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Abstract. Convolutional representations of the commutant of the partial integration opera-
tors in the space of continuous functions in a rectangle are found. Necessary and sufficient condi-
tions are obtained for two types of representing functions, to be the operators in the commutant
continuous automorphisms. It is shown that these conditions are equivalent to the requirement
that the considered representing functions be joint cyclic elements of the partial integration
operators.

1. Introduction. Let ∆1 = [a1, b1] and ∆2 = [a2, b2] be intervals containing zero
and ∆ = ∆1 ×∆2. Let C(∆) be the space of continuous functions in the rectangle ∆. It
is a Banach space with usual topology of uniform convergence on ∆.

We consider the partial integration operators l1 and l2 of Volterra type, defined by

l1f =
∫ x

0

f(τ, y) dτ and l2f =
∫ y

0

f(x, σ) dσ,(1)

for f, g ∈ C(∆) as right inverse of partial differentiation operators ∂/∂x and ∂/∂y in
C(∆). The operation

(f ∗ g)(x, y) =
∫ x

0

∫ y

0

f(x− τ, y − σ)g(τ, σ) dτ dσ(2)

for f, g ∈ C(∆) is a separately continuous convolution of l1 and l2 without annihilators,
according to N. Bozhinov [2]. This means that

li( f ∗ g ) = ( lif ) ∗ g

for f, g ∈ C(∆) and i = 1, 2. Moreover, the identity

l1 l2{f(x, y)} = {1} ∗ f(3)
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holds for all f ∈ C(∆), where the symbol {1} denotes the constant function equal to 1
in the rectangle ∆.

The usual Duhamel convolution may be considered in the space C(∆) as a ”coordi-
nate” operation and one has to know on which variable it acts. In the case at least one
of the functions does not depend on x or y, the operations

x∗ and
y
∗ are introduced by

the equalities

(f
x∗ g)(x, y) =

∫ x

0

f(x− τ)g(τ, y) dτ,(4)

(f
y
∗ g)(x, y) =

∫ y

0

f(y − σ)g(x, σ) dσ.(5)

They allow us to represent l1 and l2 as convolutional operators in C(∆):

l1{f(x, y)} = {1} x∗ f(x, y) and l2{f(x, y)} = {1}
y
∗ f(x, y).(6)

The convolution defined by (2) has an important property of ”splitting”. Namely, for all
functions of the form

f(x, y) = f1(x) f2(y) with f1(x) ∈ C(∆1) and f2(y) ∈ C(∆2)(7)

we have

(f ∗ g)(x, y) =
[
f1(x)

x∗ g1(x)
] [
f2(y)

y
∗ g2(y)

]
.(8)

The linear combinations of the splittable functions, represented by (7), form a dense
set in C(∆). This follows from Weierstrass approximation theorem in C(∆), since the
polynomials of x and y are splittable functions.

The divisors of zero of the convolution (2) in C(∆) are described by J. Mikusiński
and C. Ryll-Nardzewski in [10]:

Lemma 1.1 [10]. Let f(x, y) and g(x, y) are two continuous functions in the rectangle

∆a
def= { (x, y) : 0 ≤ x ≤ b1, 0 ≤ y ≤ b2; b1 + b2 < a },

such that the convolution f ∗ g defined by (2) vanishes on the rectangle ∆a. Then f(x, y) =
0 on ∆b and g(x, y) = 0 on the rectangle ∆c, where b+ c ≥ a.

Definition 1.1. The set of all operators A : C(∆)→ C(∆) such that Al1 = l1A and
Al2 = l2A is called the commutant of l1 and l2 in C(∆).

Definition 1.2. A linear operator M : C(∆) → C(∆) is said to be a multiplier of
the convolution algebra (C(∆), ∗ ) if

M( f ∗ g ) = (Mf) ∗ g for f, g ∈ C(∆).

Using identities M{1} ∗ {1} = {1} ∗ M{1} and lp1l
q
2{1} = xpyq

p!q! for p, q = 0, 1, 2, . . .
and applying Weierstrass approximation theorem in C(∆) it is easy to prove that the
ring of multipliers of convolution algebra (C(∆), ∗ ) coincides with the commutant of l1
and l2 in C(∆).

