EVOLUTION EQUATIONS: EXISTENCE, REGULARITY AND SINGULARITIES BANACH CENTER PUBLICATIONS, VOLUME 52 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2000

LARGE TIME BEHAVIOUR OF A CLASS OF SOLUTIONS OF SECOND ORDER CONSERVATION LAWS

JAN GONCERZEWICZ

Instytut Matematyczny, Uniwersytet Wrocławski Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland E-mail: goncerz@math.uni.wroc.pl

DANIELLE HILHORST

Analyse Numérique et EDP, CNRS et Université de Paris-Sud 91405 Orsay Cedex, France E-mail: Danielle.Hilhorst@math.u-psud.fr

Abstract. We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.

1. Introduction. In this paper we consider the problem

(P)
$$\begin{cases} u_t + f(u)_x = \varphi(u)_{xx} & \text{in } Q = \mathbf{R} \times \mathbf{R}^+ \\ u(x,0) = u_0(x) & \text{for } x \in \mathbf{R} \end{cases}$$

under the following hypotheses on the data

- (H1) $\varphi, f : \mathbf{R} \to \mathbf{R}, \varphi$ is nondecreasing and continuous in \mathbf{R}, f is locally Lipschitz continuous in \mathbf{R} .
- (H2) $u_0: \mathbf{R} \to \mathbf{R}, u_0 \in BV(\mathbf{R}).$

Here $BV(\mathbf{R})$ denotes the set of functions of bounded total variation in \mathbf{R} , i.e.

$$BV(\mathbf{R}) = \{g \in L^1_{\text{loc}}(\mathbf{R}) : \mathrm{TV}_{\mathbf{R}}(g) < +\infty\},\$$

The paper is in final form and no version of it will be published elsewhere.

[119]

²⁰⁰⁰ Mathematics Subject Classification: Primary 35K55, 35K65, 35B40; Secondary 35L65. Research supported by the French - Polish cooperation programme POLONIUM, grant 7074. Current address of the first author is: Instytut Matematyki, Politechnika Wrocławska, ul. Janiszewskiego 14, 50-384 Wrocław, E-mail: goncerz@im.pwr.wroc.pl.

where

$$\mathrm{TV}_{\mathbf{R}}(g) = \sup\left\{\int_{\mathbf{R}} g\phi' \, dx : \, \phi \in C_0^1(\mathbf{R}), \, \|\phi\|_{L^{\infty}(\mathbf{R})} \le 1\right\}$$

(see for example [GR]). We shall also consider the function space BV(I), where $I \subset \mathbf{R}$ is an open interval and for which the definition is similar. Let us remark that $u_0 \in BV(\mathbf{R})$ implies that $u_0(-\infty)$ and $u_0(+\infty)$ exist in a sense of ess-limits, and that $||u_0||_{L^{\infty}(\mathbf{R})} < \infty$. We define $a = \underset{x \to -\infty}{\operatorname{ess \ lim}} u_0(x)$ and $b = \underset{x \to \infty}{\operatorname{ess \ lim}} u_0(x)$.

The form of the partial differential equation in Problem (P) with nonlinear convection without any convexity assumption and possibly degenerate nonlinear diffusion is natural in view of many applications. A typical example is nonlinear filtration in porous media [GM].

Problem (P) may have no classical solutions. If for example $\varphi(s) = |s|^{m-1}s$ with m > 1 one usually considers weak solutions of Problem (P) which are continuous in Q. If φ is not strictly increasing then the differential equation in (P) reduces to the first order conservation law

(1.1)
$$u_t + f(u)_x = 0$$

in regions where $\varphi(u)$ is constant; in this case Problem (P) admits discontinuous solutions. We define solutions of Problem (P) as follows.

DEFINITION 1.1. A function $u \in L^{\infty}(Q)$ is an *entropy solution* of Problem (P) if $u \in L^{\infty}((0,\infty); BV(\mathbf{R})) \cap C([0,\infty); L^{2}_{loc}(\mathbf{R})), \varphi(u) \in L^{2}_{loc}([0,\infty); H^{1}_{loc}(\mathbf{R}))$ and if u satisfies the inequality

(1.2)
$$\frac{\partial}{\partial t}|u-k| + \frac{\partial}{\partial x}(\operatorname{sign}(u-k)(f(u)-f(k))) \\ \leq \frac{\partial^2}{\partial x^2}(\operatorname{sign}(u-k)(\varphi(u)-\varphi(k))) \quad \text{in } \mathcal{D}'(Q)$$

for all constants $k \in R$, together with the initial condition $u(0) = u_0$.

This definition extends the notion of entropy solution of equation (1.1) introduced by [K]. Note that if u is an entropy solution of Problem (P), then it satisfies the differential equation

$$u_t + f(u)_x = \varphi(u)_{xx}$$
 in $\mathcal{D}'(Q)$,

which one can check by successively setting $k = \pm ||u||_{L^{\infty}(Q)}$ in (1.2).

In order to be able to state the main result of this paper, we consider the Riemann problem

$$(\mathbf{P}^{\infty}) \begin{cases} u_t + f(u)_x = 0 & \text{in } Q \\ u(x,0) = a + (b-a)H(x) = \begin{cases} a & \text{if } x < 0 \\ b & \text{if } x > 0; \end{cases}$$

where H is the Heaviside function. It is well known [K], [dB], [MNRR], [Se] that Problem (P^{∞}) has a unique entropy solution. We remark that the solution u^{∞} of Problem (P^{∞}) can be written using the similarity variable $\eta = x/t$ in the form $u^{\infty}(x,t) = \mathcal{U}(\eta)$, where

 $\mathcal{U} \in BV(\mathbf{R})$ is a distributional solution of the problem

$$\begin{cases} f(\mathcal{U})' = \eta \ \mathcal{U}' & \text{in } \mathbf{R} \\ \mathcal{U}(-\infty) = a, \quad \mathcal{U}(+\infty) = b \end{cases}$$

which satisfies the "entropy" inequality

$$(\operatorname{sign}(\mathcal{U}-k)(f(\mathcal{U})-f(k)))' \le \eta |\mathcal{U}-k|' \text{ in } \mathcal{D}'(\mathbf{R})$$

for all $k \in \mathbf{R}$ (see for instance [Se, p. 50]).

