LARGE TIME BEHAVIOUR OF A CLASS OF SOLUTIONS OF SECOND ORDER CONSERVATION LAWS

JAN GONCZEWICZ

Instytut Matematyczny, Uniwersytet Wrocławski
Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
E-mail: goncerz@math.uni.wroc.pl

DANIELLE HILHORST

Analyse Numérique et EDP, CNRS et Université de Paris-Sud
91405 Orsay Cedex, France
E-mail: Danielle.Hilhorst@math.u-psud.fr

Abstract. We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.

1. Introduction. In this paper we consider the problem

\[
\begin{align*}
\begin{cases}
 u_t + f(u)x &= \varphi'(u)xx \\
 u(x,0) &= u_0(x)
\end{cases}
\end{align*}
\]

in \(Q = \mathbb{R} \times \mathbb{R}^+ \)

under the following hypotheses on the data

(H1) \(\varphi, f : \mathbb{R} \rightarrow \mathbb{R} \), \(\varphi \) is nondecreasing and continuous in \(\mathbb{R} \), \(f \) is locally Lipschitz continuous in \(\mathbb{R} \).

(H2) \(u_0 : \mathbb{R} \rightarrow \mathbb{R} \), \(u_0 \in BV(\mathbb{R}) \).

Here \(BV(\mathbb{R}) \) denotes the set of functions of bounded total variation in \(\mathbb{R} \), i.e.

\[
BV(\mathbb{R}) = \{ g \in L^1_{\text{loc}}(\mathbb{R}) : TV(\mathbb{R}) < +\infty \},
\]

2000 Mathematics Subject Classification: Primary 35K55, 35K65, 35B40; Secondary 35L65.

Research supported by the French - Polish cooperation programme POLONIUM, grant 7074.

Current address of the first author is: Instytut Matematyki, Politechnika Wrocławska, ul. Jasiłewska 14, 50-384 Wrocław, E-mail: goncerz@im.pwr.wroc.pl.

The paper is in final form and no version of it will be published elsewhere.

[119]
where

$$TV_R(g) = \sup \left\{ \int_R g\phi' \, dx : \phi \in C_0^1(R), \|\phi\|_{L^\infty(R)} \leq 1 \right\}$$

(see for example [GR]). We shall also consider the function space $BV(I)$, where $I \subset R$ is an open interval and for which the definition is similar. Let us remark that $u_0 \in BV(R)$ implies that $u_0(-\infty)$ and $u_0(+\infty)$ exist in a sense of ess-limits, and that $\|u_0\|_{L^\infty(R)} < \infty$. We define $a = \text{ess lim } u_0(x) \quad \text{and} \quad b = \text{ess lim } u_0(x)$.

The form of the partial differential equation in Problem (P) with nonlinear convection without any convexity assumption and possibly degenerate nonlinear diffusion is natural in view of many applications. A typical example is nonlinear filtration in porous media [GM].

Problem (P) may have no classical solutions. If for example $\varphi(s) = |s|^{m-1}s$ with $m > 1$ one usually considers weak solutions of Problem (P) which are continuous in Q. If φ is not strictly increasing then the differential equation in (P) reduces to the first order conservation law

$$u_t + f(u)x = 0$$

in regions where $\varphi(u)$ is constant; in this case Problem (P) admits discontinuous solutions. We define solutions of Problem (P) as follows.

Definition 1.1. A function $u \in L^\infty(Q)$ is an *entropy solution* of Problem (P) if $u \in L^\infty((0, \infty); BV(R)) \cap C([0, \infty); L^2_{loc}(R)), \varphi(u) \in L^2_{loc}([0, \infty); H^1_{loc}(R))$ and if u satisfies the inequality

$$\frac{\partial}{\partial t} |u - k| + \frac{\partial}{\partial x} (\text{sign}(u - k)(f(u) - f(k))) \leq \frac{\partial^2}{\partial x^2} (\text{sign}(u - k)(\varphi(u) - \varphi(k))) \quad \text{in } D'(Q)$$

for all constants $k \in R$, together with the initial condition $u(0) = u_0$.

This definition extends the notion of entropy solution of equation (1.1) introduced by [K]. Note that if u is an entropy solution of Problem (P), then it satisfies the differential equation

$$u_t + f(u)x = \varphi(u)_{xx} \quad \text{in } D'(Q),$$

which one can check by successively setting $k = \pm \|u\|_{L^\infty(Q)}$ in (1.2).

In order to be able to state the main result of this paper, we consider the Riemann problem

$$\left\{ \begin{array}{ll} u_t + f(u)x = 0 & \text{in } Q \\ u(x,0) = a + (b - a)H(x) = \begin{cases} a & \text{if } x < 0 \\ b & \text{if } x > 0; \end{cases} \end{array} \right.$$

where H is the Heaviside function. It is well known [K], [dB], [MNRR], [Se] that Problem (P$^\infty$) has a unique entropy solution. We remark that the solution u^∞ of Problem (P$^\infty$) can be written using the similarity variable $\eta = x/t$ in the form $u^\infty(x,t) = U(\eta)$, where
$U \in BV(\mathbb{R})$ is a distributional solution of the problem

$$\left\{ \begin{array}{l}
f(U)' = \eta U' \\
U(-\infty) = a, \quad U(+\infty) = b
\end{array} \right. \quad \text{in } \mathbb{R}$$

which satisfies the “entropy” inequality

$$(\text{sign}(U-k)(f(U) - f(k)))' \leq \eta |U-k|' \quad \text{in } D'(\mathbb{R})$$

for all $k \in \mathbb{R}$ (see for instance [Se, p. 50]).