Lemma 1.2. A linear operator M : C(∆) → C(∆) commutes with the operators l1
and l2 in C(∆) iff it is a multiplier of the convolution given in (2).
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2. Representation of the commutant of l1 and l2

Theorem 2.1. If the operator M : C(∆)→ C(∆) commutes with the operators l1 and
l2 in C(∆), then it has a convolutional representation of the form

M f =
∂2

∂x∂y
(m ∗ f)(9)

with m def= M{1} ∈ C(∆).

Proof. Since M commutes with l1 and l2, it is a multiplier of convolution ∗ . Thus
we have the equality

M{1} ∗ f = {1} ∗ (Mf ) = l1l2(Mf ).

After differentiation on x and y and substituting m def= M{1} we obtain the representation
(9). The multiplier M of convolution ∗ in C(∆) is a continuous operator, due to R. Larsen
[9], p. 13. Then m is a continuous function on ∆ as a continuous image of the constant
{1}.

The condition m ∈ C(∆) does not ensure differentiability of the expression m ∗ f
with respect to x and y. Therefore we consider two cases for the function m.

Corollary 2.1. A linear operator M : C(∆) → C(∆), with M{1} = m ∈ C2(∆)
commutes with l1 and l2 if and only if it has an integral representation

(Mf)(x, y) =
(

∂2

∂x∂y
m

)
∗ f +

[
∂

∂x
m(x, 0)

]
x∗ f(x, y)(10)

+
[
∂

∂y
m(0, y)

]
y
∗ f(x, y) +m(0, 0) f(x, y)

for f ∈ C(∆).

Proof. The following identity

m(x, y) = l1l2m
′′
xy +m(0, y) +m(x, 0)−m(0, 0)(11)

is evident for m ∈ C2(∆). If the operator M commutes with l1 and l2 in C(∆), it has
the representation given by (9). Then taking into account the equality (11) we get

M f =
∂2

∂x∂y

[
(l1l2m′′xy) ∗ f

]
+

∂2

∂x∂y

[
m(0, y) ∗ f

]
+

∂2

∂x∂y

[
m(x, 0) ∗ f

]
− ∂2

∂x∂y

[
m(0, 0) ∗ f

]
.(12)

Since ∗ is a convolution of l1 and l2, right inverses of the partial differentiation operators
∂/∂x and ∂/∂y in C(∆), we have

∂2

∂x∂y
l1l2

[
m′′xy ∗ f

]
= m′′xy ∗ f.(13)

According to identity (3), the equality

m(0, 0)
∂2

∂x∂y

[
{1} ∗ f

]
= m(0, 0) f(x, y)(14)
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is true. Since the set of all splittable functions is dense in C(∆), we conclude from the
theorem on differentiation under the integral sign (see e.g. [8], Th. 3, p. 665) and from
Lemma 4 in [5], p. 14, that

∂2

∂x∂y

[
m(0, y) ∗ f(x, y)

]
= m′y(0, y)

y
∗ f(x, y) +m(0, 0)f(x, y)(15)

and
∂2

∂x∂y

[
m(x, 0) ∗ f(x, y)

]
= m′x(x, 0)

x∗ f(x, y) +m(0, 0)f(x, y).(16)

Substituting (13), (14), (15) and (16) into (12) we get the desired representation (10).
Conversely, if M has the form (10) with m ∈ C2(∆), then the commutativity relations

Ml1 = l1M and Ml2 = l2M can be verified directly.

Corollary 2.2. If the function m = M{1} is a splittable function

m(x, y) = m1(x)m2(y), (x, y) ∈ ∆(17)

with components m1 ∈ BV ∩ C(∆1) and m2 ∈ BV ∩ C(∆2), then the representation in
(9) is equivalent to the equality

(Mf)(x, y) =
∫ x

0

∫ y

0

f(x− τ, y − σ) dm1(τ) dm2(σ) +m1(0)m2(0) f(x, y)

+m2(0)
∫ x

0

f(x− τ, y) dm1(τ) +m1(0)
∫ y

0

f(x, y − σ) dm2(σ)(18)

for f ∈ C(∆). Every operator M , given by (18) with splittable function m ∈ C(∆) of the
form (17), commutes with l1 and l2 in C(∆).

