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Abstract. Let (F,D) be a differential field with the subfield of constants C (c ∈ C iff
Dc = 0). We consider linear differential equations

(1) Ly = Dny + an−1D
n−1y + . . .+ a0y = 0,

where a0, . . . , an ∈ F , and the solution y is in F or in some extension E of F (E ⊇ F ).
There always exists a (minimal, unique) extension E of F , where Ly = 0 has a full system

y1, . . . , yn of linearly independent (over C) solutions; it is called the Picard-Vessiot extension
of F

E = PV (F,Ly = 0).

The Galois group G(E|F ) of an extension field E ⊇ F consists of all differential automorphisms
of E leaving the elements of F fixed. If E = PV (F,Ly = 0) is a Picard-Vessiot extension,
then the elements g ∈ G(E|F ) are n × n matrices, n = ordL, with entries from C, the field of
constants.

Is it possible to solve an equation (1) by means of linear differential equations of lower order
≤ n− 1? We answer this question by giving neccessary and sufficient conditions concerning the
Galois group G(E|F ) and its Lie algebra A(E|F ).

I. Introduction. A derivation D of a ring A is an additive mapping a → Da of A
into itself satisfying

D(a · b) = Da · b+ a ·Db.

A differential field (F,D) is a commutative field F together with a derivation D. In any
differential field (F,D) the elements c with derivative Dc = 0 form a subfield C, called
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the field of constants, see Kaplansky [1]. In this paper we assume that the characteristic
of the field F is 0, and that the subfield of constants C is algebraically closed.

Let (F,D) be a differential field. We consider monic, linear, differential equations

(1) Ly = Dny + an−1D
n−1y + . . .+ a0y = 0,

and their inhomogeneous counterparts Ly = b, where b, a0, . . . , an−1 ∈ F and the solution
y is in F or in some extension E of F (E ⊇ F ).

There always exists a (minimal, unique) extension E of F , where Ly = 0 has a full
system u1, . . . , un of linearly independent (over the constants) solutions; it is called the
Picard-Vessiot extension of F and denoted by

E = PV F (Ly = 0) = PV F ;

for its existence and uniqueness, see Magid [1].
We have
a) PV F (Ly = 0) = F < u1, . . . , un >, where u1, . . . , un is a full system of linearly

independent (over the constants) solutions of Ly = 0 and < u1, . . . , un > means that
we adjoin to F the variables uj and Dmuj for all j = 1, . . . , n and m ≥ 1, and form
polynomials and rational functions in those variables with coefficients from F .

b) PV F (Ly = 0) has the same field of constants as F .
By going—possibly—to a further extension, we can also find all solutions of the

inhomogeneous equation Ly = b, and define analogously the Picard-Vessiot extension
PV F (Ly = b).

Looking closely at the existence proof of Magid [1], we see that we can prove a little
more:

Theorem 1. Let (F,D) π←→ (F ′, D′) be two isomorphic differential fields with sub-
fields of constants C and C ′ respectively (it follows that C π←→ C ′). Let L be given by
(1) and consider its isomorphic image

πLy = L′y = D′
n
y + a′n−1D

′n−1
y + . . .+ a′0y.

Then π extends to a differential isomorphism π̃ of the Picard-Vessiot extensions

PV F (Ly = 0) π̃←→ PV F ′(L′y = 0).

It follows that the Galois groups G and G′ of those extensions are isomorphic:

G′ = π̃ ◦G ◦ π̃−1.

For the proof see Skórnik, Wloka [2].
Theorem 1 applies to various operator fields (Mikusiński operators, Bessel operators

etc.)

Example 1. Let C(z) be the field of rational functions in the complex variable z∈C.
Then (C(z), ddz ) is a differential field with C = C. Defining D{f(t)} = {−tf(t)} for
functions {f(t)}, and extendingD by the quotient rule, we find that the field of Mikusiński
operators (M, D) is a differential field with CM = C, see Mikusiński [1]. Let C(s) denote
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the field of rational functions in the (Mikusiński) operator s = 1
{1} . We have (Wloka [1])

D =
d

ds
, and (C(z),

d

dz
) π←→ (C(s), D),

where the isomorphism π is given by π = id on C and π(z) = s.
The Galois group G(E|F ) of an extension field E⊇F consists of all differential auto-

morphisms of E leaving the elements of F fixed. If E = PV F (Ly = 0) is a Picard-Vessiot
extension, then the elements g ∈ G(E|F ) are n × n matrices, n = ordL, with elements
from C, the field of constants. G is an algebraic matrix group, closed in the Zariski
topology:

G(PV F (Ly = 0)|F ) ⊆ GL(n,C).

II. m-Reduction. We define an m-reduction chain, m = 0, 1, 2, . . . , as a chain of
intermediate differential fields:

(2) F = F1 ⊆ F2 ⊆ . . . ⊆ Fl,

such that for i = 2, . . . , l, either

a) Fi is a finite algebraic extension of Fi−1 (we put m = 0 in this case), or
b) Fi is a Picard-Vessiot extension of Fi−1 associated with an (inhomogeneous) differ-

ential equation Li−1y = bi−1 with coefficients (and bi−1) in Fi−1 and with ordLi−1 ≤ m.
Form ≥ 2 we may take in the definition above only homogeneous equations Li−1y = 0,

because a solution of Dy = a (integrals!) is a solution of the homogeneous equation

D2y − Da

a
Dy = 0.

