
ALGEBRAIC ANALYSIS AND RELATED TOPICS
BANACH CENTER PUBLICATIONS, VOLUME 53

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2000

SOME HIGHLIGHTS IN THE DEVELOPMENT OF
ALGEBRAIC ANALYSIS

JOHN A. SYNOWIEC

Department of Mathematics, Indiana University
The Northwest Campus, 3400 Broadway

Gary, Indiana 46408-1197, U.S.A.
E-mail: jsynowie@indiana.edu

The term “algebraic analysis” has had, and continues to have, various meanings re-
flecting several different areas of study and approaches for over 200 years. The current
definition, as given by Professor Przeworska-Rolewicz [1988], is: algebraic analysis is the
theory of right invertible operators in linear spaces, in general without topology. As she
points out in her encyclopedia article [1997], an essential distinction between algebraic
analysis and operational calculus is that in the former, the notion of convolution is not
necessary, there is no need for a field structure, and right inverses and initial operators
are not commutative.

Here, the discussion will be very wide-ranging, in order to include many meanings of
the term algebraic analysis. In addition to work which actually uses the term, we will
briefly consider what it should, or might, mean. That is, algebraic analysis will be taken
to mean the study of analysis using algebraic methods either exclusively, or at least,
predominantly.

This paper is to be viewed as a work mainly of synthesis, rather than of new explo-
ration. The work of many historians of mathematics will be cited. Of special note are the
works of Bottazzini [1986], Deakin [1981, 1982], Grabiner [1981, 1990], Grattan-Guinness
[1994], and Lützen [1979]; also, Davis [1936], although not a historical work, has much
historical information.1

1. Algebraic analysis in the wide sense. The term algebraic analysis is sometimes
used for studies which are primarily or wholly algebraic. For example, Mansion [1898] in
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1At the Conference on Algebraic Analysis, Professor Przeworska-Rolewicz made available a

preprint, Two Centuries of Algebraic Analysis, which contains further historical information (cf.
the next paper).
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a collection called Mélanges mathématiques, has sections titled algebraic analysis, which
discuss purely algebraic matters.

In a recent work of Kashiwara, Kawai, & Kimura [1986], called Foundations of Alge-
braic Analysis, the authors state that “Algebraic Analysis” is not well-defined, but does
have a common core, which is the essential use of algebraic methods such as cohomology
theory. They go on to say that their title refers to a more special meaning, due to M. Sato:
algebraic analysis is that analysis which holds onto its substance, and survives the shifts
in fashion in Analysis, e.g., Euler’s mathematics. In particular, this means the microlocal
theory of linear partial differential equations (i.e., local analysis on the cotangent bundle).
Sato is considered to be the founder of the Japanese school of algebraic analysis; see e.g.,
the collection edited by Kashiwara & Kawai [1988], called Algebraic Analysis: Papers
Dedicated to Professor Miko Sato on the Occasion of His Sixtieth Birthday , which is a
study of hyperfunction theory and microlocal analysis. A special part of this subject,
involving D-modules and sheaf theory [e.g., Björk [1979], or Kashiwara and Schapiro 1990]
may have more of a claim to the appellation algebraic analysis than most of microlocal
analysis.

There are also many fields that could rightfully be called algebraic analysis, but are
not. Examples are: the study of analysis over various algebraic systems such as Grass-
mann algebras (sometimes referred to as superanalysis in physics: Berezin [1987]), or over
the quaternions and over Clifford algebras, Gurlebeck and Sprössig [1997], or Brackx, De-
langhe, & Sommen [1982], or Ryan [1996]. There are even studies of analysis in abstract
categories (Takahashi [1969]). (Perhaps analysis over p-adic numbers, or more generally,
over local fields, should be considered algebraic analysis.) Abstract operator algebras also
are candidates for this subject.

Differential algebra is a subject introduced by Joseph Fels Ritt (1893–1951). In its
original version Ritt [1932] was concerned with systems of differential equations, ordinary
or partial, which are algebraic in their unknowns and their derivatives. He says that it
had been customary to assume canonical forms for systems, but this is an inadequate
representation of general systems. The reasons for this inadequacy are: restrictions due to
the use of implicit function theorems, lack of methods for coping with degeneracies which
are likely to occur in the elimination process, and absence of techniques for preventing
entrance of extraneous solutions. He goes on to say that these are merely symptoms
of “the futility inherent in such methods of reduction.” But there is a firm theory of
algebraic elimination of the theory of systems of algebraic equations, which involves the
theory of rings and ideals. The object of Ritt’s study is to bring to the theory of systems of
algebraic differential equations some of the completeness enjoyed by systems of algebraic
equations.

In [1932], Ritt considers functions meromorphic on a given open connected set R of
the complex plane. Then a field (of such functions) is a set F satisfying the following.

(a) ∃ f ∈ F such that f 6≡ 0 on R.
(b) f, g ∈ F ⇒ f + g, f − g, fg ∈ F .
(c) f, g ∈ F and g 6≡ 0⇒ f/g ∈ F .
(d) f ∈ F ⇒ its derivative f ′ ∈ F .
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Ritt presents his results in this framework. In a revised version of this work, Ritt [1950]
generalized this setup to an arbitrary field F of characteristic zero, together with an
operation called differentiation, denoted by a 7→ a′, where a, a′ ∈ F . This operation is
assumed to satisfy

(a+ b)′ = a′ + b′, (ab)′ = ba′ + ab′.

This is Ritt’s definition of a differential field , and he proceeds to develop his theory at
this level of abstraction.

This certainly seems to be a subject which should be described as algebraic analysis.
However, more recent studies of differential algebra, e.g., Kaplansky [1957], Kolchin [1973,
1985] are more concerned with algebra than analysis. (The entire subject has been
described as being 99% due to Ritt and his students.) There is also a theory of difference
algebra: see Cohn [1965].2

Many more examples could be given, but these will suffice for now; later we shall
consider a few more possibilities in greater detail.

As this brief list of topics shows, we could easily stray very far from the current
definition of algebraic analysis, so we need to limit the topics chosen for consideration.
Emphasis will be on the theory of symbolic methods in the wide sense, and a few related
topics will be surveyed.

2. Pre-history of algebraic analysis. Algebraic analysis, as a symbolic calculus,
is a very old subject, perhaps going back to Leibniz. He was struck by the resemblance
between the formula for the nth differential of a product and the binomial expansion:

dn(xy) and (a+ b)n.

(Letter of 1695 to John Bernoulli, published 1711.) Not only did Leibniz state his rule
for the differential of a product, but he claimed that it is also valid for negative n if
one takes d−1 to mean an antiderivative. In a letter of 1695 to L’Hospital, Leibniz also
considered the possibility of non-integral values of n. However, he noted that this seems
to give paradoxical results.

During the earliest years of the development of the calculus, and continuing well into
the nineteenth century, power series were considered to be algebraic objects. Chrystal’s
Algebra, [1904] in editions in the early 20th century, considered the study of power series to
be a part of algebra. Although there were occasional nods at convergence considerations,
power series were generally handled as what are currently called formal power series.
Newton’s favorite tool in calculus was power series [1669]. When Euler [1748] wrote the
first “pre-calculus” book, power series were very much in evidence, and were handled as
a part of algebra.

According to Grabiner [1997], Colin Maclaurin’s Treatise of Fluxions [1742] was an
important link between the calculus of Newton and the Continental analysts. The Treatise
is Maclaurin’s major work on analysis. It influenced John Landen’s work on series, and

2The paper of Professor Wloka presented at this Conference is a new contribution to the
analytical side of differential algebra.
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was praised by Lagrange, Woodhouse, and Waring. Lagrange [1797] cited the French
edition of Maclaurin’s Treatise.

The earliest manifestation of algebraic analysis is generally considered to be the well-
known work of Joseph-Louis Lagrange (1736–1813). This began with a memoir [1772]
and culminated in his celebrated Théorie des fonctions analytiques [1797, 2nd ed. 1813],
written for students of the École Polytechnique in Paris. In [1772] Lagrange referred to
Leibniz and the Bernoullis as his source of ideas. Putting

(2.1) ∆u = u(x+ ξ, y + Ψ, z + ζ, t+ θ, . . .)− u(x, y, z, t, . . .)

he obtained various results, among them a celebrated formula

(2.2) ∆λu = (e
du
dx ξ+

du
dy Ψ+ du

dz ζ+··· − 1)λ,

where for λ negative, d−1 =
∫

, and ∆−1 =
∑

. Lagrange did not consider his arguments
to be proofs, but this use of analogy led him to results which would otherwise have been
very difficult to obtain. This led him to the summation of series. The first published
proof of Lagrange’s theorems is due to Laplace [1776], who also discussed formula (2.2)
at length.

In his book [1797], Lagrange mentions John Landen (1719–1790) as having ideas
similar to his own for overcoming the lack of rigor in the foundations of calculus. Lagrange
cites a public lecture of Landen in 1758, and his book [1764]. But Landen’s work on
“residual analysis” had little influence outside of England. Lagrange also wrote Leçons
sur le calcul des fonctions. [1799, 2nd ed. 1806] which is mostly another version of the
first part of the Théorie des fonctions analytiques, with some expanded coverage, but
omitting the second and third parts, applications to geometry and to mechanics.

Lagrange was a great admirer of Descartes, Leibniz, and especially Euler. In particular,
Lagrange was inspired by Euler in his use of power series. According to Euler, analysis
is a method of applying algebra to solve problems. He considered power series to be
entirely algebraic. (See Fraser [1987], Grabiner [1981, 1990].) Lagrange wanted to provide
a rigorous foundation for calculus by basing it on algebra, which he assumed to have a
secure foundation. In particular, he wanted to eliminate any appeal to geometric intuition,
or to ideas of motion (mechanics), and to use algebra alone. In fact, there are no diagrams
in this book. Lagrange accepted Euler’s ideas, and believed that algebraic operations
apply to infinite processes such as series. He tried to prove that all functions have power
series expansions. Unfortunately, the concept of function was not at all clear at that time.

Strictly speaking, Lagrange’s “algebraic analysis” is not really a symbolic calculus,
but an attempt at an algebraic foundation of calculus.