We also consider a sequence of related uniformly parabolic problems, namely

$$(P_{\lambda \varepsilon}) \left\{ \begin{array}{l}
\frac{d}{d\tau} + f_{\varepsilon}(u) = \frac{1}{\varepsilon} \varphi_{\varepsilon}(u) \quad \text{in } Q \\
u(x,0) = u_{0\varepsilon}(\lambda x)
\end{array} \right. \quad \text{for } x \in \mathbb{R}$$

where $0 < \varepsilon \leq 1$, $\lambda > 0$ and the functions $u_{0\varepsilon}$, φ_{ε} and f_{ε} satisfy the Hypotheses (H_{ε}):

$$(H_{\varepsilon}) \left\{ \begin{array}{l}
(i) \quad u_{0\varepsilon}, \varphi_{\varepsilon}, f_{\varepsilon} \in C^\infty(\mathbb{R}); \\
(ii) \quad \varphi_{\varepsilon} \to \varphi, f_{\varepsilon} \to f \text{ as } \varepsilon \downarrow 0 \text{ uniformly on compact subsets of } \mathbb{R}; \\
(iii) \quad \varepsilon \leq \varphi_{\varepsilon} \leq \frac{1}{\varepsilon} \text{ in } \mathbb{R}; \\
(iv) \quad \text{for all } R > 0 \text{ there exists } L = L(R) \text{ such that } |f_{\varepsilon}'| \leq L(R) \text{ on } (-R,R); \\
(v) \quad u_{0\varepsilon} \to u_0 \text{ in } L^1_{\text{loc}}(\mathbb{R}) \text{ as } \varepsilon \to 0; \\
(vi) \quad \text{ess inf } u_0 \leq u_{0\varepsilon} \leq \text{ess sup } u_0 \text{ in } \mathbb{R}; \\
(vii) \quad \int_{\mathbb{R}} |u_{0\varepsilon}'(x)| \, dx \leq TV(u_0); \\
(viii) \quad u_{0\varepsilon}(x) = a \text{ for } x < -\frac{1}{\varepsilon} \text{ and } u_{0\varepsilon}(x) = b \text{ for } x > \frac{1}{\varepsilon}.
\right.$$
In order to prove Theorem 1.3 we use a scaling technique. For all \(\lambda > 0 \) we set
\[
(1.5) \quad u^\lambda(x, t) = u(\lambda x, \lambda t),
\]
where \(u \) is the limit entropy solution of Problem (P). Then \(u^\lambda \) is a limit entropy solution of Problem \((P^\lambda)\),
\[
(P^\lambda) \begin{cases}
 u_t + f(u)x = \frac{1}{\lambda} \phi(u)xx & \text{in } Q \\
 u(x, 0) = u_0^\lambda(x) = u_0(\lambda x) & \text{for } x \in \mathbb{R},
\end{cases}
\]
where a limit entropy solution \(u^\lambda \) of Problem \((P^\lambda)\) is defined in a similar way as in Definition 1.2. Theorem 1.3 is the consequence of the following convergence result.

Theorem 1.5. Let \(\{u^\lambda\}_{\lambda \geq 1} \) be limit entropy solutions of Problem \((P^\lambda)\). Then, for any \(T > 0 \),
\[
\int_{-R}^{R} |u^\lambda(y, 1) - \tilde{U}(y)|^2 \, dy = \int_{-R}^{R} |\tilde{u}(\eta, \lambda) - \tilde{U}(\eta)|^2 \, d\eta \to 0 \quad \text{as } \lambda \to \infty,
\]
which is precisely the result stated in Theorem 1.3.

Indeed it follows from (1.4), (1.5) and Theorem 1.5 that for all \(R > 0 \)
\[
\int_{-R}^{R} |u^\lambda(y, 1) - \tilde{U}(y)|^2 \, dy = \int_{-R}^{R} |\tilde{u}(\eta, \lambda) - \tilde{U}(\eta)|^2 \, d\eta \to 0 \quad \text{as } \lambda \to \infty,
\]
which is precisely the result stated in Theorem 1.3.

The large time behaviour of solutions of Problem (P) has been studied for a long time under various assumptions on \(f, \phi \) and \(u_0 \). We refer to [IO2] and [W] for a historical review and an extensive list of references contained therein. Results related to presented here were obtained by Il’in and Oleinik [IO1], [IO2] in the case that \(\phi(u) = \varepsilon u \), with \(\varepsilon > 0 \) and \(f'' > 0 \) and by Weinberger [W] with the hypotheses that the differential equation in Problem (P) is uniformly parabolic and that \(f'' \) is continuous and only has isolated zeros. Van Duijn and de Graaf [vDdG] also examined a similar problem for a degenerate parabolic equation in the case of power type nonlinearities for the functions \(\phi \) and \(f \). Most of the methods of proof used in those papers are based on maximum principle arguments; here we present an approach based on a scaling method together with energy type estimates. This approach enables us to obtain a unified description of the limiting profile as \(t \to \infty \) of solutions of Problem (P), without standard distinguishing between convexity and concavity of the convection function \(f \). We also refer to [BGH] for a short note about these results. In a forthcoming article we will extend the results that we present here to the case of higher space dimension.