The proof is an immediate consequence of Lemma 4 in [5], p. 14 and the density of
the set of splittable functions in C(∆). The commutativity relations of the operator (18)
with l1 and l2 are clearly satisfied.

3. Automorphisms of C(∆) commuting with l1 and l2

Definition 3.1. A linear operator A : C(∆) → C(∆) is a topological automorphism
of C(∆) onto itself if A is a one-to-one mapping and it is a continuous operator in C(∆)
together with its inverse A−1.

Since C(∆) is a Banach space and ∗ is a separately continuous annihilators-free
convolution, the multipliers of the algebra (C(∆), ∗ ) are continuous operators according
to R. Larsen ( see [9], p. 14 ). Then taking into account the inverse operator theorem
in C(∆) and Lemma 1.2, the problem of existence of continuous automorphisms in the
commutant of l1 and l2, is reduced to the question of establishing a one-to-one mapping
of C(∆) onto itself by the operators of the forms (10) and (18).

Theorem 3.1. A linear operator M : C(∆)→ C(∆), commuting with the operators l1
and l2 in C(∆) and having a representing function m = M{1} ∈ C2(∆), is a continuous
automorphism of the space C(∆) onto itself if and only if m(0, 0) 6= 0.

The theorem will be proved if we show that the equation

m′′xy ∗ f +m′x(x, 0)
x∗ f +m′y

y
∗ f +m(0, 0) f = g(x, y)(19)
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with given m ∈ C2(∆) has a unique solution f for every function g ∈ C(∆), whenever
m(0, 0) 6= 0.

For that aim we consider the operator of the form

N f = m′′xy ∗ f +m′y(0, y)
y
∗ f +m′x(x, 0)

x∗ f(20)

with m ∈ C2(∆). The operators

N2f = m′y(0, y)
y
∗ f

and

N3f = m′x(x, 0)
x∗ f

are Volterra integral operators, due to representations (4) and (5) and therefore they are
compact in C(∆). Let us denote by Np the first addend in (20), i.e. Npf = p ∗ f with
p = m′′xy ∈ C(∆). The following lemma is true:

Lemma 3.1. Every operator of the form Npf = p ∗ f with p ∈ C(∆) is a compact
operator in the space C(∆).

Proof. Let B be the unit ball in C(∆). To prove that Np is compact is suffices to
show that the image Np(B) of B is a precompact set in C(∆). This is fulfilled, when
Np(B) is a uniformly bounded and equicontinuous set, according to Ascoli’s theorem
( [7], Th. 0.4.11).

Denote the area of the rectangle ∆ by S(∆), the lengths of the intervals ∆i, i = 1, 2,
by d(∆i), i = 1, 2 and let Kp = max(x,y)∈∆ |p(x, y)|. Then the inequality

max
(x,y)∈∆

|(Npf)(x, y)| ≤ Kp S(∆), f ∈ B

shows that Np is uniformly bounded. For the sake of definiteness, assume that s > 0,
t > 0 and (x+ s, y + t) ∈ ∆. Denoting

F s,tf(x, y) = (Npf)(x+ s, y + t)− (Npf)(x, y)

we have the estimation

|F s,tf(x, y) | ≤
∫ x

0

∫ y

0

|p(x+ s− τ, y + t− σ)− p(x− τ, y − σ)| dτ dσ

+Kp |s| d(∆2) +Kp |t| d(∆1) +Kp |s| |t|,

for f ∈ B.
Fix ε > 0. By the uniform continuity of p on ∆, there exists a number δ > 0 such

that

max
(x,y)∈∆

|F s,tf(x, y) | < ε for f ∈ B,

provided that
√
s2 + t2 < δ.

This proves the lemma.