Mathematicians soon began to doubt the rigor of Lagrange’s algebraic calculus; among
the first to do so were Abel Burja (1752–1816), Józef Maria Hoene-Wroński (1776–1853),
Jan B. Śniadecki (1756–1830), and Bernard Bolzano (1781–1848).

Since Śniadecki and his mathematical work are not well known, we shall briefly de-
scribe these. He studied in France, where he met Cousin, Laplace, and d’Alembert. He
wrote a book called The Theory of the Algebraic Calculus Applied to Curved Lines [1783].
This work, written in Polish, seems to be one of the earliest books to use the term “al-
gebraic calculus” in its title.



HIGHLIGHTS OF ALGEBRAIC ANALYSIS 15

Only two of four proposed volumes were published, due to the great personal expense
he had to suffer. The first two volumes cover material similar to that in Euler [1748]. The
topics are: algebra, solution of algebraic equations, expansions of elementary functions in
power series, the basics of coordinate geometry, conics, some special surfaces, and certain
problems of differential geometry. The unpublished volumes III and IV were to cover
differential and integral calculus. It must be noted that Śniadecki wrote a history, which
was critical of Lagrange, especially his version of calculus. See Dianni [1977] for details
of Śniadecki’s calculus.

As far as the completed version of Śniadecki’s book goes, it seems to follow in the
Eulerian tradition of calculus and is an early version of numerous books using the term
algebraic analysis in their titles.

Wroński and his work are better known than Śniadecki; in [1811] he criticized La-
grange’s algebraic calculus, and proposed his own “universal series” as a substitute. His
supreme law was that every function f can be given in the form

f(x) =
∞∑
0

AnΩn(x),

where the Ωn are any functions of x, and the numerical coefficients An involve determi-
nants which are known today as Wronskians. In [1812], Wroński repeated his claim, and
gave a more severe criticism of Lagrange. Although Wroński’s claim appears outrageous,
it seems to have been taken seriously by Banach [1939], who proved that under very gen-
eral assumptions, Wroński’s method is possible for a large class of functions, depending
on the functions Ωn. He also gave a functional analytic interpretation of the supreme law.

None of these mathematicians had the influence or the stature to sway opinion against
the work of such an eminent mathematician as Lagrange. This was left to Augustin-Louis
Cauchy (1789–1857), who was heavily indebted to Lagrange for many of his own ideas on
calculus. However, Cauchy rejected algebra as a basis for calculus. Instead, he gave his
own version, mainly in his Cours d’analyse. 1re Partie. Analyse algébrique [1821]. This
was only the first part of a planned course of analysis, which was to have been offered in
three parts:

I. Analyse algébrique
II. Calcul différentiel et intégral (including ordinary differential equations)

III. Application du calcul différentiel et intégral à la géométrie.

As Cauchy describes this work, it treats various kinds of real and imaginary functions,
convergent and divergent series solutions of algebraic and trigonometric equations, and
decomposition of rational fractions. Although many of the topics he discusses are the same
as those described by Euler and by Lagrange, Cauchy makes the study of convergence a
key issue in this work. Thus Cauchy continued the tradition of viewing algebraic analysis
as the study of infinite series, but with a rigorous study of convergence as a key point.

This use of the term algebraic analysis for the study of elementary functions via
infinite series persisted throughout the nineteenth century. Among numerous works of
this type, we mention only a few: Capelli & Garbieri [1894], Capelli [1909], Schlömilch
[1845] (this work presented much on the convergence of continued fractions), and Cesàro
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[1904]. Cesàro’s book begins with infinite series, and includes discussions of complex
numbers and quaternions, the theory of algebraic equations, in addition to the basics
of calculus. It also covers a large amount of material on geometry, even more than on
algebra. (He also mentions the course of algebraic analysis of Capelli and Garbieri [1894].)
For work on algebraic analysis in Germany up to 1840, see Jahnke [1993].

The sense of the term algebraic analysis used by Lagrange, Cauchy, Schlömilch, Cesàro
and many others is not a precursor of the contemporary meaning. The true precursors
were many lesser-known mathematicians, beginning with some of the immediate followers
of Lagrange, such as Arbogast, Brisson, the brothers Français, and Servois, but also
including Cauchy. They were followed by the English algebraic symbolists. From them,
the line of ascendance reached the best-known symbolists, Boole and Heaviside.

3.The early French symbolists and the English algebraic symbolists. It must
be remembered that at the beginning of the 18th century, not only were the concepts of
abstract algebra lacking, but even the idea of convergence was unclear. Also, the definition
of a function was not yet standard. As a result, mathematicians had to struggle with these
ideas, as well as the particular problems that they addressed.

Louis François Antoine Arbogast (1759–1803) was a follower of Lagrange. In the spring
of 1789, he presented to the Academy of Sciences in Paris a paper [1789] on the new
principles of differential and integral calculus independent of the theory of infinitesimals
and that of limits. This was never published. It was, like Lagrange’s work, an attempt
at basing calculus on algebra, i.e., on power series. (Lagrange’s paper of 1772 is not
mentioned explicitly by Arbogast.) However, it did lead Arbogast to further studies, and
in fact, to his best known work, Du calcul des dérivations [1800]. The principal aim of
this book was to give simple and precise rules for finding power series expansions, and he
gives a vast number of examples of this process. Arbogast mentions only one person as
having similar ideas: Edward Waring (1734–1798). Waring’s book [1776; Arbogast gives
the date as 1785] discusses his direct and inverse method of deduction, which Arbogast
describes as parallel to the calculus of derivations. However, Waring gave no details of his
method, and he was noted for his obscure style, so the method seems to have had little
influence.

Arbogast thought of his derivations as a generalization of the derivative, and he con-
sidered differential calculus as a special case of his theory. His derivation, D, is a linear
operator, which he separated from the function being acted on. Thus (using modern
notation), from

(3.1) ∆f(x) = (ehD − 1)f(x),

he obtained

(3.2) ∆ = (ehD − 1).

Arbogast’s most important contributions to symbolic methods were the concept of an
operation (derivation), and the idea that one can calculate with operators, which was
made possible by his separation of the symbol of derivation from the object acted on by
the operation, as in (3.2).
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Barnabé Brisson (1777–1828) in [1808] introduced the idea of representing a differ-
ential equation as a differential operator acting on a function, and used an algebra of
operators to find solutions of partial differential equations. Thus, to solve the equation

y + Ly = f(x),

where L is a linear (differential) operator, he used

y = (1 + L)−1f(x) = (1− L+ L2 − L3 + · · ·)f(x),

and calculated the right side term-by-term. Several of his later memoirs were unpublished,
but formed the starting point for Cauchy’s work on symbolic methods.

François (Joseph) Français (1768–1810) assisted Arbogast with his Calcul des dériva-
tions and collected his papers. He admired Brisson’s work, but criticized its lack of rigor.
His methods were very similar to those popular in England in the late 1830s. His brother,
Jacques Fréderic Français (1775–1833) was attracted to the calculus of derivations by his
brother’s work. In [1812–13] Jacques used a form of factorization into linear operators to
solve a differential-difference equation.

François-Joseph Servois (1767–1847) was one of the chief precursors of the English
school of symbolic algebraists. His essay on a new mode of exposition of the principles
of differential calculus [1814] presented a calculus of operations which was motivated
by the search for a rigorous foundation for calculus. Unlike his predecessors, he did
not always distinguish between functions and operations. He proved properties of linear
commutative operators in this work, which we describe currently as ring properties. This
explained why they could be manipulated like algebraic magnitudes. He introduced the
terms “commutative” law and “distributive” law. Servois’ memoir inspired the studies of
Robert Murphy and George Boole on symbolic operations.

Such algebras are important in the history of algebra as well as of analysis, as they
are the first case where the objects of study are neither numbers nor geometric magni-
tudes. Applications of the kind mentioned above led to a limited acceptance of the use of
differential operators. In the 1820s Cauchy used his Fourier integral method (with com-
plex integrands) as a basis for Brisson’s procedures for solving differential equations. (See
below.) This was an early instance of indirect methods for symbolic operators, in which
the given differential equations are first transformed and symbolic methods are used on
the transformed equations. (The Laplace transform is another example of such indirect
methods.)

A different use of operations is due to J. B. Fourier [1822] who used operations not
to solve equations, but to express concisely and to verify solutions of partial differential
equations. For example, he got the solution of

(3.3)
dv

dt
=
d2v

dx2

as

(3.4) v = etD
2
ϕ(x), where ϕ is an arbitrary function.

Then to verify that this is a solution, “differentiate” both sides of (3.4) with respect to t:

dv

dt
= D2etD

2
ϕ(x) = D2v =

d2v

dx2
.



18 J. A. SYNOWIEC

Fourier also used a single symbol, D, to stand for a compound operation (in fact, what
is known today as the Laplacean operator). For example, starting with the equation

(3.5)
d2v

dt2
=
d2v

dx2
+
d2v

dy2
,

he substituted

(3.6)
d2v

dx2
+
d2v

dy2
= Dv,

so that equation (3.5) became

(3.7)
d2v

dt2
= Dv.

Naturally, Fourier solved (3.7) as

(3.8) v = cos(t
√
−D)ϕ(x, y),

where cos(t
√
−D) is to be expanded in powers of tD, with

Dn =
(
d

dx
+

d

dy

)n
.

In his collection [1827] of mathematical exercises, Cauchy included three long ar-
ticles on symbolic methods. He referred to two papers of Brisson (dated 1821, 1823, but
unpublished) as his source, and gave a rough outline of their contents.

Cauchy pointed out that the analogy between powers and indices of differentiation
led to the idea of representing a linear expression involving a function u(x, y, z, . . .) and
its successive derivatives in the form

(3.9) f(α, β, γ)u,

where f(α, β, γ) is a polynomial of degree m. According to Cauchy, Brisson generalized
this by allowing m = ∞, so that (3.9) has meaning for a function with a power series
expansion. (Similar ideas occur in Arbogast’s work.) Cauchy said that Brisson used (3.9)
to get solutions of homogeneous and nonhomogeneous partial differential equations. He
also considered (3.9) when f can be expanded in descending powers of the variables only,
and applied this to find solutions of certain partial differential equations in symbolic
form. But he also pointed out the need for care in applying (3.9), it being best to restrict
attention to the case where f is a polynomial or a rational function.