We also consider a sequence of related uniformly parabolic problems, namely

$$\left(\mathbf{P}_{\varepsilon}^{\lambda}\right) \begin{cases} u_t + f_{\varepsilon}(u)_x = \frac{1}{\lambda}\varphi_{\varepsilon}(u)_{xx} & \text{in } Q\\ u(x,0) = u_{0\varepsilon}(\lambda x) & \text{for } x \in \mathbf{R} \end{cases}$$

where $0 < \varepsilon \leq 1$, $\lambda > 0$ and the functions $u_{0\varepsilon}$, φ_{ε} and f_{ε} satisfy the Hypotheses (H_{\varepsilon}):

$$(\mathrm{H}_{\varepsilon}) \begin{cases} (\mathrm{i}) \quad u_{0\varepsilon}, \ \varphi_{\varepsilon}, \ f_{\varepsilon} \in C^{\infty}(\mathbf{R}); \\ (\mathrm{ii}) \quad \varphi_{\varepsilon} \to \varphi, \ f_{\varepsilon} \to f \text{ as } \varepsilon \downarrow 0 \text{ uniformly on compact subsets of } \mathbf{R}; \\ (\mathrm{iii}) \quad \varepsilon \leq \varphi_{\varepsilon}' \leq \frac{1}{\varepsilon} \text{ in } \mathbf{R}; \\ (\mathrm{iv}) \quad \text{for all } R > 0 \text{ there exists } L = L(R) \text{ such that } |f_{\varepsilon}'| \leq L(R) \text{ on } (-R, R); \\ (\mathrm{v}) \quad u_{0\varepsilon} \to u_{0} \text{ in } L_{\mathrm{loc}}^{1}(\mathbf{R}) \text{ as } \varepsilon \to 0; \\ (\mathrm{vi}) \quad \mathrm{ess inf } u_{0} \leq u_{0\varepsilon} \leq \mathrm{ess sup } u_{0} \text{ in } \mathbf{R}; \\ (\mathrm{vii}) \quad \int_{\mathbf{R}} |u_{0\varepsilon}'(x)| \ dx \leq \mathrm{TV}(u_{0}); \\ (\mathrm{viii}) \quad u_{0\varepsilon}(x) = a \text{ for } x < -\frac{1}{\varepsilon} \text{ and } u_{0\varepsilon}(x) = b \text{ for } x > \frac{1}{\varepsilon}. \end{cases}$$

The existence of functions $u_{0\varepsilon}$, φ_{ε} and f_{ε} follows from hypotheses (H1)–(H2) by a standard mollifying argument. It follows from [LSU, Chapter V, Theorem 8.1] that for any $0 < \varepsilon \leq 1, \lambda > 0$ Problem ($\mathbf{P}_{\varepsilon}^{\lambda}$) has a unique classical solution $u_{\varepsilon}^{\lambda}$.

Next we introduce a notion of limit entropy solution of Problem (P).

DEFINITION 1.2. We say that an entropy solution u of Problem (P) is a *limit entropy* solution if it is the limit of a sequence of solutions $\{u_{\varepsilon_n}\}$ of the problems $(\mathbf{P}^1_{\varepsilon_n})$ such that

$$u_{\varepsilon_n} \to u \quad \text{in } C([0,T]; L^2_{\text{loc}}(\mathbf{R})) \quad \text{as } \varepsilon_n \to 0.$$

We refer to Benilan and Touré [BT], Maliki and Touré [MT] and Marcati [M] for a study of semigroup solutions, entropy solutions and limit solutions of Problem (P).

The main result of this paper is the following.

THEOREM 1.3. Let u be the limit entropy solution of Problem (P). Set

(1.4)
$$\widetilde{u}(\eta, t) = u(x, t).$$

Then for all R > 0

$$\lim_{t \to \infty} \|\widetilde{u}(\cdot, t) - \mathcal{U}\|_{L^2(-R,R)} = 0.$$

REMARK 1.4. In the (x, t) variables this convergence result reads as

$$\lim_{t \to \infty} \frac{1}{2Rt} \int_{-Rt}^{Rt} |u(x,t) - \mathcal{U}(x/t)|^2 \, dx = 0$$

for all R > 0.

In order to prove Theorem 1.3 we use a scaling technique. For all $\lambda > 0$ we set

(1.5)
$$u^{\lambda}(x,t) = u(\lambda x, \lambda t),$$

where u is the limit entropy solution of Problem (P). Then u^{λ} is a limit entropy solution of Problem (P^{λ}),

$$(\mathbf{P}^{\lambda}) \begin{cases} u_t + f(u)_x = \frac{1}{\lambda} \varphi(u)_{xx} & \text{in } Q\\ u(x,0) = u_0^{\lambda}(x) = u_0(\lambda x) & \text{for } x \in \mathbf{R}, \end{cases}$$

where a limit entropy solution u^{λ} of Problem (P^{λ}) is defined in a similar way as in Definition 1.2. Theorem 1.3 is the consequence of the following convergence result.

THEOREM 1.5. Let $\{u^{\lambda}\}_{\lambda\geq 1}$ be limit entropy solutions of Problem (P^{λ}) . Then, for any T > 0,

$$u^{\lambda} \to u^{\infty}$$
 in $C([0,T]; L^2_{\text{loc}}(\mathbf{R}))$

as $\lambda \to \infty$, where u^{∞} is the entropy solution of Problem (P^{∞}) .

Indeed it follows from (1.4), (1.5) and Theorem 1.5 that for all R > 0

$$\int_{-R}^{R} |u^{\lambda}(y,1) - \mathcal{U}(y)|^2 \, dy = \int_{-R}^{R} |\widetilde{u}(\eta,\lambda) - \mathcal{U}(\eta)|^2 \, d\eta \to 0 \quad \text{ as } \lambda \to \infty$$

which is precisely the result stated in Theorem 1.3.

The large time behaviour of solutions of Problem (P) has been studied for a long time under various assumptions on f, φ and u_0 . We refer to [IO2] and [W] for a historical review and an extensive list of references contained therein. Results related to presented here were obtained by II'in and Oleinik [IO1], [IO2] in the case that $\varphi(u) = \varepsilon u$, with $\varepsilon > 0$ and f'' > 0 and by Weinberger [W] with the hypotheses that the differential equation in Problem (P) is uniformly parabolic and that f'' is continuous and only has isolated zeros. Van Duijn and de Graaf [vDdG] also examined a similar problem for a degenerate parabolic equation in the case of power type nonlinearities for the functions φ and f. Most of the methods of proof used in those papers are based on maximum principle arguments; here we present an approach based on a scaling method together with energy type estimates. This approach enables us to obtain a unified description of the limiting profile as $t \to \infty$ of solutions of Problem (P), without standard distinguishing between convexity and concavity of the convection function f. We also refer to [BGH] for a short note about these results. In a forthcoming article we will extend the results that we present here to the case of higher space dimension.

