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Abstract.We study the large time behaviour of entropy solutions of the Cauchy problem for
a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial
function is assumed to have bounded total variation. We prove the convergence of the solution
to the entropy solution of a Riemann problem for the corresponding first order conservation law.

1. Introduction. In this paper we consider the problem

(P)
{
ut + f(u)x = ϕ(u)xx in Q = R×R+

u(x, 0) = u0(x) for x ∈ R

under the following hypotheses on the data

(H1) ϕ, f : R → R, ϕ is nondecreasing and continuous in R, f is locally Lipschitz
continuous in R.

(H2) u0 : R→ R, u0 ∈ BV (R).

Here BV (R) denotes the set of functions of bounded total variation in R, i.e.

BV (R) = {g ∈ L1
loc(R) : TVR(g) < +∞},
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where

TVR(g) = sup
{∫

R

gφ′ dx : φ ∈ C1
0 (R), ‖φ‖L∞(R) ≤ 1

}
(see for example [GR]). We shall also consider the function space BV (I), where I ⊂ R is
an open interval and for which the definition is similar. Let us remark that u0 ∈ BV (R)
implies that u0(−∞) and u0(+∞) exist in a sense of ess-limits, and that ‖u0‖L∞(R) <∞.
We define a = ess lim

x→−∞
u0(x) and b = ess lim

x→∞
u0(x).

The form of the partial differential equation in Problem (P) with nonlinear convection
without any convexity assumption and possibly degenerate nonlinear diffusion is natural
in view of many applications. A typical example is nonlinear filtration in porous media
[GM].

Problem (P) may have no classical solutions. If for example ϕ(s) = |s|m−1s with
m > 1 one usually considers weak solutions of Problem (P) which are continuous in Q. If
ϕ is not strictly increasing then the differential equation in (P) reduces to the first order
conservation law

(1.1) ut + f(u)x = 0

in regions where ϕ(u) is constant; in this case Problem (P) admits discontinuous solutions.
We define solutions of Problem (P) as follows.

Definition 1.1. A function u ∈ L∞(Q) is an entropy solution of Problem (P) if u ∈
L∞((0,∞);BV (R)) ∩ C([0,∞);L2

loc(R)), ϕ(u) ∈ L2
loc([0,∞);H1

loc(R)) and if u satisfies
the inequality

∂

∂t
|u− k|+ ∂

∂x
(sign(u− k)(f(u)− f(k)))(1.2)

≤ ∂2

∂x2
(sign(u− k)(ϕ(u)− ϕ(k))) in D′(Q)

for all constants k ∈ R, together with the initial condition u(0) = u0.

This definition extends the notion of entropy solution of equation (1.1) introduced by
[K]. Note that if u is an entropy solution of Problem (P), then it satisfies the differential
equation

ut + f(u)x = ϕ(u)xx in D′(Q),

which one can check by successively setting k = ±‖u‖L∞(Q) in (1.2).
In order to be able to state the main result of this paper, we consider the Riemann

problem

(P∞)


ut + f(u)x = 0 in Q

u(x, 0) = a+ (b− a)H(x) =
{
a if x < 0
b if x > 0,̇

where H is the Heaviside function. It is well known [K], [dB], [MNRR], [Se] that Problem
(P∞) has a unique entropy solution. We remark that the solution u∞ of Problem (P∞)
can be written using the similarity variable η = x/t in the form u∞(x, t) = U(η), where
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U ∈ BV (R) is a distributional solution of the problem{
f(U)′ = η U ′ in R
U(−∞) = a, U(+∞) = b

which satisfies the “entropy” inequality

(sign(U − k)(f(U)− f(k)))′ ≤ η |U − k|′ in D′(R)

for all k ∈ R (see for instance [Se, p. 50]).
We also consider a sequence of related uniformly parabolic problems, namely

(Pλε )
{
ut + fε(u)x = 1

λϕε(u)xx in Q
u(x, 0) = u0ε(λx) for x ∈ R

where 0 < ε ≤ 1, λ > 0 and the functions u0ε, ϕε and fε satisfy the Hypotheses (Hε):