Proof of Theorem 3.1. Let the operator M given in the form (10) be a one-to-one
linear mapping of C(∆) onto itself and assume m(0, 0) = 0. Using formulas (2), (4) and
(5) we obtain (Mf)(0, 0) = 0 for all f ∈ C(∆), which contradicts the surjectivity of the
operator M.
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Let now m(0, 0) 6= 0 and let us consider the equation (19) in C(∆). Since the operator
N of the form (20) is compact and m(0, 0) 6= 0, this is a Fredholm integral equation of
the second kind. Its corresponding homogeneous equation has the form

∂2

∂x∂y
(m ∗ f) = 0.(21)

Then we get immediately ∂
∂x (m ∗ f) = ϕ(x) and ∂

∂y (m ∗ f) = φ(y) and also

(m ∗ f )(x, y) =
∫ x

0

ϕ(τ) dτ +
∫ y

0

φ(σ) dσ.(22)

Since

(m ∗ f)(0, y) = 0 ∀y ∈ ∆2

and

(m ∗ f)(x, 0) = 0 ∀x ∈ ∆1,

due to definition (2), using the equality (22) we conclude m ∗ f = 0 for (x, y) ∈ ∆. The
function m is not a divisor of zero of the convolution ∗ provided that m(0, 0) 6= 0. Then
the homogeneous equation (21) has only the trivial solution f = 0. Therefore by Fredholm
alternative, the equation (19) has a unique solution for every function g ∈ C(∆).

When the operator M has the representation given in (18), for our aims we consider
the following equation

m1(0)m2(0) f(x, y) +m2(0)
∫ x

0

f(x− τ, y) dm1(τ)

+m1(0)
∫ y

0

f(x, y − σ) dm2(σ)(23)

+
∫ x

0

∫ y

0

f(x− τ, y − σ) dm1(τ) dm2(σ) = g(x, y),

with given functions m, g ∈ C(∆). Here m has the form (17) and m1 ∈ BV ∩ C(∆1),
m2 ∈ BV ∩ C(∆2).

Let m1(0)m2(0) 6= 0 and denote λ1 = −1/m1(0), respectively λ2 = −1/m2(0). Then
the equation (23) is equivalent to the equation

f(x, y) = λ1λ2g(x, y) + λ1

∫ x

0

f(x− τ, y) dm1(τ) + λ2

∫ y

0

f(x, y − σ) dm2(σ)

−λ1λ2

∫ x

0

∫ y

0

f(x− τ, y − σ) dm1(τ) dm2(σ).(24)

For the sake of simplicity, let us restrict the considerations to the rectangle ∆ =
[0, b1]× [0, b2], with ∆1 = [0, b1] and ∆2 = [0, b2].

Lemma 3.2. Let g ∈ C(∆) and m = m1(x)m2(y) be a splittable continuous function
on ∆, such that m1 ∈ BV ∩ C(∆1) and m2 ∈ BV ∩ C(∆2). Then the equation (24) has
a unique solution, which is a continuous function in ∆.

Proof. Let 0 < s < b1 and 0 < t < b2 be arbitrarily chosen and denote by V s
0 m1,

respectively by V t
0m2 the total variations of the functions mi, i = 1, 2 in the intervals
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[0, s] and [0, t]. Introduce the operator

T h(x, y) = λ1λ2g(x, y) + λ1

∫ x

0

h(x− τ, y) dm1(τ) + λ2

∫ y

0

h(x, y − σ) dm2(σ)

−λ1λ2

∫ x

0

∫ y

0

h(x− τ, y − σ) dm1(τ) dm2(σ)(25)

in the space C(∆). The following estimations are true

|Th1 − Th2| ≤ |λ1| max
0 ≤ τ ≤ x ≤ s

0 ≤ y ≤ t

|h1(x− τ, y)− h2(x− τ, y)|V s
0 m1

+|λ2| max
0 ≤ x ≤ s

0 ≤ σ ≤ y ≤ t

|h1(x, y − σ)− h2(x, y − σ)|V t
0m2

+|λ1| |λ2| max
0 ≤ τ ≤ x ≤ s
0 ≤ σ ≤ y ≤ t

|h1(x− τ, y − σ)− h2(x− τ, y − σ)|V s
0 m1 V

t
0m2

and

max
x ∈ [0, s]
y ∈ [0, t]

|Th1 − Th2| ≤
(
|λ1|V s

0 m1 + |λ2|V t
0m2 + |λ1λ2|V s

0 m1V
t
0m2

)
. max
x ∈ [0, s]
y ∈ [0, t]

|h1 − h2 |.