The organization of this paper is as follows. In Section 2 we prove a priori estimates for the solutions of Problems $(\mathbf{P}_{\varepsilon}^{\lambda})$. In Section 3 we deduce from these estimates both the existence of an entropy solution u^{λ} of Problem (\mathbf{P}^{λ}) and the convergence of u^{λ} to the function u^{∞} as $\lambda \to \infty$.

2. A priori estimates. In this section in a series of lemmas we derive a priori estimates for the solutions $u_{\varepsilon}^{\lambda}$ of Problems $(\mathbf{P}_{\varepsilon}^{\lambda})$, with $\lambda \geq 1$.

Lemma 2.1.

(2.1)
$$\operatorname{ess\,inf} u_0 \le u_{\varepsilon}^{\lambda} \le \operatorname{ess\,sup} u_0 \quad in \ Q.$$

PROOF. This result follows from Hypothesis (H $_{\varepsilon}$) (vi) and applying the standard maximum principle. \blacksquare

LEMMA 2.2. Let $0 < \varepsilon \leq 1$, $\lambda \geq 1$ and T > 0 be fixed. Then

$$u_{\varepsilon}^{\lambda} - a - (b - a)H(x), \ u_{\varepsilon x}^{\lambda}, \ u_{\varepsilon x x}^{\lambda} = O(e^{-|x|}) \qquad as \ |x| \to \infty,$$

uniformly in [0,T].

PROOF. (i) We first prove that

$$u_{\varepsilon}^{\lambda} - b = O(e^{-x}) \quad \text{as } x \to +\infty,$$

uniformly in [0, T]. Set $M = ||u_0||_{\infty}$. Then, by (2.1),

$$-M \le u_{\varepsilon}^{\lambda} \le M$$
 in Q .

We compare $u_{\varepsilon}^{\lambda}$ with the function

$$\omega(x,t) = b - \gamma e^{-x + Kt}$$

in the set $S_{A,K}=\{(x,t):\ x\geq A+Kt,\ t\geq 0\}$ for some $\gamma,\,A,\,K>0.$ If we choose $\gamma=(b+M)e^A$ then

$$\underline{\omega}(A + Kt, t) = -M$$

for $t \ge 0$. Furthermore, if $A = \frac{1}{\varepsilon}$ then by $(\mathbf{H}_{\varepsilon})(\text{viii})$

$$\underline{\omega}(x,0) = b - \gamma e^{-x} \le u_{0\varepsilon}(x)$$

for $x \in [A, \infty)$. Finally, for $K = K_{\varepsilon}$ large enough we have

$$\underline{\omega}_t - \varphi_{\varepsilon}'(\underline{\omega})\underline{\omega}_{xx} - \varphi_{\varepsilon}''(\underline{\omega})\underline{\omega}_x^2 + f_{\varepsilon}'(\underline{\omega})\underline{\omega}_x = \gamma e^{-x+Kt} [-K + \varphi_{\varepsilon}'(\underline{\omega}) - \gamma e^{-x+Kt}\varphi_{\varepsilon}''(\underline{\omega}) + f_{\varepsilon}'(\underline{\omega})] \le 0$$

in $S_{A,K}$. Hence, by the maximum principle $\underline{\omega}(x,t) \leq u_{\varepsilon}^{\lambda}$ in $S_{A,K}$ so that

$$-\gamma e^{KT-x} \le u_{\varepsilon}^{\lambda} - b$$

for $x \ge A + Kt$ and $t \in [0, T]$. Similarly, comparing $u_{\varepsilon}^{\lambda}$ with the function of the form $\overline{\omega}(x, t) = b + \gamma_1 e^{-x + K_1 t}$

in S_{A,K_1} for some $\gamma_1, K_1 > 0$ and A as before leads to

$$u_{\varepsilon}^{\lambda} - b \leq \gamma e^{K_1 T - x}$$

for $x \ge A + K_1 t$ and $t \in [0, T]$.

The proof that $u_{\varepsilon}^{\lambda} - a = O(e^{-|x|})$ as $x \to -\infty$ uniformly in [0, T] is similar.

(ii) In order to prove that

$$u_{\varepsilon x}^{\lambda} = O(e^{-x}) \quad \text{as } x \to +\infty$$

uniformly in [0,T] we observe that $p = u_{\varepsilon x}^{\lambda}$ satisfies

$$p_t = (\varphi'_{\varepsilon}(u_{\varepsilon}^{\lambda})p_x + \varphi''_{\varepsilon}(u_{\varepsilon}^{\lambda})p^2 - f'_{\varepsilon}(u_{\varepsilon}^{\lambda})p)_x = \varphi'_{\varepsilon}(u_{\varepsilon}^{\lambda})p_{xx} + 3\varphi''_{\varepsilon}(u_{\varepsilon}^{\lambda})u_{\varepsilon x}^{\lambda}p_x + \varphi'''_{\varepsilon}(u_{\varepsilon}^{\lambda})(u_{\varepsilon x}^{\lambda})^2p - f'_{\varepsilon}(u_{\varepsilon}^{\lambda})p_x - f''_{\varepsilon}(u_{\varepsilon}^{\lambda})u_{\varepsilon x}^{\lambda}p,$$

and moreover $|p| \leq M_{\varepsilon}$ in $\mathbf{R} \times [0,T]$ and, by $(\mathbf{H}_{\varepsilon})(\text{viii})$, p(x,0) = 0 for $x > \frac{1}{\varepsilon}$. Thus we can compare p with functions

$$\omega(x,t) = \pm \gamma e^{-x+Kt}$$

in $S_{A,K}$ for γ , K > 0 and $A = \frac{1}{\varepsilon}$.

The proof that $u_{\varepsilon x}^{\lambda} = O(e^{-|x|})$ as $x \to -\infty$ uniformly in [0, T] is similar.

(iii) The proof that $u_{\varepsilon xx}^{\lambda} = O(e^{-|x|})$ as $x \to \pm \infty$ uniformly in [0, T] is similar to the proof given in (ii).

