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Abstract. An abstract parabolic equation with sectorial operator and continuous nonlin-
earity is studied in this paper. In particular, the asymptotic behavior of solutions is described
within the framework of the theory of global attractors. Examples included in the final part of
the paper illustrate the presented ideas.

1. Introduction. A number of parabolic equations originating in Applied Sciences
admit the formulation in an abstract form (1) below, where A is a sectorial operator in a
Banach space X (cf. [HE]) and F : Xα → X, α ∈ [0, 1), is a continuous map. Usually, to
study the solutions to (1) it is assumed that F is Lipschitz continuous on bounded subsets
of the fractional power space Xα into X (cf. [HE], [HA], [C-D]). Such an assumption is,
however, violated in many examples which include e.g. the diffusion equation with strong
absorption (21) considered further in this note.

Although the problems with Lipschitz term F have been satisfactorily treated by
many authors (cf. [HE], [HA], [C-C-D]), then the behavior of solutions to (1) in the case
when Lipschitz condition fails is not so widely described. Following the results of [L-M],
[MA] concerning mild solutions to (1) we shall thus generalize here earlier results of [C-D]
onto the problems of the latter type.
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2. Local existence result. In the following, consider the problem
.
u +Au = F (u), t > 0, u(0) = u0, (1)

under the Assumption (A) below.

Assumption (A). A is a sectorial, positive operator in a Banach space X, the re-
solvent of A is compact and, for some α ∈ [0, 1), F : Xα → X is a continuous function
which takes bounded subsets of Xα into bounded subsets of X.

Here positivity ofAmeans that all elements of the spectrum σ(A) have strictly positive
real parts. Further, Xα = D(Aα) is the domain of the fractional power Aα of the operator
A (cf. [HE, p. 29]).

Definition 1. If, for some τ > 0, a function u ∈ C([0, τ), X) ∩ C((0, τ), Xα) fulfills
in X the Cauchy integral formula

u(t) = e−Atu0 +
∫ t

0

e−A(t−s)F (u(s))ds, for t ∈ [0, τ), (2)

then u is called a local mild Xα-solution of (1) through u0 ∈ X.

Based on [L-M, Theorem 1] we obtain the following result.

Proposition 1. Suppose that Assumption (A) holds. Then, to each u0 ∈ Xα corre-
sponds at least one local mild Xα-solution u of (1). In addition, u(t, u0)→ u0 in Xα as
t→ 0+.

Proof. Since the resolvent of A is compact, e−At : X → X is a compact map
for each t > 0 (cf. [HA, Lemma 4.2.3]). Specifying in the notation of [L-M], D = X,
L = A, B(t, v) ≡ F (v), and T (t) ≡ e−At one easily observes validity of the assumptions
(C1)− (C5) in [L-M, Theorem 1]. The proof is complete.

Definition 2. A function u is called a global mild Xα-solution to (1) if u fulfills
requirements of Definition 1 with τ = +∞.

It is well known (cf. [L-M]) that global solutions exist if F satisfies the sublinear
growth condition

‖F (v)‖X ≤ const.(1 + ‖v‖Xα), for v ∈ Xα. (3)

We then obtain:

Proposition 2. Suppose that Assumption (A) is satisfied and (3) holds. Then, for
each u0 ∈ X, there exists at least one global mild Xα-solution to (1). Furthermore, for
each bounded set B ⊂ X and each t > 0, {u(t, u0), u0 ∈ B} is a precompact subset of X.

Proof. The assertion is a consequence of [L-M, Theorem 2] (cf. also [L-M, Remark 2]).