Cauchy considered the symbolic operators F (D), F (∆), and F (D,∆), where F (x),
F (α, β), are polynomials, and Dy = dy

dx , ∆y = y(x+ ∆x)− y(x). He found the following
results

F (D)[erxf(x)] = erxF (r +D)f(x),(3.10)

F (∆)[erxf(x)] = erxF (erx(1 + ∆)− 1)f(x),(3.11)

F (D,∆)[erxf(x)] = erxF (r +D, erx((1 + ∆)− 1)f(x).(3.12)

Then he used these rules to solve nonhomogeneous linear partial differential equations
with constant coefficients.

For example, if

(3.13) (D − r)y = f(x),
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then by (3.10),

(3.14) y = erx
∫
e−rxf(x)dx,

a result Cauchy attributed to Brisson. Then higher order equations are solvable by fac-
toring. Suppose that the polynomial

a0x
n + a1x

n−1 + · · ·+ an−1x+ an

has the (real or complex) roots r1, r2, . . . , rn. Then the differential equation

(3.15) a0
dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ an−1

dy

dx
+ any = f(x),

can be written as

(3.16) (D − r1)(D − r2) · · · (D − rn)y = f(x)/a0.

Then this can be put into the form of a system

(3.17)


D − r1)yn−1 = f(x)/a0,
(D − r2)yn−2 = yn−1,
...
(D − rn−1)y1 = y2,
(D − rn)y = y1.

Using the previous example, Cauchy wrote the solution as

(3.18) y =
ernx

a0

∫
e(rn−1−rn)x

(∫
e(rn−2−rn−1)x

(
· · ·
∫
e(r1−r2)xf(x)dx

))
· · · dx.

This method works for simple or multiple roots. Cauchy used (3.11) to solve difference
equations. He found analogous formulas for polynomials in several variables and applied
them to solve linear partial differential equations.

According to Koppelman [1971–2], Cauchy’s work represents the highest development
of the symbolic method on the Continent during the first half of the 19th century. It
contained many results which were later used by the English as their starting point. But
Cauchy did not trust the method, did not carry it further, and did not give a justification
of its basic principles.

Regarding the possibility of fractional indices of operation, there are passing references
in the works of Arbogast, Laplace, and Fourier. In [1822], Fourier claimed that his Fourier
Integral Theorem,

(3.19) f(x) =
1

2π

∫ ∞
−∞

dαf(α)
∫ ∞
−∞

dp cos(px− pα),

led to

(3.20)
dmy

dxm
=

1
2π

∫ ∞
−∞

dαf(α)
∫ ∞
−∞

dp pm cos
(
px− pα+

mπ

2

)
,

where m is any number.
The first attempt at a coherent theory of fractional indices of operation is due to

Joseph Liouville [1832]. Assuming that

(3.21) y =
∑

Ame
mx (or y =

∫
A(m)emxdm),
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the defined, for any number µ,

(3.22)
dµy

dxµ
=
∑

Ame
mxmµ (or the corresponding integral).

Liouville considered the analogy between operators and the laws of exponents important,
but he did not use it as the starting point of his theory.

In a student paper, Riemann [1953] defined the derivative of order v of z(x) to be the
coefficient of hv (times a constant) in the series expansion of z(x+ h):

(3.23) z(x+ h) =
∞∑

v=−∞
kvδ

v
xz(x)hv

where the kv depend only on hv. If the exponent is an integer, this reduces to Lagrange’s
definition of derivative.

For Arbogast and Fourier, the method of using symbols of operations as if they were
symbols of quantity was an elegant way of discovering, of expressing, or of verifying
theorems, but it was not a method of proof.

Français attempted to state general principles to justify the methods of symbolic
operations, roughly on the basis that both obey the same laws of combination. But he
gave no clear statement of this. Servois’ work was an attempt at a firm theoretical basis
for calculus; it was also, in part, a response to the criticism of Wroński. However, none
of the Continental mathematicians was interested in developing the method of symbolic
operations further, and unlike the English, they did not relate it to a theory of algebra.

At this point, we shall turn to a discussion of the English symbolic algebraists who
were influenced by the work described above. They not only played an important role
in the English work on symbolic operations, but they inspired the evolution of abstract
algebra in general. See especially Koppelman [1971–72] for an excellent description of the
work of this period.

This English school included Charles Babbage (1792–1871), George Boole (1815–1864),
Augustus De Morgan (1806–1871), Charles Graves (1810–1860), Duncan Farquharson
Gregory (1813–1844) and George Peacock (1791–1858).

Their studies began with the response of English mathematicians to Continental ad-
vances in analysis. The first polemical work on this topic was by Robert Woodhouse
(1773–1827). This book, [1803], was devoted to the foundations of calculus, and claimed
that the most satisfying one is that of Lagrange and Arbogast, since they linked calculus
to algebra. He wrote

the differential calculus . . . is to be considered as a brand of common Algebra, or
rather as a part of the common symbolical language in which quantity is treated of.

[Quoted in Koppelman, 1971–72, page 176]

However, Woodhouse also pointed out difficulties with the symbolic method. He gave
the example of 1/(1+x). If this symbol represents the series resulting from dividing 1 by
1 + x, then

(3.24)
1

1 + x
= 1− x+ x2 − x3 + · · · ,
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but 1/(x+ 1) is the symbol representing the series resulting from dividing 1 by x+ 1, so
that

(3.25)
1

x+ 1
=

1
x
− 1
x2

+
1
x3
− · · · .

As a result, one cannot affirm that
1

1 + x
=

1
x+ 1

.

(Since no consideration is given to convergence, the magnitude of x plays no role here.)
Woodhouse’ work was taken up by a group that called itself the Analytical Society.

It consisted of Babbage, John Herschel (1792–1871), and Peacock. According to Kop-
peleman [1971–2], their “crusading” writings emphasized certain critical ideas in French
works connected with symbolic operations.

Babbage learned differential calculus from the book of Woodhouse, but the latter’s
most influential book was a textbook on trigonometry [1809]. In this book, he defined the
trigonometric functions by series expansions (in keeping with the meaning of term alge-
braic analysis at the time), and used differential notation throughout. Peacock said that
this book, more than any other, contributed to revolutionize the study of mathematics
in England.

The Analytical Society emphasized the relationship between calculus and algebra, and
work of the French in this area illustrated the superiority of Continental work especially
well. The Society translated [1816] Lacroix’ condensation [1802] of his 3-volume work
[1797–1800], which used the Lagrange theory as a foundation. However, in the shortened
work [1802], Lacroix used the theory of limits, a change disapproved of by translators
Babbage, Herschel, and Peacock. To them the theory of limits was not acceptable be-
cause it tends to separate the principles and “departments” of differential calculus from
those of Common Algebra. Of course, Peacock made a similar criticism of Newton’s flux-
ions, which introduced extraneous ideas from geometry and mechanics into the study of
purely algebraic problems. Also, differential notation is preferable to fluxional, because
it is equally convenient for representing both operations and quantities. Although they
used the name “Maclaurin series” in this translation (as did Cauchy later), they did
not appreciate the value of his Treatise. Ironically, they were actually promoting some of
Maclaurin’s ideas (from his Book II) on algebraic methods in calculus, apparently without
realizing it. In the preface, Babbage and Herschel emphasized the relationship between
algebra and calculus, exemplified by their preference for the approach of Lagrange and
Arbogast to the foundations of differential calculus, the analogy between repeated oper-
ations in calculus and exponentiation, and the method of separation of symbols. They
stressed the importance of good notation, especially the idea that a general function can
be denoted by a single letter. They claimed that the resulting calculus is more general
than any known, so they called it the “calculus of functions.”

Herschel, a celebrated astronomer, concentrated his mathematical work on the solu-
tion of finite difference equations and their application to functional equations. He used
the method of separation of symbols of operation from those of quantity, and emphasized
the relationship between calculus and ordinary algebra.
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Babbage [1827] stressed symbolic manipulations and the formal approach to algebra.
In general, the English symbolic algebraists found the approach to the interpretation of
arithmetic and algebra on the continent as unsatisfactory as in England. They were led
to look for a new approach; in particular, De Morgan, Gregory, and Peacock worked in
close cooperation. Peacock introduced his ideas in his textbook on algebra [1830] and in a
report of the British Association for the Advancement of Science [1834]. In the latter, he
introduced the Principle of Permanence of Equivalent Forms into algebra. The purpose of
this principle is to justify various generalizations, e.g., (1 +n)n beyond natural numbers,
the definition of a0, etc. His statement of the principle was:

Whatever form is algebraically equivalent to another form expressed in general
symbols, must continue to be equivalent, whatever those symbols denote.

[1834, p. 198]

Peacock used the Principle of Permanence to give meaning to the operation dα/dxα for
nonintegral values of α.

The English mathematicians were led to study abstract laws of combination by the
development of the calculus of operations, rather than by work on algebra, e.g., on the
complex number system. Their desire to explain the principles of the calculus of operations
and to extend its applicability was important to Gregory, Boole, De Morgan, and even
had some influence on Hamilton.

In England, work on symbolic methods in analysis began in the 1830s, with the
contributions of Charles Graves, D. F. Gregory, John Hewitt Jellett (1817–1888), and
Robert Murphy, among others.

D. Gregory wrote numerous papers on what the English school called the “calculus
of operations”. He was familiar with Cauchy’s work, and his methods are similar to
Cauchy’s, except that he treats symbols of operation as if they were symbols of quantity.
He credited Brisson’s unpublished work of 1821 as being the first in which the method
was applied to the solution of differential equations, and cites Cauchy’s Exercices [1827]
as his source of information about Brisson’s work.

