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Abstract. Some conditions for the existence and uniqueness of solutions of the nonlocal
elliptic problem −∆ϕ =M f(ϕ)

(
∫
Ω
f(ϕ))p

, ϕ|∂Ω = 0 are given.

In this paper we study the following nonlocal elliptic problem:

(1) −∆ϕ = M
f(ϕ)

(
∫

Ω
f(ϕ))p

,

(2) ϕ|∂Ω = 0.

Here ϕ : Ω → IR is an unknown function from a bounded subdomain Ω of IRn into IR,
f : IRn → IR+ is a given function and M > 0, p > 0 are real parameters.

The physical motivations for the study of nonlocal elliptic problems come from sta-
tistical mechanics [A], [B], [BKN], [BN1], [BN2], [W], [S], theory of electrolytes [BN2],
[BHN], and theory of thermistors [C], [L].

If the nonlinearity f(ϕ) has the form f(ϕ) = e±ϕ and p = 1 then (1) is identical
with the Poisson equation ∆ϕ = ρ with density ρ of the Boltzmann form. In this case
(1) is called the Poisson–Boltzmann equation. If f(ϕ) = eϕ (f(ϕ) = e−ϕ) ϕ can be inter-
preted as the gravitational (electric) potential of systems of particles in thermodynamical
equilibrium interacting via gravitational (Coulomb) potential. In this interpretation, the
parameter M , is the total mass (charge) of the particles of the system.
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The Poisson–Boltzmann equation arises also in investigations of phenomena associ-
ated with the occurrence of shear bands in metals being deformed under high strain rates
[BT], and in modelling of turbulent behavior of flows [CLMP].

The general problem (1), (2) with given f(ϕ) and positive p appears in modelling of
stationary temperature ϕ when an electric current flows through a material with tempe-
rature dependent electrical resistivity f(ϕ), subject to a fixed potential difference [L].

The main tool in the proof of the existence of a solution of (1), (2) is the technique of
sub- (super-)solutions [BL], [BT], [T], variational methods [CLMP], [GL], and topological
methods (Leray–Schauder theory) [BHN], [KN1], [KN2]. The nonexistence results are
a consequence of the Pokhožaev identity [BT], [KN2], or construction of some special
subsolutions [BL]. The existence and uniqueness of solutions for the Poisson–Boltzmann
problem with f(ϕ) = e−ϕ and arbitrary M > 0 was proved in [GL] and [KN1]. In the
first paper the variational and in the second − topological methods were applied.

When f has the form f(ϕ) = eϕ, the solutions do not exist for large M and generally
are not unique. Moreover, the existence and uniqueness depend on the geometry of the
domain Ω [KN2], [KN3].

When f(ϕ) = e−ϕ and p > 0 the problem (1), (2) was considered in [C] by using the
technique of sub- and supersolutions, maximum principle and rearrangement method.

Under the assumption
∫ +∞

0
f(ϕ) dϕ < +∞, the problem (1), (2) was investigated in

[BL], [T].
We consider our problem in a bounded domain in IRn with the boundary ∂Ω of class

C1+ε. This assumption guarantees the existence of the Green function G(x, y) correspon-
ding to −∆ and zero boundary data, satisfying the estimate

(3) G(x, y) ≤ K

|x− y|2−n
, |∇xG(x, y)| ≤ K

|x− y|1−n
,

with some constant K depending on the domain Ω [GW].
To prove the existence of a solution of (1), (2) we shall use the Leray–Schauder

theorem. To do this we consider the family of integral equations

(4) ϕ(x) = λ

∫
Ω
G(x, y)f(ϕ(y)) dy

(
∫

Ω
f(ϕ(y)) dy)p

,

where λ is a parameter from [0,M ]. When λ = M the problem (4) is equivalent to (1),
(2).

It follows from the estimates (3) that the right hand side of (4) is a continuous,
compact operator on the space of continuous functions C0(Ω) with the uniform norm
|ϕ|∞ = supΩ |ϕ|. To apply the Leray–Schauder theorem, a uniform for λ ∈ [0,M ] a priori
estimate of solutions ϕ of (4) is needed.

