_{i_{k_l}} = d_l$, $y_{i_{k_{l-1}}+N_{k_{l-1}}} = -d_l$, and $y_j = 0$ otherwise. This can be accomplished by adding zeros between the $-d_l$ and d_l terms. We can check that the hypotheses of the theorem are satisfied:

$$|y_{i_{k_{l}}}| - \sum_{\substack{j=i_{k_{l-1}}+N_{k_{l-1}}+1\\j\neq i_{k_{l}}}}^{\infty} |y_{j}| > \frac{1}{2}|d_{l}| > \frac{1}{2}|d_{k_{l}}|.$$

The last inequality follows from the definition of d_k and the fact that $|d_k|$ is decreasing.

In fact, we do not know of a dense, barrelled subspace of l^1 for which the barrelledness is not implied by Corollary 2. It would be very interesting to have an example of such a space or, even better, a gliding hump characterization of the dense, barrelled subspaces of l^1 .

References

- G. BENNETT, A new class of sequence spaces with applications in summability theory, J. Reine Angew. Math. 266 (1974), 49–75.
- [2] G. BENNETT, Some inclusion theorems for sequence spaces, Pacific J. Math. 64 (1973), 17–30.
- [3] L. DREWNOWSKI, M. FLORENCIO, and P. J. PAUL, The space of Pettis integrable functions is barrelled, Proc. Amer. Math. Soc. 114 (1992), 687–694.
- [4] W. RUCKLE, The strong φ topology on symmetric sequence spaces, Canad. J. Math. 37 (1985), 1112–1133.
- W. RUCKLE, FK spaces in which the sequence of coordinate functionals is bounded, Canad. J. Math. (1973), 973–978.
- W. RUCKLE and S. SAXON, Generalized sectional convergence and multipliers, J. Math. Analysis and Appl. 193 (1995), 680–705.
- [7] S. SAXON, Some normed barrelled spaces which are not Baire, Math. Ann. 209 (1974), 153-160.
- [8] C. STUART, Dense barrelled subspaces of Banach spaces, Collect. Math. 47 (1996), 137–143.
- [9] C. SWARTZ, Introduction to Functional Analysis, Marcel Dekker, 1992.