Gregory stated that a linear partial differential equation with constant coefficients in
any number of variables could be treated exactly like an ordinary differential equation,
with one variable symbol of operation, treating the remaining ones as constants. He
named Fourier as his source of ideas on partial differential equations, except that Fourier
did not use the method to find solutions. Gregory also applied the method to systems
of ordinary differential equations, using analogy to mimic techniques of elimination for
solving systems of linear algebraic equations. He even argued that there was no valid
distinction between symbols of differentiation and symbols of differencing. He believed
that he had a formula for dn/dxn for rational values of n, although he ignored questions
of convergence of the expansions in infinite series which occur when n < 0 or n is a
fraction. (Some of his colleagues called attention to this difficulty.) He stated three basic
rules for symbols of operation -∫ , -∫

1
, . . .:

(i) index law -∫m -∫ n(x) = -∫m+n(x)

(ii) commutative law -∫ (-∫
1
(x)
)

= -∫
1

(
-∫ (x)

)
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(iii) distributive law -∫ (x+ y) = -∫ (x) + -∫ (y)

Gregory attempted to popularize the calculus of operations in a textbook [1841], in
which he used separation of symbols extensively. He also used the method to develop a
theory of differentiation of fractional order. He listed his major sources as Servois and
Murphy.

Despite some lapses in rigor, Gregory obtained many interesting results. His efforts
led to the acceptance of the calculus of operations by many English mathematicians.
Because he assumed commutativity of operations (rule (ii)), he restricted his studies to
constant coefficient differential equations.

Gregory wrote no books on algebra, but in papers he declared that symbolic algebra
is the initial concept, and the Principle of Permanence is not needed. His principal idea
was the separation of the symbols of operations from those of quantities. Algebra is the
science of combinations of operations, defined not by their nature, but by the laws of
combination.

The next step, the study of noncommutative operations, was taken by Robert Mur-
phy (1806–1843). He was unconventional: unlike the usual notation, his operations acted
to the left, not the right, and he called commutative operations “relatively free” and
non-commutative ones “relatively fixed”. Although Murphy ignored convergence ques-
tions, and used infinite series of arbitrary operations, he was very careful about inverses,
whose non-uniqueness can cause difficulties. He proved that if L is a distributive (linear)
operation, then so is its inverse, L−1, and he verified the formula (LM)−1 = M−1L−1.
His discussion of inverses centered about the “appendage” of a linear operation, which
seems to be related to the modern concept of the kernel of a linear transformation. Mur-
phy’s work was abstract and very general, but it did not address convergence questions
in applications to calculus. This work influenced Boole, who used the approach to extend
Gregory’s studies of linear differential equations to the case of variable coefficients.

The best known of the English school was George Boole, who built on the work of
Murphy and Gregory in his study of the operator D of differentiation [1844]. This was
his most important work on the subject and it was very influential on later workers on
the calculus of operations. He stressed the use of analogy to get results on operators and
applied Gregory’s three rules to ordinary and partial differential equations. For the case
of constant coefficients, Boole assumed that the characteristic polynomial has distinct
roots, but instead of following Gregory by factoring it into linear factors, he used partial
fractions, claiming that this method is independent of any properties of the variable
except the three shown by Gregory to be common to the symbol d/dx and to the algebraic
symbols generally supposed to represent numbers. However, the method applied only to
a restricted class of partial differential equations, so it fell into disuse. The rigor of the
method was also questionable, which bothered someone as concerned with logic as Boole
was.

In [1847] he defined the terms “symbolical equation” and “symbolical solution”: these
mean that the results are such that their validity does not depend on the significance of
the symbols which they involve, but only on the truth of the laws of their combination.
He did include symbolic methods in his two celebrated textbooks on differential equations
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[1859] and on finite difference calculus [1860]. Incidentally, in [1859], Boole used the term
“Laplace’s method” which eventually became standard, as the Laplace transform. But
by the late 1860s interest in such symbolic methods had died off.

Robert Harely, a friend and biographer of Boole, said that after speculation on the
logic of the calculus of operations, Boole was led to his calculus of deductive reasoning.
In his book on differential equations [1859], Boole says that the true value of symbolic
methods lies only partly in their simplicity and power; rather their true importance lies
in their connection with the general relationship between language and thought.

The first systematic extension of Boole’s method to functions of several variables was
by Robert Carmichael (1828 or 9–1861) in 1851. (Although Boole had stated his results
for the case of several variables, he only applied them to the case of one variable.) Taylor’s
Theorem, in the form

(3.26) eh
d

dx f(x) = f(x+ h),

was generalized by Herschel as

(3.27) f(1 + ∆)ux = f(e∆xD)ux,

which in turn was extended by W. R. Hamilton in 1837. Hamilton’s most important work
in the calculus of operations was his application of it to the evaluation of certain definite
integrals which occur in physics.

The results of this early stage were summarized in a textbook of Robert D. Carmichael,
Treatise on the Calculus of Operations [1855]. This is the earliest book dealing with
studies of English mathematicians on operators and their uses in analysis3. (Although
Arbogast’s earlier calculus of derivations encompassed differential calculus, its main goal
was the calculation of coefficients of various power series expansions. He provided copious
examples of these calculations.) Carmichael’s book is mainly a summary and an extension
of the work described above. But he also mentions the book of Jellett [1850] on the calculus
of variations in the context of the calculus of operations.

Carmichael says that the usefulness of the calculus of operations is due to the simplifi-
cation it provides for both the student and the mature mathematician. For the former, it
makes learning easier; for the latter, it provides a means of recovering known results with
ease and elegance, and aids research into new areas by ensuring certainty and providing
means for rapid calculation.

Some of the results are due to the author, and his largest debt is due to Jellet, followed
by Graves and Gregory. In particular, the applications to partial differential equations
are mostly from the book of Gregory [1841].

On page 1, Carmichael gives his definition of the calculus of operations:

The calculus of Operations, in the greatest extension of the phrase, may be re-
garded as that science which treats of the combinations of symbols of operation,
conformably to certain given laws, and of the relations by which these symbols
are connected with the subjects on which they operate.

3Professor Przeworska-Rolewicz has noted that the book of Lembert [1815], written in Ger-
man, contains the basic elements of algebraic analysis.



HIGHLIGHTS OF ALGEBRAIC ANALYSIS 25

He also passes along a remark made to him by Boole, that the great difficulty in the
calculus of operations in the case of operations with respect to integral calculus consists
in the interpretation of the symbolic results at which you arrive. By this time, Boole had
been working with such operations for a number of years.

Carmichael lists three principal laws of operations, and states that a consequence of
these laws is that every theorem in Algebra which depends on them has an analogue in
Analysis. These are the laws introduced by Gregory and stressed by Boole [1844], but
Carmichael does not mention either of them in this connection.

Carmichael’s book was well known at the time and (at least in England) was influential
in spreading the calculus of operations.

The popularity of the calculus of operations was enhanced by the appearance of el-
ementary textbooks, by Gregory and Boole. De Morgan [1842] devoted space to the
calculus of operations, discussing the work of Gregory on separation of symbols, (whose
explanation of the validity of this was accepted by his contemporaries), theorems on sym-
bols (e.g., of Lagrange and Herschel), and the use of symbolic methods for transformations
of divergent series. He also discussed derivatives of fractional order, but considered this
subject “unsettled”. However, De Morgan’s calculus book was the first full-length British
book to abandon Lagrange’s power series method and to use limits instead. He used only
an intuitive approach to limits, avoiding ε−δ formulations. The ironic part of this is that
De Morgan gave an explicit ε− δ formulation of the definition of limit in a paper of 1835.
De Morgan also lectured in the calculus of operations in his courses.

In 1871, De Morgan discussed the relationships between the calculus of operations,
the geometry of complex numbers, and the development of abstract algebra; these led
to the notion of the purely abstract nature of symbols. (Incidentally, Murphy’s paper of
1837 has an important place in the history of the algebra of linear transformations.)

Gregory, Boole, De Morgan, and Peacock, the promulgators of the new abstract alge-
bra, all worked on the calculus of operations. They were led to the former by the latter.
Koppelman [1971–72] claims that the English work in algebra was a direct response of
the English to a specific aspect of the work of Continental analysts which was available
to them: the calculus of operations (to use the English term for it). The British used the
method extensively, and considered the concept of operation a unifying theme in math-
ematics, and one of the utmost interest. The strongest proponents of this were Gregory
and Boole, and these efforts are related to their innovations in algebra and logic. De
Morgan presented a brief outline of his views in [1835, 1849].

For more on the development of algebra, in addition to Koppelman [1971–72], see
Novy [1973].

To conclude, the calculus of operations was imported into England from France and
extended by Babbage and Herschel, and was a focal point for mathematical research in
Great Britain during the period 1835–1865. De Morgan noted that the Cambridge and
Dublin Mathematics Journal was full of symbolic reasoning. Additional work continued
in Great Britain and on the Continent through the end of the 19th century and into
the 20th. It was made more rigorous, was better understood, and eventually led to the
modern theory of Linear Operators, as a part of Functional Analysis. It can still be found
in many 20th century textbooks on differential equations, e.g., Piaggio [1952]. However,
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there was a lull in the subject after Boole’s work in the 1860s, until the 1890s; we now
turn briefly to the source of renewed interest in symbolic methods, namely, the work of
Oliver D. Heaviside (1850–1925) in the 1890s through his work on electrical engineering.
His main contribution to science was the development and reformulation of Maxwell’s
Electrodynamics, and his mathematical ideas arose in that context.

Heaviside began his work with what he called the telegrapher’s equation. It is generally
believed that most of Heaviside’s work was previously known (e.g., Cooper [1952], Lützen
[1979], Petrova [1987]) to Cauchy, Gregory, Boole, and others. However, it was Heaviside
who popularized the symbolic method, and it is often referred to as the Heaviside calculus.
More precisely, Heaviside made three basic contributions:

1) He worked out operational methods systematically and gave numerous applications
which were helpful to electrical engineers.

2) He went beyond merely solving equations and attempted to get an explicit represen-
tation of solutions which would be useful in describing physical processes.

3) He understood that he could use asymptotic divergent series to get rapid evaluation
of a function.

He also popularized the use of the “Heaviside unit function” by his extensive use of it,
although a version of this goes back to Fourier in his paper of 1807 and his book [1822]

(3.28) ϕ(x) =
{

1, if 0 ≤ x ≤ π,
0, if π < x ≤ 2π.