3. Existence and stability of global solutions. In the case when an a priori
estimate of the local solutions to (1) is known in the norm of some Banach space Y ,
Proposition 2 may be generalized to the form reported below in Theorem 1. For this
purpose we introduce the following hypothesis.
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Hypothesis (H). It is possible to choose:

• a Banach space Y , with Xα ⊂ Y ,
• a locally bounded function c : R+ → R+,
• a nondecreasing function g : R+ −→ R+,
• a number θ ∈ [0, 1),

such that, for τ > 0 and u0 ∈ Xα, if u(·, u0) is a local mild Xα-solution to (1) defined on
[0, τ), then

‖u(t, u0)‖Y ≤ c(‖u0‖Xα), t ∈ (0, τ), (4)

‖F (u(t, u0))‖X ≤ g(‖u(t, u0)‖Y )(1 + ‖u(t, u0)‖θXα), t ∈ (0, τ). (5)

Remark 1. There are many examples of parabolic equations for which, because of
the fast growth of nonlinear term, the sublinear growth restriction (3) is not satisfied, but
the hypothesis (H) holds. Here are such important problems as the 2-D Navier-Stokes
system, the Cahn-Hilliard equation, and many reaction-diffusion systems originating in
biology (cf. [C-C-D] for details).

Theorem 1. Under the Assumptions (A) and (H) for each u0 ∈ Xα there exists at
least one global mild Xα-solution to (1). Moreover, if ‖u0‖Xα ≤ R , then

‖u(t, u0)‖Xα ≤ c1(R), t ≥ 0. (6)

Proof. Conditions (4) and (5) imply that, for any fixed u0 ∈ Xα and as long as
u(·, u0) exists, we have the estimate

‖F (u(t, u0))‖X ≤ g
(
c(‖u0‖Xα)

)
(1 + ‖u(t, u0)‖θXα). (7)

Standard calculations show that, for fixed u0 ∈ Xα,

‖u(t, u0)‖Xα ≤Mu0

as long as u(t, u0) exists (cf. [C-D, Theorem 1] for details). Furthermore, (6) holds pro-
vided that each solution exists globally in time. We shall now justify this latter supposi-
tion.

Since the semigroup {e−At} is analytic and Reσ(A) > 0 we have, for some a > 0, the
estimates (cf. [HE, Theorem 1.4.3]):

‖Aαe−At‖L(X,X) ≤ cα e
−at

tα , t > 0, α > 0,
‖(e−At − Id)v‖X ≤ 1

εC1−εt
ε‖Aεv‖X , v ∈ Xε, ε > 0.

Let u0 ∈ Xα and u(·, u0) be a noncontinuable local mild Xα-solution to (1) through u0

defined on [0, τ). Suppose further that τ < +∞. If 0 < ε < 1− α and 0 < η < t < t < τ ,
then from (2) and the above estimates for analytic semigroups we obtain that

‖u(t, u0)− u(t, u0)‖Xα ≤ ‖(e−A(t−t) − Id)Aαe−Atu0‖X

+
∫ t

0

‖(e−A(t−t) − Id)Aαe−A(t−s)F (u(s, u0))‖Xds

+
∫ t

t

‖Aαe−A(t−s)‖L(X,X)‖F (u(s, u0))‖Xds
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≤ 1
εC1−ε(t− t)εcα+ε

e−at

t
α+ε ‖u0‖X

+
∫ t

0

1
ε
C1−ε(t− t)εcα+ε

e−a(t−s)

(t− s)α+ε
‖F (u(s, u0))‖Xds

+
∫ t

t

cα
e−a(t−s)

(t− s)α
‖F (u(s, u0))‖Xds

≤ (t− t)ε cα+εC1−ε

εηα+ε
‖u0‖X + (t− t)ε cα+εC1−ε

ε(1− α− ε)
τ1−α−ε sup

‖v‖Xα≤Mu0

‖F (v)‖X

+(t− t)ε(t− t)1−α−ε cα
1− α

sup
‖v‖Xα≤Mu0

‖F (v)‖X

≤ (t− t)εconst.(ε, α, η, τ, ‖u0‖Xα , F ).

Considering Cauchy sequences one shows the existence of the limit limt→τ− ‖u(t, u0)‖Xα .
The latter allows to extend u(·, u0) onto the interval [0, τ + δ) (cf. [L-M, Theorem 1])
which contradicts the maximality of τ .