(Hε)



(i) u0ε, ϕε, fε ∈ C∞(R);
(ii) ϕε → ϕ, fε → f as ε ↓ 0 uniformly on compact subsets of R;

(iii) ε ≤ ϕ′ε ≤ 1
ε in R;

(iv) for all R > 0 there exists L = L(R) such that |f ′ε| ≤ L(R) on (−R,R);
(v) u0ε → u0 in L1

loc(R) as ε→ 0;
(vi) ess inf u0 ≤ u0ε ≤ ess supu0 in R;

(vii)
∫
R

|u′0ε(x)| dx ≤ TV(u0);

(viii) u0ε(x) = a for x < − 1
ε and u0ε(x) = b for x > 1

ε .

The existence of functions u0ε, ϕε and fε follows from hypotheses (H1)–(H2) by a stan-
dard mollifying argument. It follows from [LSU, Chapter V, Theorem 8.1] that for any
0 < ε ≤ 1, λ > 0 Problem (Pλε ) has a unique classical solution uλε .

Next we introduce a notion of limit entropy solution of Problem (P).

Definition 1.2. We say that an entropy solution u of Problem (P) is a limit entropy
solution if it is the limit of a sequence of solutions {uεn} of the problems (P1

εn
) such that

uεn → u in C([0, T ];L2
loc(R)) as εn → 0.

We refer to Benilan and Touré [BT], Maliki and Touré [MT] and Marcati [M] for a
study of semigroup solutions, entropy solutions and limit solutions of Problem (P).

The main result of this paper is the following.

Theorem 1.3. Let u be the limit entropy solution of Problem (P). Set

(1.4) ũ(η, t) = u(x, t).

Then for all R > 0
lim
t→∞

‖ũ(·, t)− U‖L2(−R,R) = 0.

Remark 1.4. In the (x, t) variables this convergence result reads as

lim
t→∞

1
2Rt

∫ Rt

−Rt
|u(x, t)− U(x/t)|2 dx = 0

for all R > 0.
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In order to prove Theorem 1.3 we use a scaling technique. For all λ > 0 we set

(1.5) uλ(x, t) = u(λx, λt),

where u is the limit entropy solution of Problem (P). Then uλ is a limit entropy solution
of Problem (Pλ),

(Pλ)
{
ut + f(u)x = 1

λϕ(u)xx in Q
u(x, 0) = uλ0 (x) = u0(λx) for x ∈ R,

where a limit entropy solution uλ of Problem (Pλ) is defined in a similar way as in
Definition 1.2. Theorem 1.3 is the consequence of the following convergence result.

Theorem 1.5. Let {uλ}λ≥1 be limit entropy solutions of Problem (Pλ). Then, for any
T > 0,

uλ → u∞ in C([0, T ];L2
loc(R))

as λ→∞, where u∞ is the entropy solution of Problem (P∞).

Indeed it follows from (1.4), (1.5) and Theorem 1.5 that for all R > 0∫ R

−R
|uλ(y, 1)− U(y)|2 dy =

∫ R

−R
|ũ(η, λ)− U(η)|2 dη → 0 as λ→∞,

which is precisely the result stated in Theorem 1.3.
The large time behaviour of solutions of Problem (P) has been studied for a long time

under various assumptions on f, ϕ and u0. We refer to [IO2] and [W] for a historical
review and an extensive list of references contained therein. Results related to presented
here were obtained by Il’in and Oleinik [IO1], [IO2] in the case that ϕ(u) = εu, with ε > 0
and f ′′ > 0 and by Weinberger [W] with the hypotheses that the differential equation
in Problem (P) is uniformly parabolic and that f ′′ is continuous and only has isolated
zeros. Van Duijn and de Graaf [vDdG] also examined a similar problem for a degenerate
parabolic equation in the case of power type nonlinearities for the functions ϕ and f .
Most of the methods of proof used in those papers are based on maximum principle
arguments; here we present an approach based on a scaling method together with energy
type estimates. This approach enables us to obtain a unified description of the limiting
profile as t → ∞ of solutions of Problem (P), without standard distinguishing between
convexity and concavity of the convection function f . We also refer to [BGH] for a short
note about these results. In a forthcoming article we will extend the results that we
present here to the case of higher space dimension.