Heaviside considered an impulsive function at the instant t = x, which he denoted by
pH(t − x), where H is the Heaviside unit function and p is his symbol for the operator
D. This is an early version of the delta-function δ(t−x). He also considered the difficulty
previously discussed by Woodhouse, namely, if

(3.29)
1

1 +D
= 1−D +D2 −D3 + · · · ,

then one is interpreting Dn as
(
d
dx

)n
, whereas if

(3.30)
1

1 +D
=

1
D
− 1
D2

+
1
D3

+ · · · ,

then

(3.31)
1
D
f(x) =

∫ x

a

f,

i.e., D is right-invertible. Practical experience led Heaviside to the second form (3.31)
wherever possible. For electrical problems, it is also natural to choose a = 0. Heaviside
mentioned [1893, Vol. III, p. 236)] the use of the Laplace transform in connection with
his operational methods, and van der Pol and Bremmer [1950] claim that Heaviside saw
this as a rigorous basis for the method. A change in terminology has occurred here, from
the earlier calculus of operations to the form still current: operational calculus.

Since the Laplace transform is often used as a justification for the use of operational
methods, we shall briefly discuss the development of the Laplace transform as well as the
connection between the two.
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4. Representational calculus: the Laplace transform and other indirect
methods. Cooper [1952] made a useful distinction in the types of operational calculi: a
form of operational calculus in which the operator is manipulated directly according to
algebraic rules is a formal calculus, and one in which it is assumed that a function can be
represented in a certain manner, and the operation of differentiation on the function is
made to correspond to ordinary algebraic operations on the representing object, is called
a representational calculus. (The distinction is not absolute.) In these terms, Heaviside
made use of a formal calculus. It will be instructive to examine the relation between these
two methods of operational calculus.

One of the basic results of Heaviside’s calculus is his expansion theorem, which allowed
him to use partial fractions to expand rational functions of operators. Although he
probably found this independently, it can be found in forms similar to his in work of
Cauchy, Lobatto, and Boole. In fact, Heaviside studied Fourier’s book [1822] and Boole’s
book [1859] on differential equations.

A major step in the development of representational calculi was made by Fourier
[1822], who introduced two of them: Fourier series and Fourier integrals. But the first
systematic operational calculus is in the work of Cauchy over the period 1815–1850. He
wrote the Fourier Integral formula for this in exponential form,

(4.1) f(x) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

eiu(x−y)f(y)dy du,

and for functions of the operator D, he got

(4.2) ϕ(D)f(x) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

ϕ(iu)eiu(x−y)f(y)dy du,

and corresponding formulas for functions of several variables. This is the essence of the
modern form of representational calculus. Cauchy felt that he had a rigorous justification
for symbolic methods involving the operators D and ∆ when these are applied to rational
functions, but not for infinite series (which Brisson accepted) or for taking operators under
the sign of integration (as occurred in work of Brisson and of Poisson). Cauchy proposed
the natural test for correctness of these procedures: substitute the result into the equation
to be solved, and verify the solution. Of course, he required investigating the convergence
of any infinite series that arose in the process. He was especially fond of using his residue
theory for this purpose.

Cooper lists three main types of operational calculus for the symbol D.

1) Fourier Operational Calculus for periodic functions. Representing a function f by its
Fourier series,

(4.3) f(t) =
∞∑
−∞

ane
int,

a function of D is represented as

(4.4) ϕ(D)f(t) =
∞∑
−∞

ϕ(in)aneint.
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2) Cauchy Operational Calculus for functions defined on the real line. This is given by
(4.1) and (4.2). The drawback here was that functions must behave at infinity for
the integrals to converge, and various methods have been devised to generalize the
Fourier transform (e.g., E. C. Titchmarsh and T. Carleman). Since the introduction
of distribution theory, this could be extended to the class of tempered distributions.

3) Heaviside Operational Calculus for functions defined on [0,∞). This is usually done
via the Laplace transform

(4.5) F (p) = (Lf)(p) =
∫ ∞

0

f(t)e−ptdt,

where f is of exponential order, and its inversion,

(4.6) f(t) =
1

2πi

∫ a+i∞

a−i∞
F (p)eptdp.

At this point, we shall take a brief detour to discuss the development of the Laplace
transform, following Deakin [1981, 1982]. The modern version of the theory of the Laplace
transform is correctly attributed to Gustav Doetsch (1892–1977), who presented a sys-
tematic treatment in his book [1937]. However, the subject has a long history, going back
to Euler, who in 1737, sought solutions of differential equations in the form

(4.7)
∫
eaxX(x)dx (no limits of integration).

The Laplace transform is not merely an attempt to make rigorous the calculus of op-
erations, but it has an independent development based on the search for solutions of
differential equations in the form of definite integrals of certain types. Euler discussed
such methods in a number of papers and in his textbook on integral calculus [1769, Vol.
II]. Also, Lagrange (in a paper on the propagation of sound) transformed a partial differ-
ential equation (the wave equation) into an ordinary differential equation by a method
equivalent to taking Fourier transforms: he applied integration by parts and chose limits
of integration which lead to vanishing of integrated terms. This was an anticipation of the
technique later used by Laplace and by Petzval. Having done this for the wave equation
in one space variable, he repeated it for the case of two space variables later.

It was Pierre-Simon Laplace (1749–1827) who laid the groundwork of the subject. In
[1782] he solved a difference equation by looking for solutions of the form

(4.8)
∫
e−sxϕ(x)dx

which, unlike Euler’s (4.7), was a definite integral, but whose limits were to be determined.
He went into a long discussion on how to obtain the limits, and applied the same method
to differential equations. Then he went on to other things, and only returned to the
subject much later [1810–11], where he considered integrals of the form

(4.9)
∫ ∞

0

f(x)e−axdx.

He evaluated many of these integrals. Later, he used a version of the Laplace transform to
solve a second order partial differential equation. In the process, he got what is essentially
the inverse Laplace transform. He returned to these integrals in his work on probability
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theory [1812]. Although he was anticipated by Euler and by Lagrange, it was Laplace who
produced a systematic theory that went far beyond anything the others had produced.
The influential calculus of Lacroix [1800, Vol. 3] describes some of Laplace’s work on such
integrals.

Cauchy made extensive contributions to the mathematics required for the modern
version of the Laplace transform, but not to the theory of the transform itself. These
include his calculus of residues, (which got his attention away from symbolic methods),
his extensive analysis and applications of Fourier transforms, especially their complex
form, and studies of symbolic operators.

In the 1820s N. Abel wrote a paper (published in 1839) which was the first attempt at
a systematic exploration of the properties of the Laplace transform. But it was basically
unknown until 1892. In 1832, Joseph Liouville published three papers on derivatives of
fractional order. Along the way, he systematically produced much of the currently known
theory of the Laplace transform. This work duplicates and surpasses that of Abel, which
was unknown to him, and was very influential on Joseph Petzval (1807–1891).

Inspired by Liouville’s papers, Petzval devoted much of the period 1833–1859 to work
on integral transforms for solving differential equations. Contrary to the claims of a
former student, Simon Spitzer, Petzval’s work was done independently of Laplace’s. A
long controversy ensued, which ended with Boole’s use of the term “Laplace’s method”
in his book on differential equations [1859]. Because of his standing as a mathematician,
the term Laplace transform ultimately became generally accepted. Petzval wrote a large
book on differential equations [1853, 1859], which was not exclusively concerned with the
Laplace transform, but which used it frequently, especially in the first volume. This book
was most responsible for bringing the technique to general notice. Its only drawback was
that Petzval was not well versed in Cauchy’s residue theory.

Petzval’s work was the acme of achievement in this subject up to 1860 and beyond;
it was not surpassed until Poincaré’s work of 1880. Petzval duplicated and then went
beyond Laplace and others, and incorporated the contributions of Liouville, and partly
those of Cauchy. Among others, he influenced Boole, Mellin, and Bateman.

H. Poincaré submitted a paper for a prize offered in 1880 by the Academy of Science
in Paris. This long paper (182 pages) was never published as submitted. Part 2, which
was entirely independent of Part 1, was later published, but not the latter (consisting of
pages 5–79). Part 1 was concerned with the differential equation

(4.10)
n∑
i=0

Pi

(
d

dx

)i
y = 0,

where the P s are entire polynomials in x. He used the Laplace transform in the form

(4.11) y =
∫
v ezxdx,

where v is a function of z, and the contour of integration is to be determined. This is
the technique of Petzval, except for the latter’s use of real limits of integration. From the
manuscript, it seems clear that Poincaré developed his theory of the Laplace transform
ab initio. He finally succeeded in publishing the contents of Part 1 in [1885], by which
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time he found out that the Laplace transform was not his invention. With both Boole
and Poincaré using Laplace’s name for the method, its general acceptance was assured.
Also, Poincaré actually introduced the final form of the name: the Laplace transform.

In [1887], Salvatore Pincherle (1853–1936) wanted to instill rigor into operational
calculus. For an operator E, acting on analytic functions ϕ(y), E(ϕ) is to be an analytic
function of x, which is to be distributive, and to satisfy

(4.12)
d

dx
E(ϕ) = E(yϕ), and xE(ϕ) = −E

(
dϕ

dy

)
.

He then showed that

(4.13) f(x) =
∫

(λ)

exyϕ(y)dy

satisfies these requirements, for a suitable class on contours λ. Pincherle returned to the
Laplace transform frequently over a period of forty years, and played a role in ensuring
that Laplace’s name was attached to the transform.

In 1898 or 1899, Heaviside worked on a version of the Laplace transform, but he
had little direct influence on the theory of Laplace transforms although he did influence
Bromwich, Carson, and van der Pol to use the transform. Another mathematician who
made much use of Laplace tranforms for solving differential equations was Harry Bate-
man, who encouraged Carson to use them in studies of electricity. As we shall see, the
earliest work connecting Laplace transform theory with operational calculus seems to be
due to engineers and mathematicians interested in engineering problems.

T. J. Bromwich (1875–1929) gave [1916] an explanation of operational calculus based
on function theory. His was one of the first papers to do so, and it was the most influ-
ential. Bromwich’s claim was that he had provided the final rigorous proof of Heavisde’s
operational calculus. His method was to use an integral representation to transform a
given normal system of differential equations into a system of algebraic equations (or to
transform a partial differential equation into a differential equation of one order lower).
The differential operator d/dt was transformed into multiplication by the independent
variable. Finally, he found a contour integral to represent the solution of the original
differential equation. His method was essentially the same as Poincaré’s, but he used a
standard contour.