First of all, replacing M by M(f(0))1−p we may put f(0) = 1.
Assume that f is decreasing. Then denoting z := |ϕ|∞ we have

z ≤ λΓ(Ω)|Ω|−p(f(z))−p,

where Γ(Ω) = supx∈Ω

∫
Ω
G(x, y) dy and |Ω| is the volume of Ω.
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Therefore z will be uniformly bounded for all λ ∈ [0,M ], if

(5) lim
z→+∞

z(f(z))p > MΓ(Ω)|Ω|−p.

Hence

Theorem 1. If f is continuous, positive and decreasing, then (1), (2) has a solution
for M , f and p satisfing (5).

In a similar way, for f positive, increasing we have from (4)

z ≤ λΓ(Ω)f(z)|Ω|−p.

Hence we get

Theorem 2. If f is continuous, positive and increasing, then (1), (2) has a solution
for M , f and p satisfing

lim
z→+∞

z

f(z)
> MΓ(Ω)|Ω|−p.

To get a stronger results, a more subtle estimate of
∫

Ω
f(ϕ) is needed.

We start with a simple

Lemma 1. Let f, F : IR → IR be continuous functions, f positive, F nondecreasing.
Then for any continuous function ϕ : Ω→ IR

(6)

∫
Ω
f(ϕ)F (f(ϕ))∫

Ω
f(ϕ)

≥ 1
|Ω|

∫
Ω

F (f(ϕ)).

Proof. The inequality (6) is equivalent to∫
Ω×Ω

f(ϕ(x))F (f(ϕ(x))) dx dy −
∫

Ω×Ω

f(ϕ(y))F (f(ϕ(x))) dx dy ≥ 0.

The left hand side may be transformed to

1
2

∫
Ω×Ω

(F (f(ϕ(x)))− F (f(ϕ(y)))(f(ϕ(x))− f(ϕ(y))) dx dy,

which is nonnegative.
It is clear that the assumed continuity of all functions may be relaxed, however only

in this weak form the Lemma 1 will be used.

Theorem 3. If f is a positive, decreasing differentiable function such that sup |f ′/f | <
+∞ and 0 < p ≤ 1, then the problem (1), (2) has a unique solution for all M > 0.

Proof. Applying the Jensen inequality we have

(7) exp
(

1
|Ω|

∫
Ω

ln f(ϕ)
)
≤ 1
|Ω|

∫
Ω

f(ϕ).

Using the Cauchy and Poincaré inequality, we have with some positive constant C(∫
Ω

ln f(ϕ)
)2

≤ C|Ω|
∫

Ω

(f ′(ϕ)/f(ϕ))2|∇ϕ|2

≤ C|Ω| sup |f ′/f |
∫

Ω

|f ′(ϕ)/f(ϕ)||∇ϕ|2.
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Now we multiply (1) by ln f(ϕ) and integrate over Ω, what gives

0 ≥
∫

Ω

(f ′/f)|∇ϕ|2 =
λ

(
∫

Ω
f(ϕ))p

∫
Ω

f(ϕ) ln f(ϕ) ≥ λ

(
∫

Ω
f(ϕ))p−1|Ω|

∫
Ω

ln f(ϕ).

The last inequality follows from Lemma 1. Two inequalities above imply

(8) 0 ≥
∫

Ω

ln f(ϕ) ≥ −λC sup |f ′/f |
(∫

Ω

f(ϕ)
)1−p

.

From (8) ∫
Ω

ln f(ϕ) ≥ −MC sup |f ′/f ||Ω|1−p,

hence, using (4) and (7), we get

|ϕ|∞ ≤MΓ(Ω)|Ω|−p exp(MCp sup |f ′/f ||Ω|−p),

which is the desired estimate.
To prove the uniqueness, let ϕi, i = 1, 2 satisfy

(9) −∆ϕi = Mµpi f(ϕi), ϕi|∂Ω = 0,

with µi = (
∫

Ω
f(ϕi(x)) dx)−1. We distinguish two cases: µ = µ1 = µ2 and µ1 6= µ2. In

the first case, we take the difference of two equations (9), multiply it by ϕ1 − ϕ2 and
integrate over Ω, which gives

∫
Ω
|∇(ϕ1 − ϕ2)|2 = Mµp

∫
Ω

(f(ϕ1)− f(ϕ2))(ϕ1 − ϕ2). The
right hand side of the last equation is nonpositive, hence ∇(ϕ1 − ϕ2) = 0, what implies
ϕ1 = ϕ2 in Ω due to ϕ1 = ϕ2 on ∂Ω.