The organization of this paper is as follows. In Section 2 we prove a priori estimates
for the solutions of Problems (Pλε ). In Section 3 we deduce from these estimates both the
existence of an entropy solution uλ of Problem (Pλ) and the convergence of uλ to the
function u∞ as λ→∞.

2. A priori estimates. In this section in a series of lemmas we derive a priori
estimates for the solutions uλε of Problems (Pλε ), with λ ≥ 1.
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Lemma 2.1.

(2.1) ess inf u0 ≤ uλε ≤ ess supu0 in Q.

Proof. This result follows from Hypothesis (Hε) (vi) and applying the standard
maximum principle.

Lemma 2.2. Let 0 < ε ≤ 1, λ ≥ 1 and T > 0 be fixed. Then

uλε − a− (b− a)H(x), uλεx, u
λ
εxx = O(e−|x|) as |x| → ∞,

uniformly in [0, T ].

Proof. (i) We first prove that

uλε − b = O(e−x) as x→ +∞,

uniformly in [0, T ]. Set M = ‖u0‖∞. Then, by (2.1),

−M ≤ uλε ≤M in Q.

We compare uλε with the function

ω(x, t) = b− γe−x+Kt

in the set SA,K = {(x, t) : x ≥ A + Kt, t ≥ 0} for some γ, A, K > 0. If we choose
γ = (b+M)eA then

ω(A+Kt, t) = −M

for t ≥ 0. Furthermore, if A = 1
ε then by (Hε)(viii)

ω(x, 0) = b− γe−x ≤ u0ε(x)

for x ∈ [A,∞). Finally, for K = Kε large enough we have

ωt − ϕ′ε(ω)ωxx − ϕ′′ε (ω)ω2
x + f ′ε(ω)ωx =

γe−x+Kt[−K + ϕ′ε(ω)− γe−x+Ktϕ′′ε (ω) + f ′ε(ω) ] ≤ 0

in SA,K . Hence, by the maximum principle ω(x, t) ≤ uλε in SA,K so that

−γeKT−x ≤ uλε − b

for x ≥ A+Kt and t ∈ [0, T ]. Similarly, comparing uλε with the function of the form

ω(x, t) = b+ γ1e
−x+K1t

in SA,K1 for some γ1, K1 > 0 and A as before leads to

uλε − b ≤ γeK1T−x

for x ≥ A+K1t and t ∈ [0, T ].
The proof that uλε − a = O(e−|x|) as x→ −∞ uniformly in [0, T ] is similar.
(ii) In order to prove that

uλεx = O(e−x) as x→ +∞

uniformly in [0, T ] we observe that p = uλεx satisfies

pt = (ϕ′ε(u
λ
ε )px + ϕ′′ε (uλε )p2 − f ′ε(uλε )p )x

= ϕ′ε(u
λ
ε )pxx + 3ϕ′′ε (uλε )uλεxpx + ϕ′′′ε (uλε )(uλεx)2p− f ′ε(uλε )px − f ′′ε (uλε )uλεxp,
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and moreover |p| ≤ Mε in R × [0, T ] and, by (Hε)(viii), p(x, 0) = 0 for x > 1
ε . Thus we

can compare p with functions

ω(x, t) = ±γe−x+Kt

in SA,K for γ, K > 0 and A = 1
ε .

The proof that uλεx = O(e−|x|) as x→ −∞ uniformly in [0, T ] is similar.
(iii) The proof that uλεxx = O(e−|x|) as x→ ±∞ uniformly in [0, T ] is similar to the

proof given in (ii).

Lemma 2.3. For all t ≥ 0,

(2.2)
∫
R

|uλεx(x, t)|dx ≤
∫
R

|u′0ε(x)|dx ≤ TV(u0).