LEMMA 2.3. For all $t \ge 0$,

(2.2)
$$\int_{\mathbf{R}} |u_{\varepsilon x}^{\lambda}(x,t)| dx \leq \int_{\mathbf{R}} |u_{0\varepsilon}'(x)| dx \leq \mathrm{TV}(u_0).$$

PROOF. For the sake of simplicity we use the notations u and u_0 instead of $u_{\varepsilon}^{\lambda}$ and $u_{0\varepsilon}$ respectively. To begin with we differentiate the the differential equation in Problem $(\mathbf{P}_{\varepsilon}^{\lambda})$ with respect to x, multiply the resulting equation by $\operatorname{sign} u_x = \operatorname{sign}(\varphi_{\varepsilon}'(u)u_x)$ and integrate over $Q_{R,T}$ for fixed R and T > 0. This leads to

(2.3)
$$\int \int_{Q_{R,T}} u_{xt} \operatorname{sign} u_x + \int \int_{Q_{R,T}} f_{\varepsilon}(u)_{xx} \operatorname{sign} u_x = \frac{1}{\lambda} \int \int_{Q_{R,T}} \varphi_{\varepsilon}(u)_{xxx} \operatorname{sign} u_x.$$

We show below that

(2.4)
$$\int \int_{Q_{R,T}} u_{xt} \operatorname{sign} u_x \, dx \, dt = \int_{-R}^{R} |u_x| \Big|_{0}^{T} \, dx$$

(2.5)
$$\int \int_{Q_{R,T}} f_{\varepsilon}(u)_{xx} \operatorname{sign} u_x \, dx \, dt = \int_0^T f_{\varepsilon}'(u) |u_x| \Big|_{-R}^R \, dt,$$

(2.6)
$$\int \int_{Q_{R,T}} \varphi_{\varepsilon}(u)_{xxx} \operatorname{sign} u_x \, dx \, dt \leq \int_0^T (\varphi_{\varepsilon}'(u)u_x)_x \operatorname{sign}(\varphi_{\varepsilon}'(u)u_x) \Big|_{-R}^R \, dt.$$

In order to prove (2.4)-(2.6) we use a sequence of smooth approximations $\{S_{\delta}\}_{\delta>0}$ of the sign function and set $M_{\delta}(w) = \int_0^w S_{\delta}(s) \, ds$ for $w \in \mathbf{R}$. Then $M_{\delta}(w) \to |w|$ as $\delta \to 0$. We have that

$$\iint_{Q_{R,T}} S_{\delta}(u_x) u_{xt} = \iint_{Q_{R,T}} (M_{\delta}(u_x))_t = \int_{-R}^R M_{\delta}(u_x) \Big|_0^T dx,$$

where we let $\delta \to 0$ to obtain (2.4).

In order to prove (2.5) we observe that

$$(f_{\varepsilon}'(u)u_x)_x S_{\delta}(u_x) = (f_{\varepsilon}'(u))_x u_x S_{\delta}(u_x) + f_{\varepsilon}'(u)(M_{\delta}(u_x))_x = (f_{\varepsilon}'(u)M_{\delta}(u_x))_x + (f_{\varepsilon}'(u))_x [u_x S_{\delta}(u_x) - M_{\delta}(u_x)],$$

which implies that

(2.7)
$$\int \int_{Q_{R,T}} f_{\varepsilon}(u)_{xx} S_{\delta}(u_x) = \int \int_{Q_{R,T}} (f'_{\varepsilon}(u) M_{\delta}(u_x))_x + J(\delta)$$
$$= \int_0^T f'_{\varepsilon}(u) M_{\delta}(u_x) \Big|_{-R}^R dt + J(\delta),$$

where

$$J(\delta) = \int \int_{Q_{R,T}} (f_{\varepsilon}'(u))_x [u_x S_{\delta}(u_x) - M_{\delta}(u_x)].$$

Since $J(\delta) \to 0$ as $\delta \to 0$ we obtain (2.5) by letting $\delta \to 0$ in (2.7). Finally we prove (2.6). We have that

(2.8)
$$\int \int_{Q_{R,T}} \varphi_{\varepsilon}(u)_{xxx} S_{\delta}(u_x)$$

=
$$\int \int_{Q_{R,T}} \varphi_{\varepsilon}(u)_{xxx} [S_{\delta}(u_x) - S_{\delta}(\varphi_{\varepsilon}'(u)u_x)] + \int \int_{Q_{R,T}} (\varphi_{\varepsilon}'(u)u_x)_{xx} S_{\delta}(\varphi_{\varepsilon}'(u)u_x)$$

=
$$I_1(\delta) + I_2(\delta),$$

and remark that since $\varphi'_{\varepsilon} > 0$ then $I_1(\delta) \to 0$ as $\delta \to 0$. Next we estimate $I_2(\delta)$. We have that

(2.9)
$$I_{2}(\delta) = \int_{0}^{T} (\varphi_{\varepsilon}'(u)u_{x})_{x} S_{\delta}(\varphi_{\varepsilon}'(u)u_{x}) \Big|_{-R}^{R} dt - \int \int_{Q_{R,T}} [(\varphi_{\varepsilon}'(u)u_{x})_{x}]^{2} S_{\delta}'(\varphi_{\varepsilon}'(u)u_{x}) dx dt$$
$$\leq \int_{0}^{T} (\varphi_{\varepsilon}'(u)u_{x})_{x} S_{\delta}(\varphi_{\varepsilon}'(u)u_{x}) \Big|_{-R}^{R} dt.$$

Substituting (2.9) into (2.8) and letting $\delta \to 0$ we obtain (2.6).

Now it follows from (2.3)-(2.6) that

$$\int_{-R}^{R} |u_{\varepsilon x}^{\lambda}(x,T)| \, dx - \lambda \int_{-R}^{R} |u_{0\varepsilon}'(\lambda x)| \, dx \leq \int_{0}^{T} (\varphi_{\varepsilon}'(u_{\varepsilon})u_{\varepsilon x}^{\lambda})_{x} \operatorname{sign}(\varphi_{\varepsilon}'(u_{\varepsilon})u_{\varepsilon x}^{\lambda}) \Big|_{-R}^{R} \, dt + \int_{0}^{T} f_{\varepsilon}'(u_{\varepsilon})|u_{\varepsilon x}^{\lambda}| \Big|_{-R}^{R} \, dt$$

for all R,T>0. Hence, by Lemma 2.2, in the limit as $R\to\infty$

$$\int_{\mathbf{R}} |u_{\varepsilon x}^{\lambda}(x,T)| \, dx - \lambda \int_{\mathbf{R}} |u_0'(\lambda x)| \, dx \le 0,$$

which yields (2.2) by $(H_{\varepsilon})(vii)$.