The organization of this paper is as follows. In Section 2 we prove a priori estimates for the solutions \((P^\lambda)\). In Section 3 we deduce from these estimates both the existence of an entropy solution \(u^\lambda \) of Problem \((P^\lambda)\) and the convergence of \(u^\lambda \) to the function \(u^\infty \) as \(\lambda \to \infty \).

2. A priori estimates. In this section in a series of lemmas we derive a priori estimates for the solutions \(u^\lambda \) of Problems \((P^\lambda)\), with \(\lambda \geq 1 \).
Lemma 2.1.

\[\text{ess inf } u_0 \leq u_\lambda \leq \text{ess sup } u_0 \quad \text{in } Q. \]

Proof. This result follows from Hypothesis \((H_\epsilon)\) (vi) and applying the standard maximum principle. ■

Lemma 2.2. Let \(0 < \epsilon \leq 1\), \(\lambda \geq 1\) and \(T > 0\) be fixed. Then

\[u_\lambda - a - (b - a)H(x), \quad u_{xx}, \quad u_{xx} = O(e^{-|x|}) \quad \text{as } |x| \to \infty, \]

uniformly in \([0,T]\).

Proof. (i) We first prove that

\[u_\lambda - b = O(e^{-x}) \quad \text{as } x \to +\infty, \]

uniformly in \([0,T]\). Set \(M = \|u_0\|_{\infty}\). Then, by (2.1),

\[-M \leq u_\lambda \leq M \quad \text{in } Q. \]

We compare \(u_\lambda\) with the function

\[\varphi(x, t) = b - \gamma e^{-x+Kt} \]

in the set \(S_{A,K} = \{(x,t) : \ x \geq A + Kt, \ t \geq 0\}\) for some \(\gamma, A,K > 0\). If we choose \(\gamma = (b+M)\epsilon A\) then

\[\varphi(A + Kt, t) = -M \]

for \(t \geq 0\). Furthermore, if \(A = \frac{1}{2}\) then by \((H_\epsilon)(viii)\)

\[\varphi(x, 0) = b - \gamma e^{-x} \leq u_{0\epsilon}(x) \]

for \(x \in [A, \infty)\). Finally, for \(K = K_\epsilon\) large enough we have

\[\varphi_t - \varphi'_\epsilon(\varphi)\varphi_{xx} - \varphi''_\epsilon(\varphi)\varphi_x^2 + f'_\epsilon(\varphi)\varphi_x = \gamma e^{-x+Kt}[\gamma - \varphi'_\epsilon(\varphi) - \gamma e^{-x+Kt}\varphi''_\epsilon(\varphi) + f'_\epsilon(\varphi)] \leq 0 \]

in \(S_{A,K}\). Hence, by the maximum principle \(\varphi(x, t) \leq u_\lambda\) in \(S_{A,K}\) so that

\[-\gamma e^{KT-x} \leq u_\lambda - b \]

for \(x \geq A + Kt\) and \(t \in [0,T]\). Similarly, comparing \(u_\lambda\) with the function of the form

\[\omega(x, t) = b + \gamma_1 e^{-x+K_1t} \]

in \(S_{A,K_1}\) for some \(\gamma_1, K_1 > 0\) and \(A\) as before leads to

\[u_\lambda - b \leq \gamma_1 e^{K_1T-x} \]

for \(x \geq A + K_1t\) and \(t \in [0,T]\).

The proof that \(u_\lambda - a = O(e^{-|x|})\) as \(x \to -\infty\) uniformly in \([0,T]\) is similar.

(ii) In order to prove that

\[u_{xx} = O(e^{-x}) \quad \text{as } x \to +\infty \]

uniformly in \([0,T]\) we observe that \(p = u_{xx}\) satisfies

\[
\begin{align*}
p_t &= \left(\varphi'_\epsilon(u_\lambda)p_x + \varphi''_\epsilon(u_\lambda)p^2 - f'_\epsilon(u_x)p_x \right) \\
&= \varphi'_\epsilon(u_x)p_{xx} + 3\varphi''_\epsilon(u_x)u_{xx}p_x + \varphi''_\epsilon(u_x)(u_{xx})^2p - f'_\epsilon(u_x)p_x - f''_\epsilon(u_x)u_{xx}p_x,
\end{align*}
\]
and moreover \(|p| \leq M_2\) in \(\mathbb{R} \times [0,T]\) and, by \((H_2)\)(viii), \(p(x,0) = 0\) for \(x > \frac{1}{\varepsilon}\). Thus we can compare \(p\) with functions
\[
\omega(x,t) = \pm \gamma e^{-x + Kt}
\]
in \(S_{A,K}\) for \(\gamma, K > 0\) and \(A = \frac{1}{\varepsilon}\).

The proof that \(u_\varepsilon^{\lambda} = O(e^{-|x|})\) as \(x \to -\infty\) uniformly in \([0,T]\) is similar.