Proof. For the sake of simplicity we use the notations u and u0 instead of uλε and
u0ε respectively. To begin with we differentiate the the differential equation in Problem
(Pλε ) with respect to x, multiply the resulting equation by signux = sign(ϕ′ε(u)ux) and
integrate over QR,T for fixed R and T > 0. This leads to

(2.3)
∫ ∫

QR,T

uxt signux +
∫ ∫

QR,T

fε(u)xx signux =
1
λ

∫ ∫
QR,T

ϕε(u)xxx signux.

We show below that∫ ∫
QR,T

uxt signux dxdt =
∫ R

−R
|ux|

∣∣∣T
0
dx,(2.4) ∫ ∫

QR,T

fε(u)xx signux dxdt =
∫ T

0

f ′ε(u)|ux|
∣∣∣R
−R

dt,(2.5) ∫ ∫
QR,T

ϕε(u)xxx signux dxdt ≤
∫ T

0

(ϕ′ε(u)ux)x sign(ϕ′ε(u)ux)
∣∣∣R
−R

dt.(2.6)

In order to prove (2.4)-(2.6) we use a sequence of smooth approximations {Sδ}δ>0 of the
sign function and set Mδ(w) =

∫ w
0
Sδ(s) ds for w ∈ R. Then Mδ(w)→ |w| as δ → 0. We

have that ∫ ∫
QR,T

Sδ(ux)uxt =
∫ ∫

QR,T

(Mδ(ux))t =
∫ R

−R
Mδ(ux)

∣∣∣T
0
dx,

where we let δ → 0 to obtain (2.4).
In order to prove (2.5) we observe that

(f ′ε(u)ux)xSδ(ux) = (f ′ε(u))xuxSδ(ux) + f ′ε(u)(Mδ(ux))x
= (f ′ε(u)Mδ(ux))x + (f ′ε(u))x[uxSδ(ux)−Mδ(ux)],

which implies that∫ ∫
QR,T

fε(u)xxSδ(ux) =
∫ ∫

QR,T

(f ′ε(u)Mδ(ux))x + J(δ)(2.7)

=
∫ T

0

f ′ε(u)Mδ(ux)
∣∣∣R
−R

dt + J(δ),
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where
J(δ) =

∫ ∫
QR,T

(f ′ε(u))x[uxSδ(ux)−Mδ(ux)].

Since J(δ)→ 0 as δ → 0 we obtain (2.5) by letting δ → 0 in (2.7).
Finally we prove (2.6). We have that∫ ∫

QR,T

ϕε(u)xxxSδ(ux)(2.8)

=
∫ ∫

QR,T

ϕε(u)xxx[Sδ(ux)− Sδ(ϕ′ε(u)ux)] +
∫ ∫

QR,T

(ϕ′ε(u)ux)xxSδ(ϕ′ε(u)ux)

= I1(δ) + I2(δ),

and remark that since ϕ′ε > 0 then I1(δ)→ 0 as δ → 0. Next we estimate I2(δ). We have
that

I2(δ) =(2.9) ∫ T

0

(ϕ′ε(u)ux)xSδ(ϕ′ε(u)ux)
∣∣∣R
−R

dt−
∫ ∫

QR,T

[(ϕ′ε(u)ux)x]2S′δ(ϕ
′
ε(u)ux) dxdt

≤
∫ T

0

(ϕ′ε(u)ux)xSδ(ϕ′ε(u)ux)
∣∣∣R
−R

dt.

Substituting (2.9) into (2.8) and letting δ → 0 we obtain (2.6).
Now it follows from (2.3)-(2.6) that∫ R

−R
|uλεx(x, T )| dx− λ

∫ R

−R
|u′0ε(λx)| dx ≤∫ T

0

(ϕ′ε(uε)u
λ
εx)x sign(ϕ′ε(uε)u

λ
εx)
∣∣∣R
−R

dt+
∫ T

0

f ′ε(uε)|uλεx|
∣∣∣R
−R

dt

for all R, T > 0. Hence, by Lemma 2.2, in the limit as R→∞∫
R

|uλεx(x, T )| dx− λ
∫
R

|u′0(λx)| dx ≤ 0,

which yields (2.2) by (Hε)(vii).