Therefore T is a contracting mapping in C([0, s]× [0, t]) iff the inequality

|λ1|V s
0 m1 + |λ2|V t

0m2 + |λ1| |λ2|V s
0 m1V

t
0m2 < 1(26)

holds. Since each of the functions mi is uniformly continuous in ∆i, i = 1, 2, there exists
a natural number n0 such that the condition (26) with s = b1

n0
and t = b2

n0
is fulfilled.

Hence the continuous solution of equation (24) may be found, using successive ap-
proximations of four types in every ”subrectangle” of ∆ with lengths of the sides being
the chosen s and t. Thus, after n2

0 steps, we obtain a continuous solution of the equation
(24) in ∆.

Theorem 3.2. Suppose a linear operator M : C(∆) → C(∆) commutes with l1 and
l2 and has a splittable representing function m = M{1} ∈ C(∆) with components m1 ∈
BV ∩C(∆1) and m2 ∈ BV ∩C(∆2). A necessary and sufficient condition for such an op-
erator to be a continuous automorphism of the space C(∆) onto itself is m1(0)m2(0) 6= 0.

Proof. It is enough to show that an operator given in the form (18) establishes a
one-to-one mapping in the space C(∆), whenever m1(0)m2(0) 6= 0.

One may prove that the condition m1(0)m2(0) 6= 0 is necessary for the bijectivity
of the operator M, in the same way as in the proof of Theorem 3.1. On the other hand,
Lemma 3.2 shows that this inequality is sufficient for the operator M to fulfil a one-to-one
correspondence of C(∆) onto itself.

4. Joint cyclic elements of l1 and l2 in C(∆)

Definition 4.1. A function k ∈ C(∆) is a joint cyclic element of the operators l1
and l2 in C(∆), if the set of linear combinations of the expressions lp1l

q
2 k with p, q ∈ N0

is everywhere dense in C(∆).
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Using the convolution defined in (2) we describe two kinds of joint cyclic elements of
l1 and l2 in C(∆).

Theorem 4.1. A function k ∈ C2(∆) is a joint cyclic element of l1 and l2 in C(∆)
if and only if k(0, 0) 6= 0.

Proof. Analogously to the proof of Corollary 2.1, we may write the representation

k = k′′xy ∗ {1}+ k′x(x, 0)
x∗ {1}+ k′y(0, y)

y
∗ {1}+ k(0, 0),

for the function k ∈ C2(∆). Applying several times the operators l1 and l2 to the last
equality we get

lp1l
q
2 k = k′′xy ∗

(
xpyq

p!q!

)
+ k′x(x, 0)

x∗
(
xpyq

p!q!

)
+k′y(0, y)

y
∗
(
xpyq

p!q!

)
+ k(0, 0)

(
xpyq

p!q!

)
.(27)

Let k be a cyclic element of l1 and l2. Then for every f ∈ C(∆) there exists a sequence
{ fn }∞n=1 of elements, linear combinations of the form

fn(x, y) =
pn∑

p=0

qn∑
q=0

α(n)
pq (lp1l

q
2 k)(28)

with constants α(n)
pq . This sequence tends to f uniformly on ∆. Denote by

Pn(x, y) =
pn∑

p=0

qn∑
q=0

α(n)
pq

(
xpyq

p!q!

)
the polynomials of x and y similar to the representation (28) of fn. From the linearity of
operations ∗ ,

x∗ and
y
∗ and according to the equation (27), we have

fn(x, y) = k′′xy ∗ Pn + k′x(x, 0)
x∗ Pn(x, y) + k′y(0, y)

y
∗ Pn(x, y) + k(0, 0)Pn(x, y).(29)

If k(0, 0) = 0, then we obtain fn(0, 0) = 0 for n ∈ N, due to definitions in (2), (4)
and (5). Therefore, only the functions with property f(0, 0) = 0 can be approximated by
means of linear combinations of lp1l

q
2 k with p, q ∈ N0. This proves the necessity of the

condition k(0, 0) 6= 0.
Let now k(0, 0) 6= 0 and let us fix an arbitrary function f ∈ C(∆). According to the

proof of Theorem 3.1, the equation

f = k′′xy ∗ g + k′x(x, 0)
x∗ g + k′y(0, y)

y
∗ g + k(0, 0)g(30)

is of the form (19) and has a unique solution g for every f ∈ C(∆). Then we may choose
a sequence of polynomials of two variables

Pn(x, y) =
pn∑

p=0

qn∑
q=0

α(n)
pq

(
xpyq

p!q!