(iii) The proof that \(u_\varepsilon^{\lambda xx} = O(e^{-|x|})\) as \(x \to \pm \infty\) uniformly in \([0,T]\) is similar to the proof given in (ii). ”

Lemma 2.3. For all \(t \geq 0\),
\[
(2.2) \quad \int_{\mathbb{R}} |u_\varepsilon^{\lambda}(x,t)| dx \leq \int_{\mathbb{R}} |u_0(x)| dx \leq TV(u_0).
\]

Proof. For the sake of simplicity we use the notations \(u\) and \(u_0\) instead of \(u_\varepsilon^{\lambda}\) and \(u_\varepsilon^0\) respectively. To begin with we differentiate the the differential equation in Problem \((P_\varepsilon^\lambda)\) with respect to \(x\), multiply the resulting equation by \(\text{sign}(\varphi'^\prime(u)x)\) and integrate over \(Q_{R,T}\) for fixed \(R\) and \(T > 0\). This leads to
\[
(2.3) \quad \int \int_{Q_{R,T}} u_{xt} \text{sign}(u) + \int \int_{Q_{R,T}} f_x(u)_{xx} \text{sign}(u) = \frac{1}{\varepsilon} \int \int_{Q_{R,T}} \varphi_x(u)_{xxx} \text{sign}(u).
\]

We show below that
\[
(2.4) \quad \int \int_{Q_{R,T}} u_{xt} \text{sign}(u) dx dt = \int_{-R}^{R} \left. |u_x| \right|_0^T dx,
\]
\[
(2.5) \quad \int \int_{Q_{R,T}} f_x(u)_{xx} \text{sign}(u) dx dt = \int_0^T \left. f_x(u)|u_x| \right|_{-R}^{R} dt,
\]
\[
(2.6) \quad \int \int_{Q_{R,T}} \varphi_x(u)_{xxx} \text{sign}(u) dx dt \leq \int_0^T \left. (\varphi_x(u)u_x) \text{sign}(\varphi'^\prime(u)x) \right|_{-R}^{R} dt.
\]

In order to prove (2.4)-(2.6) we use a sequence of smooth approximations \(\{S_\delta\}_{\delta > 0}\) of the sign function and set \(M_\delta(w) = \int_0^w S_\delta(s) ds\) for \(w \in \mathbb{R}\). Then \(M_\delta(w) \to |w|\) as \(\delta \to 0\). We have that
\[
\int \int_{Q_{R,T}} S_\delta(u_x)u_{xt} = \int \int_{Q_{R,T}} (M_\delta(u_x))_{xt} = \int_{-R}^{R} M_\delta(u_x) \left. \right|_0^T dx,
\]
where we let \(\delta \to 0\) to obtain (2.4).

In order to prove (2.5) we observe that
\[
(f_x(u)_{xx} S_\delta(u_x)) = (f_x(u)_{xx} u_x S_\delta(u_x)) + (f_x(u)_{xx} M_\delta(u_x)) = (f_x(u)_{xx} u_x S_\delta(u_x)) + (f_x(u)_{xx} u_x S_\delta(u_x) - M_\delta(u_x)),
\]
which implies that
\[
(2.7) \quad \int \int_{Q_{R,T}} f_x(u)_{xx} S_\delta(u_x) = \int \int_{Q_{R,T}} (f_x(u)_{xx} M_\delta(u_x)) + J(\delta)
= \int_0^T f_x(u)_{xx} M_\delta(u_x) \left. \right|_{-R}^{R} dt + J(\delta),
\]

where
\[J(\delta) = \int \int_{Q_{T},R} (f_\varepsilon'(u)x_x u_x S_\delta(u_x) - M_\delta(u_x)). \]

Since \(J(\delta) \to 0 \) as \(\delta \to 0 \) we obtain (2.5) by letting \(\delta \to 0 \) in (2.7).

Finally we prove (2.6). We have that
\[
\begin{align*}
(2.8) \quad \int \int_{Q_{T},R} \varphi_\varepsilon'(u)x_x x S_\delta(u_x) \\
= \int \int_{Q_{T},R} \varphi_\varepsilon'(u)x_x x [S_\delta(u_x) - S_\delta(\varphi_\varepsilon'(u)x_x x)] + \int \int_{Q_{T},R} (\varphi_\varepsilon'(u)x_x x S_\delta(\varphi_\varepsilon'(u)x_x x)) \\
= I_1(\delta) + I_2(\delta),
\end{align*}
\]

and remark that since \(\varphi_\varepsilon' > 0 \) then \(I_1(\delta) \to 0 \) as \(\delta \to 0 \). Next we estimate \(I_2(\delta) \). We have that
\[
(2.9) \quad I_2(\delta) = \int_0^T \left(\varphi_\varepsilon'(u)x_x x S_\delta(\varphi_\varepsilon'(u)x_x x) \right) \bigg|_R^{\infty} dt - \int \int_{Q_{T},R} \left[(\varphi_\varepsilon'(u)x_x x S_\delta(\varphi_\varepsilon'(u)x_x x)) \right] dtdx \\
\leq \int_0^T \left(\varphi_\varepsilon'(u)x_x x S_\delta(\varphi_\varepsilon'(u)x_x x) \right) \bigg|_R^{\infty} dt.
\]

Substituting (2.9) into (2.8) and letting \(\delta \to 0 \) we obtain (2.6).

Now it follows from (2.3)-(2.6) that
\[
\int \int_{Q_{T},R} \varphi_\varepsilon'(u)x_x x S_\delta(\varphi_\varepsilon'(u)x_x x) \bigg|_R^{\infty} dt - \int \int_{Q_{T},R} \left[(\varphi_\varepsilon'(u)x_x x S_\delta(\varphi_\varepsilon'(u)x_x x)) \right] dtdx \\
\leq \int_0^T \left(\varphi_\varepsilon'(u)x_x x S_\delta(\varphi_\varepsilon'(u)x_x x) \right) \bigg|_R^{\infty} dt.
\]

for all \(R, T > 0 \). Hence, by Lemma 2.2, in the limit as \(R \to \infty \)
\[
\int \int_{R} \left(| u_{x_x x}^\lambda (x, T) | dx - \lambda \int \left| u_{0_x x}^\lambda (\lambda x) \right| dx \right)
\leq 0,
\]

which yields (2.2) by (H2)(vii).