Lemma 2.4. There exists a positive constant C = C(R, T ) such that

(2.10) ‖fε(uλε )x‖L2((0,T );H−1(−R,R)) ≤ C.

Proof. Here again we omit the lower index ε and the upper index λ from the notation.
Let R > 0 and ζ ∈ C∞0 (−R,R). We have that

〈fε(u)x(·, t), ζ〉 =
∫ R

−R
fε(u)x(x, t)ζ(x) dx = −

∫ R

−R
fε(u)(x, t)ζ ′(x) dx,

which imply that

|〈fε(u)x(·, t), ζ〉| ≤
(∫ R

−R
|fε(u)(x, t)|2 dx

)1/2(∫ R

−R
|ζ ′(x)|2 dx

)1/2

≤
(∫ R

−R
|fε(u)(x, t)|2 dx

)1/2

‖ζ‖H1
0 (−R,R)
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for all t ∈ [0, T ]. Hence

‖fε(u)x(·, t)‖H−1(−R,R) ≤
(∫ R

−R
|fε(u)(x, t)|2 dx

)1/2

for all t ∈ [0, T ] and consequently by (Hε)(ii) and Lemma 2.1∫ T

0

‖fε(u)x(·, t)‖2H−1(−R,R) dt ≤
∫ ∫

QR,T

|fε(u)|2 ≤ C

for some positive constant C = C(R, T ).

Lemma 2.5. There exists a positive constant C = C(R, T ) such that

(2.11) ‖ϕε(uλε )x‖L2((−R,R)×(0,T )) ≤ C
√
λ.

Proof. For simplicity we write u and u0 instead of uλε and u0ε respectively. Let R > 0
and ψ be a smooth function such that

ψ(x) =
{

1 if |x| ≤ R
0 if |x| ≥ R+ 1.

We multiply the differential equation in Problem (Pλε ) by ϕε(u)ψ2 and write the resulting
equality as

Φε(u)tψ2 + Ψε(u)xψ2 =
1
λ
ϕε(u)xxϕε(u)ψ2,

where we have set Φε(u) =
∫ u
0
ϕε(s) ds and Ψε(u) =

∫ u
0
f ′ε(s)ϕε(s) ds. Integrating by

parts on the domain QR+1,T = (−R− 1, R+ 1)× (0, T ) gives∫ R+1

−(R+1)

(Φε(u(x, T ))− Φε(u0(x)))ψ2(x) dx−
∫ ∫

QR+1,T

Ψε(u)(ψ2)′

= − 1
λ

∫ ∫
QR+1,T

(ϕε(u)x)2ψ2 − 2
λ

∫ ∫
QR+1,T

ϕε(u)xϕε(u)ψψ′.

Applying the Cauchy-Schwarz inequality to the second term of the right-hand side of the
equality above gives∫ R+1

−(R+1)

(Φε(u(x, T ))− Φε(u0))ψ2(x) dx−
∫ ∫

QR+1,T

Ψε(u)(ψ2)′

≤ − 1
2λ

∫ ∫
QR+1,T

(ϕε(u)x)2ψ2 +
2
λ

∫ ∫
QR+1,T

(ϕε(u))2(ψ′)2.

Therefore, in view of (Hε) and Lemma 2.1

1
λ

∫ ∫
QR,T

(ϕε(u)x)2 ≤ C1

where the positive constant C1 = C1(R, T ) does not depend on ε and λ.

Corollary 2.6.

