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Abstract. Some conditions for the existence and uniqueness of solutions of the nonlocal

elliptic problem —Ap = M%, ©vlaqg = 0 are given.
In this paper we study the following nonlocal elliptic problem:
fe)
(1) —Ap =M —7——"—,
(Jo f(0))P
(2) loq = 0.

Here ¢ : Q@ — IR is an unknown function from a bounded subdomain 2 of IR™ into IR,
f:IR™ — IR" is a given function and M > 0, p > 0 are real parameters.

The physical motivations for the study of nonlocal elliptic problems come from sta-
tistical mechanics [A], [B], [BKN], [BN1], [BN2], [W], [S], theory of electrolytes [BN2],
[BHN], and theory of thermistors [C], [L].

If the nonlinearity f(y) has the form f(¢) = e and p = 1 then (1) is identical
with the Poisson equation Ap = p with density p of the Boltzmann form. In this case
(1) is called the Poisson—Boltzmann equation. If f(p) = e® (f(p) = e~ %) ¢ can be inter-
preted as the gravitational (electric) potential of systems of particles in thermodynamical
equilibrium interacting via gravitational (Coulomb) potential. In this interpretation, the
parameter M, is the total mass (charge) of the particles of the system.
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The Poisson—Boltzmann equation arises also in investigations of phenomena associ-
ated with the occurrence of shear bands in metals being deformed under high strain rates
[BT], and in modelling of turbulent behavior of flows [CLMP].

The general problem (1), (2) with given f(¢) and positive p appears in modelling of
stationary temperature ¢ when an electric current flows through a material with tempe-
rature dependent electrical resistivity f(¢), subject to a fixed potential difference [L].

The main tool in the proof of the existence of a solution of (1), (2) is the technique of
sub- (super-)solutions [BL], [BT], [T], variational methods [CLMP], [GL], and topological
methods (Leray—Schauder theory) [BHN], [KN1], [KN2]. The nonexistence results are
a consequence of the Pokhozaev identity [BT], [KN2], or construction of some special
subsolutions [BL]. The existence and uniqueness of solutions for the Poisson—Boltzmann
problem with f(p) = e~¥ and arbitrary M > 0 was proved in [GL] and [KN1]. In the
first paper the variational and in the second — topological methods were applied.

When f has the form f(¢) = e¥, the solutions do not exist for large M and generally
are not unique. Moreover, the existence and uniqueness depend on the geometry of the
domain Q [KN2], [KN3].

When f(p) = e ¥ and p > 0 the problem (1), (2) was considered in [C] by using the
technique of sub- and supersolutions, maximum principle and rearrangement method.

Under the assumption f0+°° f(¢) dp < 400, the problem (1), (2) was investigated in
BL], [T).

We consider our problem in a bounded domain in IR™ with the boundary 9f2 of class
C*¢. This assumption guarantees the existence of the Green function G(x,y) correspon-
ding to —A and zero boundary data, satisfying the estimate

K
3 G(z,y) < ————, |V.G(z,y)| < ————,
0 @) S o DaGle)| <
with some constant K depending on the domain  [GW].

To prove the existence of a solution of (1), (2) we shall use the Leray—Schauder
theorem. To do this we consider the family of integral equations

o) — Jo G, y) f(e(y)) dy
@ P = A o) dy)

where A is a parameter from [0, M]. When A = M the problem (4) is equivalent to (1),

(2)-

It follows from the estimates (3) that the right hand side of (4) is a continuous,

compact operator on the space of continuous functions C°(Q) with the uniform norm
|¢]oo = supgq |¢|. To apply the Leray—Schauder theorem, a uniform for A € [0, M] a priori
estimate of solutions ¢ of (4) is needed.

First of all, replacing M by M (f(0))'~? we may put f(0) = 1.

Assume that f is decreasing. Then denoting z := |¢|o we have

z S ADOQ)Q7P(f(2)) 77,
where T'(Q) = supzeq [, G(,y) dy and |Q] is the volume of Q.
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Therefore z will be uniformly bounded for all A € [0, M], if
(5) lim_=(f(2))" > MD(©@)|~
Hence

THEOREM 1. If f is continuous, positive and decreasing, then (1), (2) has a solution
for M, f and p satisfing (5).
In a similar way, for f positive, increasing we have from (4)
2z < AD(Q) f(2) |77
Hence we get

THEOREM 2. If f is continuous, positive and increasing, then (1), (2) has a solution
for M, f and p satisfing

z
lim —— > MI'(Q)|Q|~7?
Jim 275 > MT(@)0)

To get a stronger results, a more subtle estimate of fQ f(¢) is needed.
We start with a simple

LEMMA 1. Let f,F : IR — IR be continuous functions, f positive, F nondecreasing.
Then for any continuous function ¢ : Q0 — IR

(6) Jo I@F(f(0) | 1

Jo f(e) 12 Ja
PROOF. The inequality (6) is equivalent to

/ Fo @) F(f () de dy — / o) F(f(p(2))) de dy > 0.
QxQ QxQ

The left hand side may be transformed to

F(f(9)-

% /Qm(ﬂf(cp(x))) — F(few)(fle(z)) — f(p(y))) dz dy,

which is nonnegative.
It is clear that the assumed continuity of all functions may be relaxed, however only
in this weak form the Lemma 1 will be used.