Lemma 2.4. There exists a positive constant \(C = C(R, T) \) such that
\[
(2.10) \quad \| f_\varepsilon(u_x^\lambda) \|_{L^2(0,T;H^{-1}(-R,R))} \leq C.
\]

Proof. Here again we omit the lower index \(\varepsilon \) and the upper index \(\lambda \) from the notation.

Let \(R > 0 \) and \(\zeta \in C^\infty_0(-R,R) \). We have that
\[
\langle f_\varepsilon(u_x^\lambda) ; \zeta \rangle = \int_{-R}^{R} f_\varepsilon(u_x^\lambda)(x,t) \zeta(x) \, dx = - \int_{-R}^{R} f_\varepsilon(\zeta)(x,t) \zeta^\lambda(x) \, dx,
\]

which imply that
\[
| \langle f_\varepsilon(u_x^\lambda) ; \zeta \rangle | \leq \left(\int_{-R}^{R} | f_\varepsilon(u_x^\lambda)(x,t) |^2 \, dx \right)^{1/2} \left(\int_{-R}^{R} | \zeta^\lambda(x) |^2 \, dx \right)^{1/2} \\
\leq \left(\int_{-R}^{R} | f_\varepsilon(\zeta)(x,t) |^2 \, dx \right)^{1/2} \| \zeta \|_{H^1_\varepsilon(-R,R)}.
\]
for all $t \in [0, T]$. Hence

\[
\|f_\varepsilon(u)_x(\cdot, t)\|_{H^{-1}(-R, R)} \leq \left(\int_{-R}^R |f_\varepsilon(u)(x, t)|^2 \, dx \right)^{1/2}
\]

for all $t \in [0, T]$ and consequently by (H$_\varepsilon$)(ii) and Lemma 2.1

\[
\int_0^T \|f_\varepsilon(u)_x(\cdot, t)\|_{H^{-1}(-R, R)}^2 \, dt \leq \int \int_{Q_{R,T}} |f_\varepsilon(u)|^2 \leq C
\]

for some positive constant $C = C(R, T)$. ■

Lemma 2.5. There exists a positive constant $C = C(R, T)$ such that

\[
(2.11) \quad \|\varphi_\varepsilon(u^\lambda_\varepsilon)_x\|_{L^2((-R, R) \times (0, T))} \leq C\sqrt{\lambda}.
\]

Proof. For simplicity we write u and u_0 instead of u^λ_ε and $u_{0\varepsilon}$ respectively. Let $R > 0$ and ψ be a smooth function such that

\[
\psi(x) = \left\{ \begin{array}{ll} 1 & \text{if } |x| \leq R \\ 0 & \text{if } |x| \geq R + 1. \end{array} \right.
\]

We multiply the differential equation in Problem (P$_1^\lambda$) by $\varphi_\varepsilon(u)\psi^2$ and write the resulting equality as

\[
\Phi_\varepsilon(u)\psi^2 + \Psi_\varepsilon(u)_x\psi^2 = \frac{1}{\lambda}\varphi_\varepsilon(u)_x\varphi_\varepsilon(u)\psi^2,
\]

where we have set $\Phi_\varepsilon(u) = \int_0^u \varphi_\varepsilon(s) \, ds$ and $\Psi_\varepsilon(u) = \int_0^u f'_\varepsilon(s)\varphi_\varepsilon(s) \, ds$. Integrating by parts on the domain $Q_{R+1,T} = (-R-1, R+1) \times (0, T)$ gives

\[
\int_{-(R+1)}^{R+1} (\Phi_\varepsilon(u(x, T)) - \Phi_\varepsilon(u_0(x)))\psi^2(x) \, dx - \int \int_{Q_{R+1,T}} \Psi_\varepsilon(u)(\psi^2)'
\]

\[
= -\frac{1}{\lambda} \int \int_{Q_{R+1,T}} (\varphi_\varepsilon(u)_x)^2\psi^2 - \frac{2}{\lambda} \int \int_{Q_{R+1,T}} \varphi_\varepsilon(u)_x\varphi_\varepsilon(u)\psi\psi'.
\]

Applying the Cauchy-Schwarz inequality to the second term of the right-hand side of the equality above gives

\[
\int_{-(R+1)}^{R+1} (\Phi_\varepsilon(u(x, T)) - \Phi_\varepsilon(u_0))\psi^2(x) \, dx - \int \int_{Q_{R+1,T}} \Psi_\varepsilon(u)(\psi^2)'
\]

\[
\leq -\frac{1}{2\lambda} \int \int_{Q_{R+1,T}} (\varphi_\varepsilon(u)_x)^2\psi^2 + \frac{2}{\lambda} \int \int_{Q_{R+1,T}} (\varphi_\varepsilon(u))^2(\psi')^2.
\]

Therefore, in view of (H$_\varepsilon$) and Lemma 2.1

\[
\frac{1}{\lambda} \int \int_{Q_{R,T}} (\varphi_\varepsilon(u)_x)^2 \leq C_1
\]

where the positive constant $C_1 = C_1(R, T)$ does not depend on ε and λ. ■

Corollary 2.6.