(2.12) ‖ϕε(uλε )xx‖L2((0,T );H−1(−R,R)) ≤ C
√
λ.
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Proof. As in the proof of Lemma 2.5, we omit the lower index ε and the upper index
λ from the notation. Let R > 0, ζ ∈ C∞0 (−R,R) and t ∈ [0, T ]; we have that

〈ϕε(u)xx(·, t), ζ〉 =
∫ R

−R
ϕε(u)xx(x, t)ζ(x) dx = −

∫ R

−R
ϕε(u)x(x, t)ζ ′(x) dx

so that

|〈ϕε(u)xx(·, t), ζ〉| ≤
(∫ R

−R
|ϕε(u)x(x, t)|2 dx

)1/2(∫ R

−R
|ζ ′(x)|2 dx

)1/2

≤
(∫ R

−R
|ϕε(u)x(x, t)|2 dx

)1/2

‖ζ‖H1
0 (−R,R)

for all t ∈ [0, T ]. Hence

‖ϕε(u)xx(·, t)‖H−1(−R,R) ≤
(∫ R

−R
|ϕε(u)x(x, t)|2 dx

)1/2

for all t ∈ [0, T ]. In view of Lemma 2.5 we obtain∫ T

0

‖ϕε(u)xx(·, t)‖2H−1(−R,R) dt ≤
∫ ∫

QR,T

|ϕε(u)x|2 ≤ Cλ

for some positive constant C = C(R, T ).

We end this section with the following compactness result.

Lemma 2.7. Let R > 0. The set {uλε}ε>0,λ>1 is precompact in C([0, T ];L2(−R,R)).

Proof. It follows from (2.2) and (2.11) that

(2.13) ‖(uλε )‖L∞((0,T );W 1,1(−R,R)) ≤ C(R, T ),

while by (2.10), (2.12) and the differential equation of (Pλε ),

(2.14) ‖(uλε )t‖L2((0,T );H−1(−R,R)) ≤ C(R, T )

for some positive constant C(R, T ). The result then follows from the embeddings

W 1,1(−R,R) ⊂ L2(−R,R) ⊂ H−1(−R,R),

the compactness of the embedding W 1,1(−R,R) ⊂ L2(−R,R), and a compactness result
due to Simon [Si] (Corollary 4, p. 85).

3. Existence and asymptotic behaviour of limit entropy solutions of Pro-
blem (Pλ) as λ→∞

Definition 3.1. We say that a function uλ is an entropy solution of Problem (Pλ) if
it satisfies Definition 1.1 with ϕ replaced by (1/λ)ϕ. A limit entropy solution of Problem
(Pλ) is then defined as in Definition 1.2.

We begin with the following lemma.

Lemma 3.2. Let 0 < ε ≤ 1 and λ ≥ 1 be fixed and let uλε be the classical solution of
Problem (Pλε ). Then uλε satisfies the inequality
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∂

∂t
|uλε − k|+

∂

∂x
(sign(uλε − k)(fε(uλε )− fε(k))(3.1)

≤ 1
λ

∂2

∂x2
(sign(uλε − k)(ϕε(uλε )− ϕε(k)))

in D′(Q) for all k ∈ R.

Proof. As in the proofs above we write u instead of uλε . Let k ∈ R. Multiplying the
differential equation in Problem (Pλε ) by Sδ(u− k) gives

(3.2) utSδ(u− k) + fε(u)xSδ(u− k) =
1
λ
ϕε(u)xxSδ(u− k)

in Q. Set

F δε (w) =
∫ w

k

f ′ε(s)Sδ(s− k) ds .

Then

utSδ(u− k) = (Mδ(u− k))t,(3.3)

fε(u)xSδ(u− k) = (F δε (u))x,(3.4)

and

ϕε(u)xxSδ(u− k) = (ϕε(u)xSδ(u− k))x − (ϕε(u)xS′δ(u− k)ux(3.5)

≤ (ϕε(u)xSδ(u− k))x,

since (ϕε(u)xS′δ(u− k)ux ≥ 0. Set

Gδε(w) =
∫ w

k

ϕ′ε(s)Sδ(s− k) ds.

Then (Gδε(u))xx = (ϕε(u)xSδ(u− k))x and therefore combining (3.2)-(3.5) we obtain

(Mδ(u− k))t + (F δε (u))x ≤ (Gδε(u))xx.