Another significant reformulation of operational calculus appeared in series of papers
by John R. Carson whose ideas were collected in a book [1926] on the use of operational
calculus in electric circuit theory. His work was independent of that of others, such as
Bromwich, who were studying the same problem. His method is closer to a strict integral
transform approach and he inverted by solving an integral equation rather than using
function theory. His transform was

(4.14) F (p) = p

∫ ∞
0

f(t)e−ptdt,

which he solved for the function f .
Operational calculus was still not fully integrated into the mainstream of Laplace

transform theory in the mid 1920s. Several mathematicians pointed out the relationship
between these subjects at that time, e.g., Paul Lévy (1886–1971) in [1926]. The first to
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use transform methods consistently as a substitute for, and an explanation of, operational
methods was Baltezar van der Pol (1889–1959) in a sequence of papers starting in 1927. In
his book co-authored with Bremmer [1950], he used the “two-sided” Laplace transform,
i.e., integrated over the entire real line (−∞,+∞), instead of the usual half-line (0,+∞).

A synthesis of much of the modern theory of the Laplace transform took place over the
period 1917–1937. This is summed up in the book [1937] of Gustav Doetsch (1892–1977),
a very rigorous and clear compilation of the theory of Laplace transforms as of 1937. His
definition of Laplace transform was

(4.15)
∫ ∞

0

f(t)e−ptdt.

(As noted above, some versions of the transform include a factor of p in front of the
integral.)

It may seem ironic that in the same year as Doetsch’s book appeared, presenting a
rigorous representational version of operational calculus via the Laplace transform, there
also appeared a book by Eugene Stephens [1937] which made extensive use of direct
methods of operational calculus. He referred the reader to Davis [1936] or Poole [1936]
for a full justification of his methods. Applications are given to partial as well as to
ordinary differential equations.

For instance, Stephens considers

(4.16) F (d1, d2) =
∑
j,k

ajkd
j
1d
k
2 , where d1 =

∂

∂x
, d2 =

∂

∂y
,

and the summation may denote an infinite series. For the equation

(4.17) F (d1, d2)z = f(x, y) + 0,

Stephens wrote the solution as the sum of a particular solution and a complementary
function

(4.18) z =
1

F (d1, d2)
f(x, y) +

1
F (d1, d2)

0.

The advent of distribution theory in the late 1940s brought with it the hope of another
justification for operational methods. In his book on distribution theory, L. Schwartz
[1950; also 1957, page 8] stated that he had omitted many explicit calculations, but
added

La plupart de ces calculs seront explicités dans un court fascicule spécial, qui
parâıtra ultérieurement dans cette même collection.

However, this sequel to his book has never appeared.4

Doetsch [1974] wrote a textbook on Laplace transforms which is based on the theory
of distributions. He did not want to use the Fourier transform, which requires the class
of tempered distributions, so he used instead the class of distributions of finite order,
which allowed him to get a criterion for the representability of an analytic function as

4Professor Przeworska-Rolewicz has informed the author that Schwartz’ reason for this was
that the formulas turned out to be too cumbersome.
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the Laplace transform of a distribution of finite order. For Laplace transforms based on
tempered distributions, the condition is only sufficient, but is not necessary.

There is also an approach to operational calculus using distributions by T. P. G.
Liverman [1964] whose purpose is to present operational methods using direct manipu-
lation of differential and integral operators in the manner of Heaviside. Liverman uses
the sequential theory of distributions, rather than the standard linear functional theory.
Only the first of two proposed volumes has appeared, dealing with ordinary differential
equations. The second volume was to have covered direct operational methods for partial
differential equations.

In [1926], P. Lévy connected the operational calculus with convolution. If

(4.19) (f ∗ g)(t) =
∫ t

0

f(t− u)g(u)du,

Lévy corresponded a convolution operator F to a function f by the rule

(4.20) F (g) = f ∗ g.

Then to the constant function 1 corresponds the integral operator I, where

(4.21) (Ig)(t) =
∫ t

0

g(u)du,

and In corresponds to the n-fold convolution of 1 with itself. Then he introduced differ-
ential operators I−n as left inverses of the In, which caused problems due to the lack
of commutativity of In and I−n. He formed a ring of such operators, but was unable to
handle quotients of operators F/G.

Before the Laplace transform became the standard approach to the representational
form of the operational calculus, Norbert Wiener (1894–1964) used the Fourier transform
as the basis for this calculus [1926]. Although this paper was frequently referred to, its
methods were not much used because of their difficulty.

Wiener began with a historical introduction to the concept of operational calculus
and stated his goal to provide a rigorous foundation for Heaviside’s operational calculus.
He mentioned the recent work of Carson, but pointed out that Carson found solutions for
particular cases without providing a general theory. He listed a number of other possible
approaches: Volterra’s permutable kernels, Pincherle’s theory of transformations of power
series, the Laplace transform in the work of F. Bernstein and G. Doetsch in 1925, and
the Fourier transform. But the Laplace transform was only applicable in the case of
analytic functions, while the Fourier transform is not limited in that way. However, the
Fourier transform presented its own difficulties, e, g., the severe growth restrictions at
infinity of the classical Fourier transform, which, he said, are far more severe than those
for Heaviside’s methods. This led him to a generalization of the Fourier transform. In
turn, this generalization led him further, to his celebrated work on Generalized Harmonic
Analysis.

Wiener introduced the class of functions f in L2
loc for which there exist numbers A

and k such that f(x) ≤ Axk for all x with |x| sufficiently large. In general, a function
of this type has no Fourier transform, so he had to provide an extension of the Fourier
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transform. In particular, he wanted to have

(4.22) F
[
F

(
d

dt

)
f

]
(µ) = F (iµ)Ff(µ),

where F denotes the Fourier transform, for fairly general functions F . This form of the
required relation is essentially that used by Calderón and Zygmund in their work on
singular integral operators in the 1950s. But Wiener had no Fourier transform for such
functions, so he proceeded differently. Wiener made use of a decomposition of the function
f which he had used in previous work, into a sum (or a series) of functions, each with
harmonics in only a restricted range.

In his review of Wiener’s paper, Laurent Schwartz [1979] put the method into the more
general framework of distribution theory. If f is a tempered distribution and F ∈ OM
(i.e., F is of class C∞ and, with all of its derivatives, is of slow growth at infinity), then
F
(

1
i
d
dx

)
f is also a tempered distribution, and

(4.23) FF
(

1
i

d

dx

)
f(ξ) = F (ξ)Ff(ξ),

or

(4.24) F

(
1
i

d

dx

)
f = F−1F ∗ f.

Wiener’s operators F
(
d
dx

)
required special treatment in case F has poles or branch points

on iR, and when its behavior at infinity is complicated.
Wiener ended his paper with examples of solutions of partial differential equations ob-

tained by operational methods. In the process, he introduced for the first time the notion
of a weak derivative and weak solutions of partial differential equations. Schwartz found
it amusing that it was also consideration of generalized solutions of partial differential
equations that led him to introduce distributions. (In a later historical review, he called
his search a near obsession.) The equivalent of the Sobolev space W 2,1 also appears in
this paper.

Although he did not mention it this paper, Wiener’s approach to symbolic methods
follows Cauchy in basing the method on Fourier integrals. The method did not become
popular; the book of V. Bush [1929], which deals with operational circuit analysis, con-
tains an appendix by Wiener outlining his approach. This appears to be the only attempt
at popularizing Wiener’s method of Fourier integrals.

Before we leave Wiener’s paper [1926], it should be noted that Schwartz [1979] pointed
out that Wiener’s work can be viewed as an early, one-dimensional version of the theory
of pseudodifferential operators developed by J. J. Kohn, L. Nirenberg, and L. Hörmander
in the 1960s. As Saint Raymond [1991, page 29] stated:

The key idea [of the theory of pseudodifferential operators] is to replace all the
computations on the operators with algebraic calculations on their symbols.

This is certainly a concise description of the representational form of operational calculus.
At about the same time, Hermann Weyl [1927] gave a formal definition of an operator

a(x,D) corresponding to a symbol a(x, ξ), i.e., a function of a certain type. He did this
via Fourier transformation and the integral in (4.25) is not convergent, but formally is
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equivalent (according to Kohn and Nirenberg) to

(4.25) Wf(x) =
1

(2π)n

∫ ∫
eiξ·(x−y)a

(
x+ y

2
, ξ

)
f(y) dy dξ.

This also appeared in his book on quantum mechanics [1928, English translation, 1932,
p. 274], in the form

(4.26) f(p, q) =
∫ ∫ +∞

−∞
e [i(σp+ τq)] ξ(σ, τ)dσ dτ,

where e(x) = eix. Weyl’s paper of 1927 appeared just a year too late to be useful in
the development of quantum mechanics. Moreover, mathematicians did not make much
use of Weyl’s operational calculus until L. Hörmander [1979] worked out the detailed
theory, long after the general theory of pseudodifferential operators had been developed.
It is interesting to note that the theory of pseudodifferential operators did not arise
from rather natural formal procedures using Fourier transforms applied to linear partial
differential equations with variable coefficients, but rather from the theory of singular
integral operators of Calderón and Zygmund.

5. Return to formal operational calculus. Since many of the authors in this area
refer to the work of Vito Volterra (1860–1940), we shall briefly describe his contributions.
In [1913b] Volterra studied a composition of functions of the form

(5.1) (f ∗ g)(x, y) =
∫ y

x

f(x, ξ)g(ξ, y)dξ,

which is a generalization of a matrix product, from the discrete to the continuous case.
This work was a sequel to his work [1913a] on integral and integro-differential equations.
(Actually, the notation was not f ∗ g, but f∗g∗.)

In his book with Pérès [1924], Volterra continued this work. His goal in introducing
the operation of composition was to solve linear integral equations by forming integral
powers of composition kernels of integral equations and showing that these powers are
functions permutable among them. He viewed permutable functions and composition as
natural extensions to functions of the notions of product of matrices or substitutions.