\[
(2.12) \quad \|\varphi_\varepsilon(u^\lambda_\varepsilon)_x\|_{L^2([0, T]; H^{-1}(-R, R))} \leq C\sqrt{\lambda}.
\]
Proof. As in the proof of Lemma 2.5, we omit the lower index \(\varepsilon \) and the upper index \(\lambda \) from the notation. Let \(R > 0 \), \(\zeta \in C_0^\infty(-R, R) \) and \(t \in [0, T] \); we have that
\[
(\varphi_\varepsilon(u)_{xx}(\cdot,t),\zeta) = \int_{-R}^{R} \varphi_\varepsilon(u)_{xx}(x,t)\zeta(x) \, dx = -\int_{-R}^{R} \varphi_\varepsilon(u)_x(x,t)\zeta'(x) \, dx
\]
so that
\[
|\langle \varphi_\varepsilon(u)_{xx}(\cdot,t),\zeta \rangle| \leq \left(\int_{-R}^{R} |\varphi_\varepsilon(u)_x(x,t)|^2 \, dx \right)^{1/2} \left(\int_{-R}^{R} |\zeta'(x)|^2 \, dx \right)^{1/2}
\]
for all \(t \in [0, T] \). Hence
\[
\|\varphi_\varepsilon(u)_{xx}(\cdot,t)\|_{H^{-1}(-R,R)} \leq \left(\int_{-R}^{R} |\varphi_\varepsilon(u)_x(x,t)|^2 \, dx \right)^{1/2}
\]
for all \(t \in [0, T] \). In view of Lemma 2.5 we obtain
\[
\int_{0}^{T} \|\varphi_\varepsilon(u)_{xx}(\cdot,t)\|_{H^{-1}(-R,R)}^2 \, dt \leq \int_{Q_R,T} |\varphi_\varepsilon(u)_x|^2 \leq C \lambda
\]
for some positive constant \(C = C(R,T) \).

We end this section with the following compactness result.

Lemma 2.7. Let \(R > 0 \). The set \(\{u^\lambda_{\varepsilon}\}_{\varepsilon>0,\lambda>1} \) is precompact in \(C([0,T];L^2(-R,R)) \).

Proof. It follows from (2.2) and (2.11) that
\[
\|(u^\lambda_\varepsilon)\|_{L^\infty((0,T);W^{1,1}(-R,R))} \leq C(R,T),
\]
while by (2.10), (2.12) and the differential equation of \((P^\lambda_\varepsilon) \),
\[
\|(u^\lambda_\varepsilon)_t\|_{L^2((0,T);H^{-1}(-R,R))} \leq C(R,T)
\]
for some positive constant \(C(R,T) \). The result then follows from the embeddings
\[
W^{1,1}(-R,R) \subset L^2(-R,R) \subset H^{-1}(-R,R),
\]
the compactness of the embedding \(W^{1,1}(-R,R) \subset L^2(-R,R) \), and a compactness result due to Simon [Si] (Corollary 4, p. 85).

3. Existence and asymptotic behaviour of limit entropy solutions of Problem \((P^\lambda_\varepsilon) \) as \(\lambda \to \infty \)

Definition 3.1. We say that a function \(u^\lambda_\varepsilon \) is an *entropy solution* of Problem \((P^\lambda_\varepsilon) \) if it satisfies Definition 1.1 with \(\varphi \) replaced by \((1/\lambda)\varphi \). A limit entropy solution of Problem \((P^\lambda_\varepsilon) \) is then defined as in Definition 1.2.

We begin with the following lemma.

Lemma 3.2. Let \(0 < \varepsilon \leq 1 \) and \(\lambda \geq 1 \) be fixed and let \(u^\lambda_\varepsilon \) be the classical solution of Problem \((P^\lambda_\varepsilon_\varepsilon) \). Then \(u^\lambda_\varepsilon \) satisfies the inequality
\[(3.1) \quad \frac{\partial}{\partial t}|u_\varepsilon^\lambda - k| + \frac{\partial}{\partial x}(\text{sign}(u_\varepsilon^\lambda - k)(f_\varepsilon(u_\varepsilon^\lambda) - f_\varepsilon(k))) \leq \frac{1}{\lambda} \frac{\partial^2}{\partial x^2}(\text{sign}(u_\varepsilon^\lambda - k)(\varphi_\varepsilon(u_\varepsilon^\lambda) - \varphi_\varepsilon(k)))\]

in \(\mathcal{D}'(Q) \) for all \(k \in \mathbb{R} \).

Proof. As in the proofs above we write \(u \) instead of \(u_\varepsilon^\lambda \). Let \(k \in \mathbb{R} \). Multiplying the differential equation in Problem \((P_\varepsilon^\lambda)\) by \(S_\delta(u - k) \) gives

\[(3.2) \quad u_t S_\delta(u - k) + f_\varepsilon(u)_x S_\delta(u - k) = \frac{1}{\lambda} \varphi_\varepsilon(u)_x S_\delta(u - k)\]
in \(\mathcal{Q} \). Set

\[F_\varepsilon^\delta(w) = \int_k^w f_\varepsilon'(s) S_\delta(s - k) \, ds.\]

Then

\[(3.3) \quad u_t S_\delta(u - k) = (M_\delta(u - k))_t,\]

\[(3.4) \quad f_\varepsilon(u)_x S_\delta(u - k) = (F_\varepsilon^\delta(u))_x,\]

and

\[(3.5) \quad \varphi_\varepsilon(u)_x S_\delta(u - k) = (\varphi_\varepsilon(u)_x S_\delta(u - k))_x - (\varphi_\varepsilon(u)_x S_\delta'(u - k))u_x \leq (\varphi_\varepsilon(u)_x S_\delta(u - k))_x,\]
since \((\varphi_\varepsilon(u)_x S_\delta'(u - k))u_x \geq 0\). Set

\[G_\varepsilon^\delta(w) = \int_k^w \varphi_\varepsilon'(s) S_\delta(s - k) \, ds.\]