Letting δ → 0 gives
∂

∂t
|u− k|+ ∂

∂x
Fε(u) ≤ 1

λ

∂

∂x2
Gε(u) in D′(Q),

where we use the notations

Fε(w) =
∫ w

k

f ′ε(s) sign(s− k) ds, Gε(w) =
∫ w

k

ϕ′ε(s) sign(s− k) ds.

But

Gε(w) =

{
ϕε(k)− ϕε(w) if k > w
ϕε(w)− ϕε(k) if k < w
0 if k = w.

Thus Gε(w) = sign(w−k)(ϕε(w)−ϕε(k)). Similarly Fε(w) = sign(w−k)(fε(w)−fε(k)).
Therefore u satisfies (3.1).

Next we prove the existence of a limit entropy solution of Problem (Pλ) with properties
which we use later on.

Theorem 3.3. Let λ ≥ 1 be fixed and let {uλε}0<ε≤1 be the classical solutions of
Problems (Pλε ). There exists a sequence {εn} and a function uλ ∈ L∞(Q) such that

uλεn
→ uλ in C([0, T ];L2(−R,R)) as εn → 0,
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for all R and T > 0. The function uλ is an entropy solution of Problem (Pλ) and satisfies
the following estimates:

(i) ess inf u0 ≤ uλ ≤ ess supu0 a.e. in Q;

(ii) ‖ϕ(uλ)x‖L2((−R,R)×(0,T )) ≤ C
√
λ;

(iii) TV(uλ(·, t)) ≤ TV(u0) for a.e. t ∈ (0,∞);

(iv) ‖uλt ‖L2((0,T );H−1(−R,R)) ≤ C,

where the positive constant C only depends on R and T .

Proof. Let λ ≥ 1. We deduce from Lemma 2.7 that there exists a sequence εn → 0
and a function uλ ∈ C([0,∞);L2

loc(R)) such that as εn → 0

(3.6) uλεn
→ uλ in C([0, T ];L2(−R,R)) and a.e. in Q,

for all R > 0 and all T > 0. The assertions (i)-(iv) are consequences of (2.1), (2.2), (2.11),
and (2.14), and of the lower semicontinuity of total variation ([EG], [GR]). Observe that
by (Hε) (ii) and (3.6) as εn → 0,

(3.7) sign(uλεn
− k)→ sign(uλ − k)

a.e. in Q ∩ {(x, t) : uλ − k 6= 0} and

fεn(uλεn
)− fεn(k)→ f(uλ)− f(k),(3.8)

ϕεn
(uλεn

)− ϕεn
(k)→ ϕ(uλ)− ϕ(k)(3.9)

a.e. in Q. Then, letting εn tend to zero in an integrated form of inequality (3.1) and using
(2.1), (3.7) - (3.9) and Lebesgue’s dominated convergence theorem, one deduces that uλ

satisfies the inequality
∂

∂t
|uλ − k|+ ∂

∂x
(sign(uλ − k)(f(uλ)− f(k)))

≤ 1
λ

∂2

∂x2
(sign(uλ − k)(ϕ(uλ)− ϕ(k))) in D′(Q)

for all constants k ∈ R. Furthermore it follows from (Hε)(v) and from (3.6) that uλ

satisfies the initial condition uλ(0) = u0. Thus uλ is a limit entropy solution of Pro-
blem (Pλ).

Corollary 3.4. Let λ ≥ 1 and let uλ be a limit entropy solution of Problem (Pλ).
Then the statements (i) - (iv) of Theorem 3.3 hold for uλ.

Proof. This is an immediate consequence of the definition of the limit entropy solu-
tion of Problem (Pλ) and of Theorem 3.3.

Before proving Theorem 1.5 we give the definition of an entropy solution of Pro-
blem (P∞).