If matrices M and N satisfy MN = NM , he called them permutable. The passage to
the continuous from the discrete is achieved by replacing integer-valued indices by contin-
uous variables, and sums with respect to indices by integrals with respect to continuous
variables. Thus ∑

k

aikbkj →
∫
f(x, ξ)g(ξ, y)dξ.

Composition of functions is of two types: the first type is that of (5.1) with variable limits
of integration, and the second type is given by the same integral but with fixed limits.
Permutability means

(5.2)
∫ y

x

f(x, ξ)g(ξ, y)dξ =
∫ y

x

g(x, ξ)f(ξ, y)dξ.
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Thus f ∗ g is the resultant of the composition of f and g, and it is associative and dis-
tributive, but not commutative in general. The functions are permutable if their resultant
is commutative.

A simple family of permutable functions consists of those permutable with constants
(which may be taken to be identically one).

(5.3)
∫ y

x

f(x, ξ)dξ =
∫ y

x

f(ξ, y)dξ = ϕ(x, y).

Volterra and Pérès show that ϕ depends on a single variable x − y. These are called
“functions of the closed cycle”, and their composition reduces to convolution:

(5.4)
∫ t

0

f(t− s)g(s)ds.

Bourbaki [1994] criticizes Volterra’s algebraic formalism for not bringing out the con-
nection with the group structure of the real line or of the Fourier transform. However,
neither of these seem to be particularly relevant to Volterra’s purposes.

The most satisfactory direct version of the operational calculus seems to be that
of Jan G. Mikusiński (1913–1987).5 His first work [1944], written under harsh wartime
conditions, was called Hypernumbers, Part I Algebra. Only 7 copies of this work, in Polish,
were produced. A hypernumber (α, f) is an ordered pair consisting of a complex number α
and an element f of a complex linear algebra W . Addition of these numbers is defined in
the natural way, and Mikusiński wrote (α, f) = α+f . A non-commutative multiplication
is defined by

(5.5) (α, f)(β, g) = (αβ, βf + αg + fg).

The resulting set of hypernumbers is denoted by [W]. His idea was to apply hypernumbers
to the theory of integral equations and differential equations by reducing certain analytic
problems to purely algebraic ones. Then applications to constant coefficient linear differ-
ential equations have an appearance almost identical to Heaviside’s calculus. However,
unlike the latter, the new version applies to non-zero initial conditions. Mikusiński stated
that hypernumbers provide a new algebraic basis for that calculus, one that is conceptu-
ally simpler than the Laplace transform. He also considered the permutable functions of
Volterra and Pérès. The first part of the work, algebra, presents the theory and certain
applications depending on the four elementary arithmetic operations, while the second
was to introduce the sum of infinite series of hypernumbers and applications to Volterra
integral equations.

For his first example, Mikusiński took W to be the space D of all complex valued
functions which are continuous on a given interval [a, b) of the real line, where b may be
∞. Addition in D is the usual one, but multiplication is convolution

(5.6) f(t) ∗ g(t) =
∫ t

a

f(a+ t− τ)g(τ)dτ.

5Since Professor Skórnik presented an excellent sketch of Mikusiński’s method, less space
will be devoted to it here than its importance requires.
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(Mikusiński actually wrote {f(t)} for vectors in D.) Then D is a commutative algebra;
applications of hypernumbers of [D] to constant coefficient linear differential equations
are given. Mikusiński gave another example which had applications to Fredholm integral
equations.

After presenting a brief sketch of a sequential theory of distributions, which was
carried out later (by G. Temple, by J. Korevaar, and by Mikusiński and R. Sikorski),
Mikusiński returned to his operational calculus, but now making use of Titchmarsh’
theorem on convolutions, which made the ring structure he used into an integral domain
[1947, 1949]. This allowed him to embed the integral domain into a quotient field, and to
carry out operations in this field, now known as that of Mikusiński operators. Reviewing
the paper of 1949 in Mathematical Reviews in 1951, L. Schwartz said

“This theory gives satisfying formulae for symbolic calculus.”

Mikusiński’s book [1953] on his operators was well received, and was translated into
several languages and has gone into several editions.

Other direct approaches were also being constructed at that time. For example, J. Dal-
ton [1954] had the aim of presenting a elementary but sound presentation of operational
calculus. He said that Heaviside’s theory failed because for two basic reasons. First, be-
cause of an imperfect comprehension of the distinction between d

dx and (
∫ t

0
· · · dϑ)−1, and

second because of an unfortunate choice of primary operator on which the whole theory is
based. As for the Laplace transform, this is an “alternative” and “essentially different pro-
cess” which neither explains Heaviside’s techniques nor establishes their validity. Dalton’s
new idea was that the basic operation should be integration over a bounded time-interval.
In contrast, the Laplace transform starts with integration over an unbounded time inter-
val, and so is forced to restrict the growth of the functions it is able to handle. This is
foreign to Heaviside’s method. Dalton’s approach does not seem to be in use today.

6. Some further types of algebraic analysis. There are many other examples
of studies that could very reasonably be called algebraic analysis. One of these is an
approach to distribution theory which essentially re-echoes the old Euler-Lagrange view
of algebraic analysis as the study of basic operations via power series. It is sometimes
called the axiomatic theory of distributions and was developed, mostly independently, by
H. König, J. Sebastião e Silva, and R. Sikorski. At bottom, the basis of their method is the
idea of representing a “generalized” function as a generalized derivative of a continuous
function. In turn, this idea has its roots in Bochner’s work [1932] on the Fourier integral.

In his thesis, König [1953] worked with formal power series

(6.1) τ =
∑
s

fsz
s,

where locally, only a finite number of terms are non-zero. The s = (s1, s2, . . . , sn) are
multi-indices and the fs are functions on an open set Ω ⊆ Rn. The set of such series forms
a vector space B with respect to the natural operations. If ei denotes the multi-index with
1 in the ith place and zeros elsewhere, a corresponding derivation is introduced in B by

(6.2)
∂τ

∂xi
=
∑
s

fsz
s+ei ,
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and all of these new series are elements of B. König defines a subspace U of B which is
sequentially closed and is closed with respect to all of the derivations (6.2). Finally, he
forms the quotient space F = B/U , and defines derivations and convergence in F . Dis-
tributions are then identified with elements of a subspace L of F which are images in F

of elements of B of the form (6.1) with fs locally integrable on Ω. (L is isomorphic to the
space of Schwartz distributions on Ω.) There are derivations and a notion of convergence
on L, but convolution, Fourier transforms, and Laplace transforms are missing.

König’s theory is presented in more detail in the second edition of Sauer’s book [1958]
on partial differential equations, where it is applied to generalized solutions of partial
differential equations.

The axiomatic versions of Sikorski and of Silva are very similar, so we will give a
sketch only of the latter. Sikorski’s approach appeared in a 3-page note [1954] and in
Vol. I of his book on Real Analysis [1958, pp 425–437].

The most extensive presentation of the axiomatic approach is that of Silva [1954–55].
Silva’s early work was a re-working of the operational calculus of L. Fantappiè in the
framework of functional analysis. Fantappiè’s ideas on analytic functionals can be traced
back to Volterra and Pincherle. Silva notes that in Vol. I of Schwartz’ book on distribu-
tions [1950], “Bochner distributions” are defined, basically as derivatives of continuous
functions which don’t necessarily have derivatives in the usual sense. (Theorem XXI of
Chapter III.) But Schwartz says that it is preferable to have this property as a theorem
rather than a definition, because of the non-determination of the order of differentiation
of the continuous function. In the work of Silva and of Sikorski, this is easily overcome
by an algebraic method analogous to the construction of the rational numbers from the
integers (which is also the basis of the construction of Mikusiński’s operators.) Silva men-
tions König’s paper [1953] as an example of a direct, purely formal construction of the
theory of distributions, but that his own ideas were independent of König’s. However, the
latter’s work did influence him after he became aware of it. Silva criticized König’s work
as decisive but not definitive, because it does not give a true axiomatic version of distri-
butions, i.e., a categorical system of axioms. In particular, König shows that his system is
algebraically isomorphic to the space of distributions, and that his sequential convergence
is equivalent to that of Schwartz, but the topological aspects of this correspondence is
not considered.

To answer Schwartz’ objections to the Bochner method, Silva says that suitable def-
inition of equivalence of formal derivatives is necessary. Thus, if Di, Dj , i 6= j, are two
symbols of differentiation, and f, g, are continuous functions, it is possible to choose
functions F and G such that

(6.3) Dif = DiDjF, Djg = DjDiG.

He follows by analogy the construction of the rational number system, where one uses the
fact that two rational numbers can always be represented by fractions with a common
denominator. It is notable that no topological structure of the space of distributions is
used in the axiomatization; only algebraic constructions are used. However, Silva’s paper
is long and intricate, due to a very general and abstract introduction of the algebraic
projective limit of groups in order to define the order of a distribution (finite or infinite).
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In this, Silva followed a suggestion of Schwartz to use the Patching Principle to obtain
distributions of infinite order from those of finite order.

In generalizing his approach from scalar-valued to vector-valued distributions, Silva
[1960] used more direct methods. He acknowledged that his previous formalism was too
abstract and that it masked the elementary and easy character of this construction. A bit
later, Silva [1962, 1964] simplified his presentation by restricting attention to distributions
of finite order, since those of infinite order are mostly of theoretical rather than practical
interest. He repeated [1962] the idea that the passage from the notion of function to that
of distribution is of the same character as the successive extensions of numbers, from
integers to rationals to reals to complex numbers. To emphasize his point, he quoted
Schwartz to the effect: in Analysis, who uses the fact that a real number is a cut or a
class of sequences? The formal properties of operations and order relations are entirely
sufficient for users of the theory. The method used is elegant from the mathematical
viewpoint because it solves an algebraic problem by strictly algebraic means. (Topology
plays an artificial role here.) Moreover, a considerable part of the theory of distributions,
including Laplace transforms, Fourier series, and Fourier transforms, and their practical
applications, may be described more simply without topology.

For simplicity, consider the one-variable case. Let I ⊆ R be an interval and C = C(I)
denote the set of complex-valued continuous functions on I. For an arbitrary point c of
I, let

(6.4) If(x) =
∫ x

c

f, for f ∈ C.