THEOREM 3. If f is a positive, decreasing differentiable function such that sup |f'/f] <
+oo and 0 < p < 1, then the problem (1), (2) has a unique solution for all M > 0.

PrOOF. Applying the Jensen inequality we have

™ e (g [ws)) < o [ st

Using the Cauchy and Poincaré inequality, we have w1th some positive constant C

(/mf ) <C|Q|/ ) [Vel?

< clajsuwp| /1] /Q @)/ F@)Vel?.
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Now we multiply (1) by In f ( ) and integrate over €2, what gives

02 [(FINSA = i | 1O 2 e [ m e

The last inequality follows from Lemma 1. Two inequalities above imply

(8) OZLmﬂ@Z—KMMﬁU(Aﬂ@yp-

From (8)
Ahﬁ@ﬁz—MOwaUMW”,

hence, using (4) and (7), we get
|Ploc < MT(Q)|Q™7 exp(MCpsup [/ flIQ77),

which is the desired estimate.

To prove the uniqueness, let ;, ¢ = 1,2 satisfy
(9) —Ap; = Mp f(ei), ¢iloa =0,
with p; = ([, f(@i(z))dz)~'. We distinguish two cases: = p1 = po and py # pg. In
the first case, we take the difference of two equations (9), multiply it by ¢1 — 2 and
integrate over 2, which gives [, V(g1 — @2)|* = Mp? [,(f(¢1) — f(p2)) (1 — 2). The
right hand side of the last equation is nonpositive, hence V(p; — p2) = 0, what implies
p1 = s in Q due to 1 = @2 on ON.

Now let p; > ps. First we show that ¢; > @9 in €. If not, there exists xy such
that ¢1(z0) < pa(x0) and —A(p1 —¢2)(z9) < 0, whereas the difference MY f(¢1(z0)) —
M f(2(xg)) of the right hand side members of (9) at zq is positive, a contradiction. We

now have % < % along OQ which is a consequence of 1 > ws. Moreover, integrating
(9) over Q we get —MpuP™ = f(,m > o 88“;/2 = —Mu&'. These two facts give us
% = % on 0f). Thus

0
(10) 5(% —p2)=0

at any boundary point.

From Theorem 10. 2, Ch. IV in [LU] applied to (9) which guarantees that ¢; € C2(2)
and from p; > po it follows that near the boundary A(p; — ¢2) < 0. Therefore zero is
the minimal value of ¢; — @5 there. Due to the Hopf lemma %(@1 — 2) < 0 along 09,
contrary to (10).

Consider now the special case when €2 is a ball of radius 1 centered at the origin and
¢ is radially symmetric. Then the problem (1), (2) reads

n— n— d
(11) —("T) = M f(e), @0) = (1) =0, — =,
where p = p, = (o, fol "L f(o(r))dr)~t and o, is the area of the unit sphere in IR™.
THEOREM 4. If f is decreasing, p > 1, and M is such that

(12) im s(f(2)P > Mot

then the problem (11) has a solution.
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PROOF. Integrating (11) twice and introducing the operator Ay

Axelr) = [ 1 (t”l / " ols) ds> dt

0
we may replace (11) by

(13) p=Axp, A0, M],

if we put A = M.
Consider the family of problems (13). The operator Ay is continuous on the space
C°[0,1]. Now

(15) (Arp(r)) = — AP / " (o)) ds

is uniformly bounded if ¢ belongs to a bounded subset of C°[0, 1]. Hence A, is a compact
operator. To apply the Leray-Schauder theorem, it is enough to prove a uniform a priori
estimate of solutions ¢ of (13) for A € [0, M].

First we show that ¢” < 0. In fact, coming back to the form (11) of (13) we see that

L () = AU Fp(r) + (n— D AP / " (p(s)) ds

< =M"THE f(p(r) + (n — Ve~ P fo(r)) /OT s"tds < 0.

Hence the minimum ¢’ is attained at r = 1. Putting » = 1 in (15) we get ¢'(1) =
Ao P 50 2 = |@lee < Mo tpPml. We have assumed p > 1, therefore pP~! <
(f(2))}PnP~tol=P which implies z(f(2))?~! < Mo, PnP~1. From (12) and the last ine-
quality the desired a priori estimate follows.
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