LEMMA 2.4. There exists a positive constant C = C(R,T) such that

(2.10)
$$\|f_{\varepsilon}(u_{\varepsilon}^{\lambda})_{x}\|_{L^{2}((0,T);H^{-1}(-R,R))} \leq C.$$

PROOF. Here again we omit the lower index ε and the upper index λ from the notation. Let R > 0 and $\zeta \in C_0^{\infty}(-R, R)$. We have that

$$\langle f_{\varepsilon}(u)_{x}(\cdot,t),\zeta\rangle = \int_{-R}^{R} f_{\varepsilon}(u)_{x}(x,t)\zeta(x)\,dx = -\int_{-R}^{R} f_{\varepsilon}(u)(x,t)\zeta'(x)\,dx,$$

which imply that

$$\begin{aligned} |\langle f_{\varepsilon}(u)_{x}(\cdot,t),\zeta\rangle| &\leq \left(\int_{-R}^{R} |f_{\varepsilon}(u)(x,t)|^{2} dx\right)^{1/2} \left(\int_{-R}^{R} |\zeta'(x)|^{2} dx\right)^{1/2} \\ &\leq \left(\int_{-R}^{R} |f_{\varepsilon}(u)(x,t)|^{2} dx\right)^{1/2} \|\zeta\|_{H_{0}^{1}(-R,R)} \end{aligned}$$

for all $t \in [0, T]$. Hence

$$\|f_{\varepsilon}(u)_{x}(\cdot,t)\|_{H^{-1}(-R,R)} \le \left(\int_{-R}^{R} |f_{\varepsilon}(u)(x,t)|^{2} dx\right)^{1/2}$$

for all $t \in [0,T]$ and consequently by $(\mathbf{H}_{\varepsilon})(\mathbf{i})$ and Lemma 2.1

$$\int_0^T \|f_{\varepsilon}(u)_x(\cdot,t)\|_{H^{-1}(-R,R)}^2 dt \le \iint_{Q_{R,T}} |f_{\varepsilon}(u)|^2 \le C$$

for some positive constant C = C(R, T).

LEMMA 2.5. There exists a positive constant C = C(R, T) such that

(2.11)
$$\|\varphi_{\varepsilon}(u_{\varepsilon}^{\lambda})_{x}\|_{L^{2}((-R,R)\times(0,T))} \leq C\sqrt{\lambda}.$$

PROOF. For simplicity we write u and u_0 instead of $u_{\varepsilon}^{\lambda}$ and $u_{0\varepsilon}$ respectively. Let R > 0and ψ be a smooth function such that

$$\psi(x) = \begin{cases} 1 & \text{if } |x| \le R\\ 0 & \text{if } |x| \ge R+1 \end{cases}$$

We multiply the differential equation in Problem $(\mathbf{P}_{\varepsilon}^{\lambda})$ by $\varphi_{\varepsilon}(u)\psi^2$ and write the resulting equality as

$$\Phi_{\varepsilon}(u)_t \psi^2 + \Psi_{\varepsilon}(u)_x \psi^2 = \frac{1}{\lambda} \varphi_{\varepsilon}(u)_{xx} \varphi_{\varepsilon}(u) \psi^2$$

where we have set $\Phi_{\varepsilon}(u) = \int_{0}^{u} \varphi_{\varepsilon}(s) ds$ and $\Psi_{\varepsilon}(u) = \int_{0}^{u} f'_{\varepsilon}(s) \varphi_{\varepsilon}(s) ds$. Integrating by parts on the domain $Q_{R+1,T} = (-R-1, R+1) \times (0,T)$ gives

$$\int_{-(R+1)}^{R+1} (\Phi_{\varepsilon}(u(x,T)) - \Phi_{\varepsilon}(u_0(x)))\psi^2(x) \, dx - \iint_{Q_{R+1,T}} \Psi_{\varepsilon}(u)(\psi^2)'$$
$$= -\frac{1}{\lambda} \iint_{Q_{R+1,T}} (\varphi_{\varepsilon}(u)_x)^2 \psi^2 - \frac{2}{\lambda} \iint_{Q_{R+1,T}} \varphi_{\varepsilon}(u)_x \varphi_{\varepsilon}(u) \psi \psi'.$$

Applying the Cauchy-Schwarz inequality to the second term of the right-hand side of the equality above gives

$$\int_{-(R+1)}^{R+1} (\Phi_{\varepsilon}(u(x,T)) - \Phi_{\varepsilon}(u_0))\psi^2(x) \, dx - \int \int_{Q_{R+1,T}} \Psi_{\varepsilon}(u)(\psi^2)'$$
$$\leq -\frac{1}{2\lambda} \int \int_{Q_{R+1,T}} (\varphi_{\varepsilon}(u)_x)^2 \psi^2 + \frac{2}{\lambda} \int \int_{Q_{R+1,T}} (\varphi_{\varepsilon}(u))^2 (\psi')^2.$$

Therefore, in view of (H_{ε}) and Lemma 2.1

$$\frac{1}{\lambda} \iint_{Q_{R,T}} (\varphi_{\varepsilon}(u)_x)^2 \le C_1$$

where the positive constant $C_1 = C_1(R,T)$ does not depend on ε and λ .

COROLLARY 2.6.

(2.12)
$$\|\varphi_{\varepsilon}(u_{\varepsilon}^{\lambda})_{xx}\|_{L^{2}((0,T);H^{-1}(-R,R))} \leq C\sqrt{\lambda}.$$

126

PROOF. As in the proof of Lemma 2.5, we omit the lower index ε and the upper index λ from the notation. Let R > 0, $\zeta \in C_0^{\infty}(-R, R)$ and $t \in [0, T]$; we have that

$$\langle \varphi_{\varepsilon}(u)_{xx}(\cdot,t),\zeta \rangle = \int_{-R}^{R} \varphi_{\varepsilon}(u)_{xx}(x,t)\zeta(x) \, dx = -\int_{-R}^{R} \varphi_{\varepsilon}(u)_{x}(x,t)\zeta'(x) \, dx$$

so that

$$\begin{aligned} |\langle \varphi_{\varepsilon}(u)_{xx}(\cdot,t),\zeta\rangle| &\leq \left(\int_{-R}^{R} |\varphi_{\varepsilon}(u)_{x}(x,t)|^{2} dx\right)^{1/2} \left(\int_{-R}^{R} |\zeta'(x)|^{2} dx\right)^{1/2} \\ &\leq \left(\int_{-R}^{R} |\varphi_{\varepsilon}(u)_{x}(x,t)|^{2} dx\right)^{1/2} \|\zeta\|_{H^{1}_{0}(-R,R)} \end{aligned}$$

for all $t \in [0, T]$. Hence

$$\|\varphi_{\varepsilon}(u)_{xx}(\cdot,t)\|_{H^{-1}(-R,R)} \le \left(\int_{-R}^{R} |\varphi_{\varepsilon}(u)_{x}(x,t)|^{2} dx\right)^{1/2}$$

for all $t \in [0, T]$. In view of Lemma 2.5 we obtain

$$\int_0^T \|\varphi_{\varepsilon}(u)_{xx}(\cdot,t)\|_{H^{-1}(-R,R)}^2 dt \le \iint_{Q_{R,T}} |\varphi_{\varepsilon}(u)_x|^2 \le C\lambda$$

for some positive constant C = C(R, T).