Now let µ1 > µ2. First we show that ϕ1 > ϕ2 in Ω. If not, there exists x0 such
that ϕ1(x0) ≤ ϕ2(x0) and −∆(ϕ1−ϕ2)(x0) ≤ 0, whereas the difference Mµp1f(ϕ1(x0))−
Mµp2f(ϕ2(x0)) of the right hand side members of (9) at x0 is positive, a contradiction. We
now have ∂ϕ1

∂ν ≤
∂ϕ2
∂ν along ∂Ω, which is a consequence of ϕ1 ≥ ϕ2. Moreover, integrating

(9) over Ω we get −Mµp−1
1 =

∫
∂Ω

∂ϕ1
∂ν ≥

∫
∂Ω

∂ϕ2
∂ν = −Mµp−1

2 . These two facts give us
∂ϕ1
∂ν = ∂ϕ2

∂ν on ∂Ω. Thus

(10)
∂

∂ν
(ϕ1 − ϕ2) = 0

at any boundary point.
From Theorem 10. 2, Ch. IV in [LU] applied to (9) which guarantees that ϕi ∈ C2(Ω)

and from µ1 > µ2 it follows that near the boundary ∆(ϕ1 − ϕ2) < 0. Therefore zero is
the minimal value of ϕ1 − ϕ2 there. Due to the Hopf lemma ∂

∂ν (ϕ1 − ϕ2) < 0 along ∂Ω,
contrary to (10).

Consider now the special case when Ω is a ball of radius 1 centered at the origin and
ϕ is radially symmetric. Then the problem (1), (2) reads

(11) −(rn−1ϕ′)′ = Mrn−1µpf(ϕ), ϕ′(0) = ϕ(1) = 0,
d

dr
=′,

where µ = µϕ = (σn
∫ 1

0
rn−1f(ϕ(r)) dr)−1 and σn is the area of the unit sphere in IRn.

Theorem 4. If f is decreasing, p ≥ 1, and M is such that

(12) lim
z→+∞

z(f(z))p−1 > Mσ−pn np−1,

then the problem (11) has a solution.
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Proof. Integrating (11) twice and introducing the operator Aλ

Aλϕ(r) = λµp
∫ 1

r

(
tn−1

∫ t

0

sn−1f(ϕ(s)) ds
)
dt

we may replace (11) by

(13) ϕ = Aλϕ, λ ∈ [0,M ],

if we put λ = M .
Consider the family of problems (13). The operator Aλ is continuous on the space

C0[0, 1]. Now

(15) (Aλϕ(r))′ = −λr1−nµp
∫ r

0

sn−1f(ϕ(s)) ds

is uniformly bounded if ϕ belongs to a bounded subset of C0[0, 1]. Hence Aλ is a compact
operator. To apply the Leray-Schauder theorem, it is enough to prove a uniform a priori
estimate of solutions ϕ of (13) for λ ∈ [0,M ].

First we show that ϕ′′ < 0. In fact, coming back to the form (11) of (13) we see that

rn−1ϕ′′(r) = −λrn−1µpf(ϕ(r)) + (n− 1)r−1λµp
∫ r

0

sn−1f(ϕ(s)) ds

< −λrn−1µpf(ϕ(r)) + (n− 1)r−1λµpf(ϕ(r))
∫ r

0

sn−1ds < 0.

Hence the minimum ϕ′ is attained at r = 1. Putting r = 1 in (15) we get ϕ′(1) =
−λσ−1

n µp−1, so z = |ϕ|∞ < Mσ−1
n µp−1. We have assumed p ≥ 1, therefore µp−1 <

(f(z))1−pnp−1σ1−p
n which implies z(f(z))p−1 ≤ Mσ−pn np−1. From (12) and the last ine-

quality the desired a priori estimate follows.
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