Primitive notions here are continuous function and derivative. The axioms are:

Axiom 1. Every complex-valued function f , defined and continuous on I, is a distri-
bution on I.

Axiom 2. To each distribution T on I corresponds a distribution DT on I, called
the derivative of T , such that if T is a function with a continuous derivative in the usual
sense, then DT coincides with this derivative.

The derivative of order r of a distribution T is defined by induction.

Axiom 3. For each distribution T on I, there is a non-negative integer r and a function
f in C such that T = Drf .

Axiom 4. If r is a non-negative integer and f, g ∈ C satisfy Drf = Drg, then f − g
is a polynomial of degree less than r.

(Denote the set of all polynomials of degree < r by Pr.)

This system of axioms is shown to be consistent and categorical. Silva’s model (the
same as Sikorski’s) is the collection of ordered pairs (r, f), where r is a non-negative
integer, and f ∈ C, with equivalence of two such pairs (r, f) and (s, g) defined by (r, f) ∼
(s, g) if and only if there is some natural number m ≥ r, s, such that

(6.5) Im−rf − Im−sg ∈ Pm.
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This is an equivalence relation and the equivalence class of (r, f) is denoted by [r, f ]. The
set of all equivalence classes is denoted by C̃. The mapping f 7→ [0, f ] of C to C̃ is 1− 1,
so f can be identified with [0, f ]. A derivation is defined on C̃ by

(6.6) D[r, f ] = [r + 1, f ].

Then if f has a usual derivative on I,

(6.7) Df = D[0, f ] = [1, f ] = [0, f ′] = f ′,

since f − If ′ = constant, is in P1. Also,

(6.8) [r, f ] = D[r − 1, f ] = · · · = Dr[0, f ] = Drf,

so Axiom 3 is satisfied. Finally,

(6.9) Drf = Drg ⇒ [r, f ] = [r, g]⇒ f − g ∈ Pr.

The extension to higher dimensions is simple.
In [1964], Silva presented a more extended version of this theory, which can be thought

of as working with the coefficients of a (generalized) power series, without using the power
series itself. He also presented there a direct, elementary theory of integration of distri-
butions, from which he obtained a general theory of convolutions and Fourier transforms
for tempered distributions. In 1966, Silva was writing a book about his algebraic version
of distribution theory, but he died before completing it. Recently, Campos Ferreira [1997]
published a textbook on distribution theory using Silva’s approach.

As for interest in presenting distributions as generalized derivatives of continuous
functions, this method is used by David Kammler in a forthcoming textbook on Fourier
Analysis for undergraduates in mathematics and engineering. Distributions are intro-
duced early in this book and are used often.

Poincaré stated that the study of the history of mathematics is not only interesting
in itself, but also serves to point the way to future research. With that in mind, we end
this survey with a glance at some recent work.

In the algebraic analysis view of distribution theory sketched above, the axiom system
is intended to be categorical. Our final example is an algebraic approach to a much wider
class of generalized functions than Schwartz distributions, which is not meant to be
categorical. This is the theory of E. Rosinger [1990].

Rosinger is interested in generalized solutions of nonlinear partial differential equa-
tions. In particular, he believes the most relevant and useful approach to this subject is to
first consider the algebraic problems involved in the interaction between differentiation,
discontinuity, and multiplication.

A simple example shows the conflicts which arise when dealing with this trio. Start
with the Heaviside function H : R→ R, defined by

(6.10) H(x) =
{

0, x ≤ 0
1, x > 0.

When dealing with generalized solutions of nonlinear partial differential equations, the
discontinuous function H may be involved with differentiation and multiplication. So
consider a ring A of real-valued functions on R, with a derivative operator D : A→A (so
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that D is linear and satisfies Leibniz’ rule). Then we have some inconvenient consequences,
as follows. Since A is associative and commutative,

(6.11) Hm = H ∀ m ∈ N.

Then

(6.12) mH(DH) = DH, ∀ m ≥ 2,

so that for p, q ≥ 2 and p 6= q,

(6.13)
1
p

(DH) =
1
q

(DH) = H(DH),

(6.14)
(

1
p
− 1
q

)
(DH) = 0 ∈ A.

Thus

(6.15) DH = 0 ∈ A.

Now for good reasons, we expect to have

(6.16) DH = δ,

which would give δ = 0 ∈ A, which is not acceptable.
The way out of this dilemma is to relax some of the assumptions; however we do

wish to keep (6.16). This leaves a choice for the algebra A and the derivative operator
D. First, A need not be an algebra of functions, but may contain more general objects,
and multiplication in A need not be closely related to multiplication of functions. In
particular, we need not have (6.13). Also, the assumption that D : A → A implies that
Dma exists ∀ a ∈ A and all m ∈ N. A sufficient condition for this is A ⊆ C∞(Rn).
However, H ∈ A\C∞(Rn). Thus we may wish to have D : A → A, where A is another
algebra of generalized functions. Since we want D to be a derivation, we assume that
there is an algebra homomorphism A→ A a 7→ a, such that

(6.17) D(f · g) = (Df) · g + f · (Dg), f, g ∈ A.

By means of examples of generalized solutions of nonlinear partial differential equa-
tions, Rosinger shows how the relations on A and on D yield desire results.

The argument above that (6.17) holds doe not use any calculus; it is purely algebraic,
using only the algebraic structure of A and the fact that D is a derivation.

Schwartz’ linear theory of distributions does not allow within itself for unrestricted
use of nonlinear operators, and in particular, multiplication, so we should try to embed
distributions into a larger class of generalized functions. The standard extension of
Cm(Ω) is an embedding into a suitable topological vector space E of generalized functions,
obtained solely on the basis of approximation. That is, each generalized function T ∈
E\Cm(Ω) is assumed to be a limit of classical functions ϕk in Cm(Ω). This leads to the
assumption that topology alone gives the extension E. But Rosinger and J. Colombeau
have shown that it is useful to avoid such early and exclusive stress on the approximation
interpretation, which involves topology first or even topology alone. Rosinger proposes
the alternative of algebra first.
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Rosinger’s claim is that the ring-theoretic type of algebra involved here belongs to a
more fundamental kind of mathematics than the usual calculus, functional analysis, or
topology methods customary in the study of partial differential equations.

7. Conclusion. From the earliest times, the term algebraic analysis has meant the
study of the processes of analysis by means of power series. Leibniz, John Bernoulli, Euler,
and Lagrange viewed analysis as a method of applying algebra to the solution of various
problems; for them, power series were entirely algebraic. Lagrange carried this furthest,
trying to base analysis on algebra, i.e., power series. It has continued throughout the 19th

century and even into the 20th. Thus a book by Rey Pastor, Calleja, and Trejo [1960]
on Mathematical Analysis is in three volumes, the first of which has the title “Análisis
algebrico - Teoria de equaciones, Cálculo infinitesimal de una variable”. In addition,
there are subjects, such as differential algebra, which could properly be called algebraic
analysis. It may be stretching things a bit to include the axiomatic theory of distributions
of König, of Sikorski, and of Sebastião e Silva with power series methods, but the idea
may be thought of as working directly with the coefficients of power series; in the case of
König, this is done explicitly.

But our concern here has been with algebraic analysis as the study of symbolic meth-
ods in analysis, both direct and representational. This is an idea very different from power
series as algebra. The beginnings of this study go back to Arbogast and to some of his
successors in France, most of whom are lesser-known mathematicians. Moreover, Fourier
and Cauchy made use of symbolic methods, but for limited purposes. Eventually, they
dropped these studies. Also they made no direct connection between symbolic methods
and algebra itself.

It was the English mathematicians who, inspired by the work of the French, pushed
symbolic methods much further (in some cases further than could be justified). Some of
them, e.g., Gregory and Murphy, produced a mixture of interesting results and occasional
nonsense. The most influential members of this group, De Morgan and Boole, helped to
popularize it, but also stressed the need for care in its use. Unlike the Continental work
on symbolic methods, the English work was intimately connected with the evolution of
abstract methods in algebra. In particular, Boole [1844, page 282] said

The position which I am most anxious to establish is, that any great advance in
the higher analysis must be sought for by an increased attention to the laws of
the combinations of symbols.

The idea of the primacy of the laws of combination of symbols over the exact nature of
the symbols themselves, led to the development of abstract methods in algebra.

After Boole, interest in symbolic methods waned until Heaviside revived the method
of direct manipulation of operators. This was due to his application of such methods
to problems of electrical engineering. Eventually, mainly through the work of van der
Pol, the Laplace transform became the standard indirect method of justifying symbolic
methods.

An interesting exception to the use of the Laplace transform as the basis for opera-
tional calculus (as it was now known), was Wiener’s idea of basing it on a generalized form
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of the Fourier transform. Although the method was too cumbersome to be useful to elec-
trical engineers, it has, in hindsight, other interesting points. His method can be viewed
as a precursor of the theory of pseudodifferential operators, developed in the mid-1960s.
This is especially strange, when coupled with work of Weyl on quantum mechanics, which
appeared at the same time. Weyl’s work developed an early version of pseudodifferential
operators, but it likewise did not stimulate such studies.

Volterra’s work on permutable operators stimulated interest in convolution integrals,
and was the source for more direct, algebraic approaches to symbolic methods. This was
begun be Lévy and brought to complete fruition by Mikusiński.

There were also several attempts to use Schwartz’ distributions as a basis for symbolic
methods, but despite some limited success, e.g., Doetsch’s use of distributions of finite
order to characterize Laplace transforms, such methods have been abandoned.

Algebraic analysis, defined as the study of right-invertible operators, falls into the
category of direct manipulation of operators. However, it is a much more precise and
more rigorous theory, having the benefit of the extensive and well-developed machinery
of linear algebra available as a framework. Much of the work in this field is due to
D. Przeworska-Rolewicz, who began her studies of algebraic analysis in the early 1960s.
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— [1800], Du calcul des dérivations, Strasbourg, 404 pp.
C. Babbage [1827], On the influence of signs in mathematical reasoning , Trans. Cambridge

Phil. Soc. Vol. II, Part II, 325–377.
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— [1812], Réfutation de la Théorie des Fonctions Analytiques de Lagrange, Paris, 136 pp.
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