We end this section with the following compactness result.

LEMMA 2.7. Let R > 0. The set $\{u_{\varepsilon}^{\lambda}\}_{\varepsilon > 0, \lambda > 1}$ is precompact in $C([0, T]; L^2(-R, R))$.

PROOF. It follows from (2.2) and (2.11) that

(2.13)
$$\|(u_{\varepsilon}^{\lambda})\|_{L^{\infty}((0,T);W^{1,1}(-R,R))} \leq C(R,T),$$

while by (2.10), (2.12) and the differential equation of $(\mathbf{P}_{\varepsilon}^{\lambda})$,

(2.14)
$$\|(u_{\varepsilon}^{\lambda})_t\|_{L^2((0,T);H^{-1}(-R,R))} \le C(R,T)$$

for some positive constant C(R,T). The result then follows from the embeddings

$$W^{1,1}(-R,R) \subset L^2(-R,R) \subset H^{-1}(-R,R),$$

the compactness of the embedding $W^{1,1}(-R,R) \subset L^2(-R,R)$, and a compactness result due to Simon [Si] (Corollary 4, p. 85).

3. Existence and asymptotic behaviour of limit entropy solutions of Problem (\mathbf{P}^{λ}) as $\lambda\to\infty$

DEFINITION 3.1. We say that a function u^{λ} is an *entropy solution* of Problem (P^{λ}) if it satisfies Definition 1.1 with φ replaced by $(1/\lambda)\varphi$. A limit entropy solution of Problem (P^{λ}) is then defined as in Definition 1.2.

We begin with the following lemma.

LEMMA 3.2. Let $0 < \varepsilon \leq 1$ and $\lambda \geq 1$ be fixed and let $u_{\varepsilon}^{\lambda}$ be the classical solution of Problem $(P_{\varepsilon}^{\lambda})$. Then $u_{\varepsilon}^{\lambda}$ satisfies the inequality

J. GONCERZEWICZ AND D. HILHORST

(3.1)
$$\frac{\partial}{\partial t} |u_{\varepsilon}^{\lambda} - k| + \frac{\partial}{\partial x} (\operatorname{sign}(u_{\varepsilon}^{\lambda} - k)(f_{\varepsilon}(u_{\varepsilon}^{\lambda}) - f_{\varepsilon}(k))) \\ \leq \frac{1}{\lambda} \frac{\partial^{2}}{\partial x^{2}} (\operatorname{sign}(u_{\varepsilon}^{\lambda} - k)(\varphi_{\varepsilon}(u_{\varepsilon}^{\lambda}) - \varphi_{\varepsilon}(k)))$$

in $\mathcal{D}'(Q)$ for all $k \in \mathbf{R}$.

PROOF. As in the proofs above we write u instead of $u_{\varepsilon}^{\lambda}$. Let $k \in \mathbf{R}$. Multiplying the differential equation in Problem $(\mathbf{P}_{\varepsilon}^{\lambda})$ by $S_{\delta}(u-k)$ gives

(3.2)
$$u_t S_{\delta}(u-k) + f_{\varepsilon}(u)_x S_{\delta}(u-k) = \frac{1}{\lambda} \varphi_{\varepsilon}(u)_{xx} S_{\delta}(u-k)$$

in Q. Set

$$F^{\delta}_{\varepsilon}(w) = \int_{k}^{w} f'_{\varepsilon}(s) S_{\delta}(s-k) \, ds$$

Then

(3.3)
$$u_t S_\delta(u-k) = (M_\delta(u-k))_t,$$

(3.4)
$$f_{\varepsilon}(u)_{x}S_{\delta}(u-k) = (F_{\varepsilon}^{\delta}(u))_{x},$$

and

(3.5)
$$\varphi_{\varepsilon}(u)_{xx}S_{\delta}(u-k) = (\varphi_{\varepsilon}(u)_{x}S_{\delta}(u-k))_{x} - (\varphi_{\varepsilon}(u)_{x}S_{\delta}'(u-k)u_{x})_{\delta}$$
$$\leq (\varphi_{\varepsilon}(u)_{x}S_{\delta}(u-k))_{x},$$

since $(\varphi_{\varepsilon}(u)_x S'_{\delta}(u-k)u_x \ge 0$. Set

$$G_{\varepsilon}^{\delta}(w) = \int_{k}^{w} \varphi_{\varepsilon}'(s) S_{\delta}(s-k) \, ds.$$

Then $(G_{\varepsilon}^{\delta}(u))_{xx} = (\varphi_{\varepsilon}(u)_x S_{\delta}(u-k))_x$ and therefore combining (3.2)-(3.5) we obtain (M

$$I_{\delta}(u-k))_t + (F^o_{\varepsilon}(u))_x \le (G^o_{\varepsilon}(u))_{xx}$$

Letting $\delta \to 0$ gives

$$\frac{\partial}{\partial t}|u-k| + \frac{\partial}{\partial x}F_{\varepsilon}(u) \le \frac{1}{\lambda}\frac{\partial}{\partial x^2}G_{\varepsilon}(u) \quad \text{in } \mathcal{D}'(Q),$$

where we use the notations

$$F_{\varepsilon}(w) = \int_{k}^{w} f'_{\varepsilon}(s) \operatorname{sign}(s-k) \, ds, \quad G_{\varepsilon}(w) = \int_{k}^{w} \varphi'_{\varepsilon}(s) \operatorname{sign}(s-k) \, ds.$$

But

$$G_{\varepsilon}(w) = \begin{cases} \varphi_{\varepsilon}(k) - \varphi_{\varepsilon}(w) & \text{if } k > w\\ \varphi_{\varepsilon}(w) - \varphi_{\varepsilon}(k) & \text{if } k < w\\ 0 & \text{if } k = w \end{cases}$$

Thus $G_{\varepsilon}(w) = \operatorname{sign}(w-k)(\varphi_{\varepsilon}(w) - \varphi_{\varepsilon}(k))$. Similarly $F_{\varepsilon}(w) = \operatorname{sign}(w-k)(f_{\varepsilon}(w) - f_{\varepsilon}(k))$. Therefore u satisfies (3.1).