Then \((G_\varepsilon^\delta(u))_x = (\varphi_\varepsilon(u)_x S_\delta(u - k))_x\) and therefore combining \((3.2)-(3.5)\) we obtain

\[(M_\delta(u - k))_t + (F_\varepsilon^\delta(u))_x \leq (G_\varepsilon^\delta(u))_{xx}.\]

Letting \(\delta \to 0 \) gives

\[\frac{\partial}{\partial t}|u - k| + \frac{\partial}{\partial x}F_\varepsilon(u) \leq \frac{1}{\lambda} \frac{\partial}{\partial x^2}G_\varepsilon(u) \quad \text{in} \ \mathcal{D}'(Q),\]

where we use the notations

\[F_\varepsilon(w) = \int_k^w f_\varepsilon'(s) \text{sign}(s - k) \, ds, \quad G_\varepsilon(w) = \int_k^w \varphi_\varepsilon'(s) \text{sign}(s - k) \, ds.\]

But

\[G_\varepsilon(w) = \begin{cases}
\varphi_\varepsilon(k) - \varphi_\varepsilon(w) & \text{if } k > w \\
\varphi_\varepsilon(w) - \varphi_\varepsilon(k) & \text{if } k < w \\
0 & \text{if } k = w.
\end{cases}\]

Thus \(G_\varepsilon(w) = \text{sign}(w - k)(\varphi_\varepsilon(w) - \varphi_\varepsilon(k)) \). Similarly \(F_\varepsilon(w) = \text{sign}(w - k)(f_\varepsilon(w) - f_\varepsilon(k)) \).

Therefore \(u \) satisfies \((3.1)\).

Next we prove the existence of a limit entropy solution of Problem \((P^\lambda)\) with properties which we use later on.

Theorem 3.3. Let \(\lambda \geq 1 \) be fixed and let \(\{u_\varepsilon^\lambda\}_{0 < \varepsilon \leq 1} \) be the classical solutions of Problems \((P_\varepsilon^\lambda)\). There exists a sequence \(\{\varepsilon_n\} \) and a function \(u^\lambda \in L^\infty(Q) \) such that

\[u_\varepsilon^\lambda \to u^\lambda \quad \text{in} \ C([0,T];L^2(-R,R)) \quad \text{as} \ \varepsilon_n \to 0,\]
for all R and $T > 0$. The function u^λ is an entropy solution of Problem (P^λ) and satisfies the following estimates:

(i) $\text{ess inf } u_0 \leq u^\lambda \leq \text{ess sup } u_0$ a.e. in Q;

(ii) $\|\varphi(u^\lambda)\|_{L^2((-R,R) \times (0,T))} \leq C\sqrt{\lambda}$;

(iii) $\text{TV}(u^\lambda(\cdot,t)) \leq \text{TV}(u_0)$ for a.e. $t \in (0,\infty)$;

(iv) $\|u^\lambda\|_{L^2((0,T);H^{-1}(-R,R))} \leq C$,

where the positive constant C only depends on R and T.

Proof. Let $\lambda \geq 1$. We deduce from Lemma 2.7 that there exists a sequence $\varepsilon_n \to 0$ and a function $u^\lambda \in C([0,\infty);L^1_{\text{loc}}(\mathbb{R}))$ such that as $\varepsilon_n \to 0$

$$u^\lambda_{\varepsilon_n} \to u^\lambda \quad \text{in } C([0,T];L^2(-R,R)) \quad \text{and a.e. in } Q,$$

for all $R > 0$ and all $T > 0$. The assertions (i)-(iv) are consequences of (2.1), (2.2), (2.11), and (2.14), and of the lower semicontinuity of total variation ([EG], [GR]). Observe that by (H$_2$) (ii) and (3.6) as $\varepsilon_n \to 0$,

$$\text{sign}(u^\lambda_{\varepsilon_n} - k) \to \text{sign}(u^\lambda - k)$$

a.e. in $Q \cap \{x, t : u^\lambda - k \neq 0\}$ and

$$f_{\varepsilon_n}(u^\lambda_{\varepsilon_n}) - f_{\varepsilon_n}(k) \to f(u^\lambda) - f(k),$$

$$\varphi_{\varepsilon_n}(u^\lambda_{\varepsilon_n}) - \varphi_{\varepsilon_n}(k) \to \varphi(u^\lambda) - \varphi(k)$$

a.e. in Q. Then, letting ε_n tend to zero in an integrated form of inequality (3.1) and using (2.1), (3.7) - (3.9) and Lebesgue’s dominated convergence theorem, one deduces that u^λ satisfies the inequality

$$\frac{\partial}{\partial t}|u^\lambda - k| + \frac{\partial}{\partial x}(\text{sign}(u^\lambda - k)(f(u^\lambda) - f(k)))$$

$$\leq \frac{1}{\lambda} \frac{\partial^2}{\partial x^2}(\text{sign}(u^\lambda - k)(\varphi(u^\lambda) - \varphi(k)))$$

in $D'(Q)$ for all constants $k \in R$. Furthermore it follows from (H$_2$)(v) and from (3.6) that u^λ satisfies the initial condition $u^\lambda(0) = u_0$. Thus u^λ is a limit entropy solution of Problem (P^λ).