)
,(31)

which tends to g in the topology of C(∆), due to the respective approximation theorem
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in C(∆). We form a new sequence

fn(x, y) =
pn∑

p=0

qn∑
q=0

α(n)
pq (lp1l

q
2 k)

= k′′xy ∗ Pn + k′x(x, 0)
x∗ Pn + k′y(0, y)

y
∗ Pn + k(0, 0)Pn.

Operations ∗ ,
x∗ and

y
∗ are continuous in C(∆), then we obtain limn→∞ fn = f

uniformly in ∆, according to equation (30) and the choice of the sequence (31). This
means the function k ∈ C(∆) is a joint cyclic element of l1 and l2 in C(∆).

Theorem 4.2. Let k ∈ C(∆) be a splittable function k(x, y) = k1(x)k2(y) with com-
ponents k1 ∈ BV ∩ C(∆1) and k2 ∈ BV ∩ C(∆2). A necessary and sufficient condition
for a function k to be a joint cyclic element of l1 and l2 in C(∆) is k1(0)k2(0) 6= 0.

Proof. The operators l1 and l2 are right inverses of the partial differentiation opera-
tors ∂/∂x and ∂/∂y in C(∆). Thus, using the identity l1l2 k = {1} ∗ k and the splitting
property k = k1k2, the function k can be represented in the form

k(x, y) =
∂2

∂x∂y
[ {1} ∗ k ] = k1(0)k2(0) +

+
∫ x

0

∫ y

0

dk1(τ) dk2(σ) + k2(0)
∫ x

0

dk1(τ) + k1(0)
∫ y

0

dk2(σ).

Then we have

lp1l
q
2k =

∫ x

0

∫ y

0

τpσq

p!q!
dk1(x− τ) dk2(y − σ) + k1(0)k2(0)

xpyq

p!q!

+k2(0)
∫ x

0

τpyq

p!q!
dk1(x− τ) + k1(0)

∫ y

0

xpσq

p!q!
dk2(y − σ)(32)

for p, q ∈ N0.

Let k be a joint cyclic element of l1 and l2 in C(∆). Hence, for every function f ∈ C(∆)
there exists a sequence { fn }∞n=1 of the form (28), which converges to f uniformly in ∆.
The elements of this sequence are represented by polynomials (31), due to (32):

fn(x, y) =
∫ x

0

∫ y

0

Pn(τ, σ) dk1(x− τ) dk2(y − σ) + k1(0)k2(0)Pn(x, y)

+k2(0)
∫ x

0

Pn(τ, y) dk1(x− τ) + k1(0)
∫ y

0

Pn(x, σ) dk2(y − σ).(33)

If k1(0)k2(0) = 0, it follows from (33) that only the functions f with f(0, 0) = 0 can be
approximated by linear combinations of the expressions (32). This contradiction shows
that the condition k1(0)k2(0) 6= 0 is necessary.

Let now k1(0)k2(0) 6= 0 and let f ∈ C(∆) be an arbitrary fixed function. The equation

k1(0)k2(0)g(x, y) + k2(0)
∫ x

0

g(x− τ, y) dk1(τ)

+k1(0)
∫ y

0

g(x, y − σ) dk2(σ)∫ x

0

∫ y

0

g(x− τ, y − σ) dk1(τ) dk2(σ) = f(x, y)
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has a unique solution g ∈ C(∆) for every f ∈ C(∆), due to Lemma 3.2. Then in the
same way as in the proof of Theorem 4.1 we may form a sequence {fn}∞n=1 of linear
combinations of lp1l

q
2k, which converges to f uniformly in ∆.

This proves the theorem.
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