Next we prove the existence of a limit entropy solution of Problem (P^{λ}) with properties which we use later on.

Theorem 3.3. Let $\lambda \geq 1$ be fixed and let $\{u_{\varepsilon}^{\lambda}\}_{0<\varepsilon\leq 1}$ be the classical solutions of Problems $(P_{\varepsilon}^{\lambda})$. There exists a sequence $\{\varepsilon_n\}$ and a function $u^{\lambda} \in L^{\infty}(Q)$ such that

$$u_{\varepsilon_n}^{\lambda} \to u^{\lambda}$$
 in $C([0,T]; L^2(-R,R))$ as $\varepsilon_n \to 0$

128

for all R and T > 0. The function u^{λ} is an entropy solution of Problem (P^{λ}) and satisfies the following estimates:

- (i) ess inf $u_0 \le u^{\lambda} \le \text{ess sup } u_0$ a.e. in Q;
- (*ii*) $\|\varphi(u^{\lambda})_x\|_{L^2((-R,R)\times(0,T))} \leq C\sqrt{\lambda};$
- (*iii*) $\operatorname{TV}(u^{\lambda}(\cdot, t)) \leq \operatorname{TV}(u_0)$ for a.e. $t \in (0, \infty)$;
- (*iv*) $||u_t^{\lambda}||_{L^2((0,T);H^{-1}(-R,R))} \leq C$,

where the positive constant C only depends on R and T.

PROOF. Let $\lambda \geq 1$. We deduce from Lemma 2.7 that there exists a sequence $\varepsilon_n \to 0$ and a function $u^{\lambda} \in C([0,\infty); L^2_{\text{loc}}(\mathbf{R}))$ such that as $\varepsilon_n \to 0$

(3.6)
$$u_{\varepsilon_n}^{\lambda} \to u^{\lambda}$$
 in $C([0,T]; L^2(-R,R))$ and a.e. in Q ,

for all R > 0 and all T > 0. The assertions (i)-(iv) are consequences of (2.1), (2.2), (2.11), and (2.14), and of the lower semicontinuity of total variation ([EG], [GR]). Observe that by (H_{\varepsilon}) (ii) and (3.6) as $\varepsilon_n \to 0$,

(3.7)
$$\operatorname{sign}(u_{\varepsilon_n}^{\lambda} - k) \to \operatorname{sign}(u^{\lambda} - k)$$

a.e. in $Q \cap \{(x,t) : u^{\lambda} - k \neq 0\}$ and

(3.8)
$$f_{\varepsilon_n}(u_{\varepsilon_n}^{\lambda}) - f_{\varepsilon_n}(k) \to f(u^{\lambda}) - f(k),$$

(3.9)
$$\varphi_{\varepsilon_n}(u_{\varepsilon_n}^{\lambda}) - \varphi_{\varepsilon_n}(k) \to \varphi(u^{\lambda}) - \varphi(k)$$

a.e. in Q. Then, letting ε_n tend to zero in an integrated form of inequality (3.1) and using (2.1), (3.7) - (3.9) and Lebesgue's dominated convergence theorem, one deduces that u^{λ} satisfies the inequality

$$\begin{aligned} \frac{\partial}{\partial t} |u^{\lambda} - k| &+ \frac{\partial}{\partial x} (\operatorname{sign}(u^{\lambda} - k)(f(u^{\lambda}) - f(k))) \\ &\leq \frac{1}{\lambda} \frac{\partial^2}{\partial x^2} (\operatorname{sign}(u^{\lambda} - k)(\varphi(u^{\lambda}) - \varphi(k))) \quad \text{in } \mathcal{D}'(Q) \end{aligned}$$

for all constants $k \in R$. Furthermore it follows from $(H_{\varepsilon})(v)$ and from (3.6) that u^{λ} satisfies the initial condition $u^{\lambda}(0) = u_0$. Thus u^{λ} is a limit entropy solution of Problem (\mathbf{P}^{λ}) .

COROLLARY 3.4. Let $\lambda \geq 1$ and let u^{λ} be a limit entropy solution of Problem (P^{λ}) . Then the statements (i) - (iv) of Theorem 3.3 hold for u^{λ} .

PROOF. This is an immediate consequence of the definition of the limit entropy solution of Problem (P^{λ}) and of Theorem 3.3.

Before proving Theorem 1.5 we give the definition of an entropy solution of Problem (P^{∞}) .

DEFINITION 3.5. A function $u \in L^{\infty}(Q) \cap C([0,\infty); L^1_{loc}(\mathbf{R}))$ is an entropy solution of Problem (P^{∞}) if it satisfies the entropy inequality

(3.10)
$$\frac{\partial}{\partial t}|u-k| + \frac{\partial}{\partial x}(\operatorname{sign}(u-k)(f(u)-f(k))) \le 0$$

in $\mathcal{D}'(Q)$ for all constants $k \in \mathbb{R}$, together with the initial condition $u(0) = u_0$.

Proof of Theorem 1.5. Let $\lambda > 1$, R > 0, T > 0 and let u^{λ} be a limit entropy solution of Problem (P^{λ}). We deduce from Corollary 3.4, Theorem 3.3 (iii), (iv), the embeddings

$$BV(-R,R) \subset L^{2}(-R,R) \subset H^{-1}(-R,R),$$

the compactness of the imbedding

$$BV(-R,R) \subset L^2(-R,R)$$

which we shall prove in the Appendix and Corollary 4 p. 85 of [Si] that the set $\{u^{\lambda}\}_{\lambda>1}$ is precompact in $C([0,T]; L^2(-R,R))$. Hence there exists a sequence $\lambda_n \to \infty$ and a function $u^{\infty} \in C([0,\infty); L^2_{loc}(\mathbf{R}))$ such that for all R > 0 and T > 0

$$(3.11) u^{\lambda_n} \to u^{\infty}$$

in $C([0,T]; L^2(-R, R))$ and a.e. in $Q_{R,T}$ as $n \to \infty$. It then follows from Theorem 3.3 and Corollary 3.4 that $u^{\infty} \in L^{\infty}(Q) \cap L^{\infty}((0,\infty); BV(\mathbf{R}))$. Finally, similarly as it has been done in the proof of Theorem 3.3 one can prove that u^{∞} satisfies the entropy inequality (3.10). Thus u^{∞} is an entropy solution of Problem (P^{∞}).