Corollary 3.4. Let $\lambda \geq 1$ and let u^λ be a limit entropy solution of Problem (P^λ). Then the statements (i) - (iv) of Theorem 3.3 hold for u^λ.

Proof. This is an immediate consequence of the definition of the limit entropy solution of Problem (P^λ) and of Theorem 3.3.

Before proving Theorem 1.5 we give the definition of an entropy solution of Problem (P^∞).

Definition 3.5. A function $u \in L^\infty(Q) \cap C([0,\infty);L^1_{\text{loc}}(\mathbb{R}))$ is an entropy solution of Problem (P^∞) if it satisfies the entropy inequality

$$\frac{\partial}{\partial t}|u - k| + \frac{\partial}{\partial x}(\text{sign}(u - k)(f(u) - f(k))) \leq 0$$

in $D'(Q)$ for all constants $k \in R$, together with the initial condition $u(0) = u_0$.

LARGE TIME BEHAVIOUR 129
Proof of Theorem 1.5. Let $\lambda > 1$, $R > 0$, $T > 0$ and let u^λ be a limit entropy solution of Problem (P^λ). We deduce from Corollary 3.4, Theorem 3.3 (iii), (iv), the embeddings $BV(-R,R) \subset L^2(-R,R) \subset H^{-1}(-R,R)$, the compactness of the imbedding $BV(-R,R) \subset L^2(-R,R)$ which we shall prove in the Appendix and Corollary 4 p. 85 of [Si] that the set $\{u^\lambda\}_{\lambda>1}$ is precompact in $C([0,T];L^2(-R,R))$. Hence there exists a sequence $\lambda_n \to \infty$ and a function $u^\infty \in C([0,\infty);L^2_{loc}(\mathbb{R}))$ such that for all $R > 0$ and $T > 0$

\[(3.11)\]

$u^{\lambda_n} \to u^\infty$ in $C([0,T];L^2(-R,R))$ and a.e. in $Q_{R,T}$ as $n \to \infty$. It then follows from Theorem 3.3 and Corollary 3.4 that $u^\infty \in L^\infty(Q) \cap L^\infty((0,\infty);BV(\mathbb{R}))$. Finally, similarly as it has been done in the proof of Theorem 3.3 one can prove that u^∞ satisfies the entropy inequality (3.10). Thus u^∞ is an entropy solution of Problem (P^∞).

Now as a consequence of (3.11) and the uniqueness of the entropy solution of Problem (P^∞) ([K], [dB]) we obtain that for all $R > 0$ and $T > 0$

$u^\lambda \to u^\infty$ in $C([0,T];L^2(-R,R))$ as $\lambda \to \infty$.

This completes the proof of Theorem 1.5.

4. Appendix. We shall prove the following lemma.

Lemma A.1. Let $R > 0$. Then for any $p \geq 1$, $BV(-R,R)$ is compactly embedded in $L^p(-R,R)$.

Proof. Since this result is well known for $p = 1$ we prove it for $p > 1$. Let $\{g_n\}_{n=1}^\infty \subset BV(-R,R)$ be such that

\[(A.1)\]

$\|g_n\|_{BV(-R,R)} = \|g_n\|_{L^p(-R,R)} + TV(-R,R)(g_n) \leq M$

for all $n \geq 1$ and for some constant $M > 0$. We first prove that $\{g_n\}_{n=1}^\infty$ is uniformly bounded in $L^\infty(-R,R)$ (the proof is almost a facsimile of the proof of Claim 3, p. 218 in [EG]). Fix $n \geq 1$ and choose $\{g_{nj}\}_{j=1}^\infty \subset BV(-R,R) \cap C^\infty(-R,R)$ such that as $j \to \infty$, $g_{nj} \to g_n$ in $L^1(-R,R)$ and a.e. in $(-R,R)$ and

\[\int_{-R}^{R} |g'_{nj}| \, dx \to TV(-R,R)(g_n).\]

For each $y, z \in (-R,R)$ we have that

$g_{nj}(z) = g_{nj}(y) + \int_y^{z} g'_{nj}(x) \, dx.$

Averaging with respect to $y \in (-R,R)$ gives

$|g_{nj}(z)| \leq 1/(2R) \int_{-R}^{R} |g_{nj}(y)| \, dy + \int_{-R}^{R} |g'_{nj}(x)| \, dx.$
and hence for \(j \) large enough,
\[
\| g_{n_j} \|_{L^\infty(-R,R)} \leq C \| g_{n_j} \|_{BV(-R,R)},
\]
where the constant \(C \) does not depend on \(n \) and \(j \). Taking the limit \(j \to \infty \) yields
\[
(A.2) \quad \| g_n \|_{L^\infty(-R,R)} \leq CM.
\]
Now, by (A.1), (A.2) and the compactness theorem in [EG] p. 176, there exist a sequence \(n_k \to \infty \) and a function \(g \in L^\infty(-R,R) \) such that as \(k \to \infty \),
\[
g_{n_k} \to g \quad \text{in} \quad L^1(-R,R) \quad \text{and a.e. in} \quad (-R,R).
\]
Since
\[
\int_{-R}^{R} |g_{n_k} - g|^p \, dx \leq \sup_{(-R,R)} |g_{n_k} - g|^{p-1} \int_{-R}^{R} |g_{n_k} - g| \, dx \leq (2CM)^{p-1} \int_{-R}^{R} |g_{n_k} - g| \, dx,
\]
the result follows.

References