Definition 3.5. A function u ∈ L∞(Q)∩C([0,∞);L1
loc(R)) is an entropy solution of

Problem (P∞) if it satisfies the entropy inequality

(3.10)
∂

∂t
|u− k|+ ∂

∂x
(sign(u− k)(f(u)− f(k))) ≤ 0

in D′(Q) for all constants k ∈ R, together with the initial condition u(0) = u0.
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Proof of Theorem 1.5. Let λ > 1, R > 0, T > 0 and let uλ be a limit entropy solution
of Problem (Pλ). We deduce from Corollary 3.4, Theorem 3.3 (iii), (iv), the embeddings

BV (−R,R) ⊂ L2(−R,R) ⊂ H−1(−R,R),

the compactness of the imbedding

BV (−R,R) ⊂ L2(−R,R)

which we shall prove in the Appendix and Corollary 4 p. 85 of [Si] that the set {uλ}λ>1

is precompact in C([0, T ];L2(−R,R)). Hence there exists a sequence λn → ∞ and a
function u∞ ∈ C([0,∞);L2

loc(R)) such that for all R > 0 and T > 0

(3.11) uλn → u∞

in C([0, T ];L2(−R,R)) and a.e. in QR,T as n→∞. It then follows from Theorem 3.3 and
Corollary 3.4 that u∞ ∈ L∞(Q) ∩ L∞((0,∞);BV (R)). Finally, similarly as it has been
done in the proof of Theorem 3.3 one can prove that u∞ satisfies the entropy inequality
(3.10). Thus u∞ is an entropy solution of Problem (P∞).

Now as a consequence of (3.11) and the uniqueness of the entropy solution of Problem
(P∞) ([K], [dB]) we obtain that for all R > 0 and T > 0

uλ → u∞ in C([0, T ];L2(−R,R)) as λ→∞.

This completes the proof of Theorem 1.5.

4. Appendix. We shall prove the following lemma.

Lemma A.1. Let R > 0. Then for any p ≥ 1, BV (−R,R) is compactly embedded in
Lp(−R,R).

Proof. Since this result is well known for p = 1 we prove it for p > 1. Let {gn}∞n=1 ⊂
BV (−R,R) be such that

(A.1) ‖gn‖BV (−R,R) = ‖gn‖L1(−R,R) + TV(−R,R)(gn) ≤M

for all n ≥ 1 and for some constant M > 0. We first prove that {gn}∞n=1 is uniformly
bounded in L∞(−R,R) (the proof is almost a facsimile of the proof of Claim 3, p. 218 in
[EG]). Fix n ≥ 1 and choose {gnj}∞j=1 ⊂ BV (−R,R) ∩ C∞(−R,R) such that as j →∞,

gnj → gn in L1(−R,R) and a.e. in (−R,R)

and ∫ R

−R
|g′nj | dx→ TV(−R,R)(gn).

For each y, z ∈ (−R,R) we have that

gnj(z) = gnj(y) +
∫ z

y

g′nj(x) dx.

Averaging with respect to y ∈ (−R,R) gives

|gnj(z)| ≤ 1/(2R)
∫ R

−R
|gnj(y)| dy +

∫ R

−R
|g′nj(x)| dx
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and hence for j large enough,

‖gnj‖L∞(−R,R) ≤ C‖gnj‖BV (−R,R),

where the constant C does not depend on n and j. Taking the limit j →∞ yields

(A.2) ‖gn‖L∞(−R,R) ≤ CM.

Now, by (A.1), (A.2) and the compactness theorem in [EG] p. 176, there exist a sequence
nk →∞ and a function g ∈ L∞(−R,R) such that as k →∞,

gnk
→ g in L1(−R,R) and a.e. in (−R,R).

Since∫ R

−R
|gnk
− g|p dx ≤ sup

(−R,R)

|gnk
− g|p−1

∫ R

−R
|gnk
− g| dx ≤ (2CM)p−1

∫ R

−R
|gnk
− g| dx,

the result follows.

References

[BGH] M. Bertsch, J. Goncerzewicz and D. Hilhorst, Large time behaviour of solutions
of scalar viscous and nonviscous conservation laws, Appl. Math. Lett. 12 (1999), 83–
87
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