Now as a consequence of (3.11) and the uniqueness of the entropy solution of Problem (\mathbb{P}^{∞}) ([K], [dB]) we obtain that for all R > 0 and T > 0

$$u^{\lambda} \to u^{\infty}$$
 in $C([0,T]; L^2(-R,R))$ as $\lambda \to \infty$.

This completes the proof of Theorem 1.5. \blacksquare

4. Appendix. We shall prove the following lemma.

LEMMA A.1. Let R > 0. Then for any $p \ge 1$, BV(-R, R) is compactly embedded in $L^p(-R, R)$.

PROOF. Since this result is well known for p = 1 we prove it for p > 1. Let $\{g_n\}_{n=1}^{\infty} \subset BV(-R, R)$ be such that

(A.1)
$$||g_n||_{BV(-R,R)} = ||g_n||_{L^1(-R,R)} + \mathrm{TV}_{(-R,R)}(g_n) \le M$$

for all $n \geq 1$ and for some constant M > 0. We first prove that $\{g_n\}_{n=1}^{\infty}$ is uniformly bounded in $L^{\infty}(-R, R)$ (the proof is almost a facsimile of the proof of Claim 3, p. 218 in [EG]). Fix $n \geq 1$ and choose $\{g_{nj}\}_{j=1}^{\infty} \subset BV(-R, R) \cap C^{\infty}(-R, R)$ such that as $j \to \infty$,

$$g_{nj} \to g_n$$
 in $L^1(-R, R)$ and a.e. in $(-R, R)$

and

$$\int_{-R}^{R} |g'_{nj}| \, dx \to \mathrm{TV}_{(-R,R)}(g_n).$$

For each $y, z \in (-R, R)$ we have that

$$g_{nj}(z) = g_{nj}(y) + \int_y^z g'_{nj}(x) \, dx.$$

Averaging with respect to $y \in (-R, R)$ gives

$$|g_{nj}(z)| \le 1/(2R) \int_{-R}^{R} |g_{nj}(y)| \, dy + \int_{-R}^{R} |g'_{nj}(x)| \, dx$$

130

and hence for j large enough,

$$||g_{nj}||_{L^{\infty}(-R,R)} \le C ||g_{nj}||_{BV(-R,R)}$$

where the constant C does not depend on n and j. Taking the limit $j \to \infty$ yields

$$(A.2) ||g_n||_{L^{\infty}(-R,R)} \le CM.$$

Now, by (A.1), (A.2) and the compactness theorem in [EG] p. 176, there exist a sequence $n_k \to \infty$ and a function $g \in L^{\infty}(-R, R)$ such that as $k \to \infty$,

$$g_{n_k} \to g$$
 in $L^1(-R, R)$ and a.e. in $(-R, R)$.

Since

$$\int_{-R}^{R} |g_{n_k} - g|^p \, dx \le \sup_{(-R,R)} |g_{n_k} - g|^{p-1} \int_{-R}^{R} |g_{n_k} - g| \, dx \le (2CM)^{p-1} \int_{-R}^{R} |g_{n_k} - g| \, dx,$$

the result follows. \blacksquare

References

- [BGH] M. BERTSCH, J. GONCERZEWICZ and D. HILHORST, Large time behaviour of solutions of scalar viscous and nonviscous conservation laws, Appl. Math. Lett. 12 (1999), 83– 87
 - [BT] Ph. BENILAN and H. TOURÉ, Sur l'équation générale $u_t = \varphi(u)_{xx} \psi(u)_x + v$, C. R. Acad. Sc. Paris 299 (1984), 919–922.
- [dB] E. DI BENEDETTO, Partial Differential Equations, Birkhäuser, 1995
- [vDdG] C. J. VAN DUIJN and J. M. DE GRAAF, Large time behaviour of solutions of the porous medium equation with convection, J. Differential Equations 84 (1990), 183–203.
 - [EG] L. C. EVANS and R. F. GARIEPY, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press 1992.
 - [GM] G. GAGNEUX and M. MADAUNE-TORT, Analyse Mathématique de Modèles Non Linéaires de l'Ingénierie Pétrolière, Springer-Verlag 1996.
 - [GR] E. GODLEWSKI and P. A. RAVIART, Hyperbolic Systems of Conservation Laws, SMAI 3/4, Ellipses-Edition Marketing, Paris 1991.
 - [IO1] A. M. IL'IN and O. A. OLEINIK, Behaviour of the solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time, Dokl. Akad. Nauk S.S.S.R. 120 (1958), 25–28; Am. Math. Soc. Transl. 42 (1964), 19–23.
 - [IO2] A. M. IL'IN and O. A. OLEINIK, Asymptotic behaviour of solutions of the Cauchy problem for some quasilinear equations for large values of time, Matem. Sb. 51 (1960), 191–216 (in Russian).
 - [K] S. N. KRUZHKOV, First order quasi-linear equations in several independent variables, Mat. USSR Sbornik 10 (1970), 217–243. Translation of: Mat. Sb. 81 (1970), 228–255.
 - [LSU] O. A. LADYZHENSKAJA, V. A. SOLONNIKOV and N. N. URAL'CEVA, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, RI., 1968.
- [MNRR] J. MÁLEK, J. NEČAS, M. ROKYTA and M. RŮŽIČKA, Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman & Hall, 1996.

- [MT] M. MALIKI and H. TOURÉ, Solution généralisée locale d'une équation parabolique quasilinéaire dégénérée du second ordre, Ann. Fac. Sci. Toulouse 7 (1998), 113–133.
 - [M] P. MARCATI, Weak solutions to a nonlinear partial differential equation of mixed type, Differential Integral Equations 9 (1996), 827–848.
 - [Se] D. SERRE, Systèmes de Lois de Conservation. I (Hyperbolicité, entropies, ondes de choc), Diderot Editeur, 1996.
 - [Si] J. SIMON, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. CXLVI (1987), 65–96.
 - [W] H. F. WEINBERGER, Long-time behaviour for a regularized scalar conservation law in the absence of genuine nonlinearity, Ann. Inst. Henri Poincaré 7 (1990), 407–425.