An equation (1) is called m-reducible if there exists an m-reduction chain (2) such
that the Picard-Vessiot extension PV F (Ly = 0) of F , associated with Ly = 0, lies in Fl:

PV F (Ly = 0) ⊆ Fl.

The case m = 1 is well known, it is Liouville reduction, see Kaplansky [1], Magid [1].
The case m = 2 was studied in Singer [1], it is called Euler reduction, or reduction by
Mathematical Physics.

III. Conditions on groups and Lie algebras. Now we bring into play the Galois
group G(E|F ) of an equation Ly = 0, here we put E = PV F (Ly = 0). We use the
language of linear algebraic groups and their Lie algebras, see Humphreys [1, 2].

An algebraic group G is simple if it has no proper infinite normal subgroups. A Lie
algebra g is simple if it has no proper ideals. An algebraic group G has a Lie algebra g,
it is also the Lie algebra of the component of unity GI , and we have: GI is simple if and
only if g is simple. We call an equation (1) simple if GI(E|F ) is simple or if g(E|F ) is
simple, here we denoted E = PV F (Ly = 0).

Example 2 (Lang [1]). The group

SL(n,C) =
def
{u ∈ GL(n,C)| det u = 1}
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is simple and we have

dimSL(n,C) = dimsl(n,C) = n2 − 1, n ≥ 1,

where
sl(n,C) = {v ∈M(n,C)| trace v = 0}

is the Lie algebra of SL(n,C).
Using the Fundamental Theorem of differential Galois Theory, see Magid [1], we get

a lower bound for m-reducibility, see Skórnik, Wloka [2].

Theorem 2. Let Ly = 0 be a simple equation with Galois group G(E|F ), where
E = PV F (Ly = 0). This equation is not m-reducible for

(3) m <
√
dimG(E|F ).

Using commutative algebra and representation theory M.F. Singer [2,3] got for m =
n− 1 a final result:

Theorem 3. Let Ly = 0 be a homogeneous differential equation of order n, n ≥ 3.
Let E = PV F (Ly = 0) be the associated Picard-Vessiot extension of F . We assume that

G(E|F ) ⊆ SL(n,C),

or that the coefficient an−1 in (1) is zero (an−1 = 0).
Ly = 0 cannot be solved in terms of linear differential equations of lower order ≤ n−1

(it is not (n− 1)-reducible) if and only if

a) g(E|F ) is simple, and
b) g(E|F ) ⊆ sl(n,C) has no (nonzero) representation of degree less than n.

Since g(E|F ) is simple, each (nonzero) representation is faithful, and we may refor-
mulate the second condition b):

g(E|F ) 6⊆ gl(n− 1, C).

We get the easy corollary (from Theorem 2 or from Theorem 3):

Corollary 1. If the equation Ly = 0 is simple and we have

dimG(E|F ) = dim g(E|F ) > (n− 1)2, n ≥ 3,

then this equation is not (n− 1)-reducible.

Generic equations behave as they should, see Skórnik, Wloka [2].

Theorem 4. Let b0, . . . , bn−14 be indeterminates over a differential field F . The generic
equation (”general equation” in Magid [1])

LGLy = Dny + bn−1D
n−1y + . . .+ b0y = 0, n ≥ 2,

is not (n− 1)-reducible, hence it cannot be reduced to equations of lower order.

All simple Lie algebras and their representations are known, see Humphreys [1,2] and
also all linear algebraic (matrix) groups, which belong to simple algebras, see Zalesskij [1].

Using this information we get theorems and corollaries just by checking cases. This is
the way to prove the following
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Corollary 2. The same assumptions as in Theorem 3. Let n = 3, 5 and an−1 = 0
in (1).

1) The condition

g(E|F ) is simple and dim g(E|F ) > (n− 1)2

is necessary and sufficient for the non (n− 1)-reducibility of the equation (1).
2) Only equations (1) with Lie algebra g(E|F ) = sl(n,C) are not (n− 1)-reducible.

IV. Simple Fuchsian equations. C. Tretkoff and M. Tretkoff [1] solved the inverse
Galois problem for the differential field (C(z), ddz ); by isomorphy (Theorem 1) it is also
solved for the field

(C(s),
d

ds
= D) of Mikusiński operators;

i.e. for every closed algebraic matrix group G⊆GL(n,C), there exists an ordinary, linear,
Fuchsian differential equation LGy = 0 of order n (with polynomial coefficients in z or s)

(4) LGy = pn(z)y(n) + pn−1(z)y(n−1) + . . .+ p0(z)y = 0,

such that the Picard-Vessiot extension E = PV F (LGy = 0) over F = C(z) (or C(s)) has
as its Galois group G:

G(E|F ) = G.

The inverse Galois theorem and Theorem 2 imply an existence theorem.

Theorem 5. Let F be (C(z), ddz ) or (C(s), dds ). For each simple group G ⊂ GL(n,C)
there exists a Fuchsian equation (4) of orderLG = rankG = n, which is not m-reducible
for any

m <
√
dimG.

Combining Theorem 3 with the inverse Galois theorem we get a more general existence
theorem.

Using Example 2 we get from Theorem 5 the following corollary.

Corollary 3. For each group SL(n,C), n ≥ 2, there exists a Fuchsian equation

LSLy = 0, ordLSL = n

which is not (n− 1)-reducible.

Remark. For Fuchsian equations Lfy = 0 over F = (C(s), dds ) we have

PV F (Lfy = 0) ⊆M (Mikusiński operators)

see Wloka [1], thus we need not go outside M with our PV -extensions.
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