We have thus justified that, if hypothesis (H) is satisfied, then each local mild Xα-
solution to (2) resulting from Proposition 1 may be extended onto the whole half line
[0,+∞). Theorem 1 is thus proved.

Theorem 2. Let the Assumptions (A) and (H) be satisfied and V be a subset of Xα.
Suppose there exists const. > 0 such that for each u0 ∈ V and for each corresponding
global mild Xα-solution u(·, u0) to (2)

lim sup
t→+∞

‖u(t, u0)‖Y < const. (8)

Then, any such solution satisfies the inequality

lim sup
t→+∞

‖u(t, u0)‖Xα ≤ const.′, (9)

with const.′ > 0 independent of u0 ∈ V .

Proof. Based on (8) we choose for u0 ∈ V a positive time tu0 such that, for any
t > τ > tu0 ,

sup
s∈[τ,t)

‖u(s, u0)‖Y ≤ const. (10)

and const. is independent of u0 ∈ V . We then write the integral equation defining the
mild Xα-solution to (1) in the form:

u(t, u0) = e−Atu0 +
(∫ τ

0

+
∫ t

τ

)
e−A(t−s)F

(
u(s, u0)

)
ds. (11)

As a consequence of (5) and estimates in fractional power spaces [HE, p.26], we obtain

‖u(t, u0)‖Xα ≤ ‖Aαe−Atu0‖X +
∫ τ

0

‖Aαe−A(t−s)‖L(X,X)‖F
(
u(s, u0)

)
‖Xds

+
∫ t

τ

‖Aαe−A(t−s)‖L(X,X)g(‖u(s, u0)‖Y )(1 + ‖u(s, u0)‖θXα)ds
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≤ c0e−at‖u0‖Xα + sup
‖v‖Xα≤z1(u0)

‖F (v)‖X
∫ t

t−τ
cα
e−ay

yα
dy

+ g(const.)(1 + sup
s∈[τ,t]

‖u(s, u0)‖θXα)
∫ t−τ

0

cα
e−ay

yα
dy, t > τ > t0(u0), u0 ∈ V, (12)

with z1(u0) defined as:

z1(u0) := sup
t∈[0,+∞)

‖u(t, u0)‖Xα .

Let τ := τ0(ε) > tu0 be such that

sup
s∈[τ0(ε),+∞)

‖u(s, u0)‖Xα ≤ lim sup
t→+∞

‖u(t, u0)‖Xα + ε. (13)

Since the first two components of the right hand side in (12) tend to zero as t −→ +∞,
we get:

lim sup
t→+∞

‖u(t, u0)‖Xα ≤ g(const.)cα
Γ(1− α)
a1−α (1 + sup

s∈[τ0(ε),+∞)

‖u(s, u0)‖θXα). (14)

Denoting

C := g(const.)cα
Γ(1− α)
a1−α (15)

we obtain from (13) and (14) that

lim sup
t→+∞

‖u(t, u0)‖Xα ≤ C(1 + (ε+ lim sup
t→+∞

‖u(t, u0)‖Xα)θ)

and, consequently,

lim sup
t→+∞

‖u(t, u0)‖Xα ≤ C(1 + (lim sup
t→+∞

‖u(t, u0)‖Xα)θ). (16)

Condition (16) ensures that z := lim supt→+∞ ‖u(t, u0)‖Xα satisfies inequality

z ≤ C(1 + zθ).

The latter yields the estimate

lim sup
t→+∞

‖u(t, u0)‖Xα ≤ z0, (17)

where z0 > 0 solves the equation C(1 + zθ)− z = 0.
As a consequence of (15), z0 is independent of u0 ∈ V . The proof is complete.

Let {T (t)} be a semigroup on a metric phase space V . Following [HA], recall that
{T (t)} is point dissipative if there is a bounded subset B0 of V which attracts points of
V ; i.e.

∀v∈V distV (T (t)v,B0)→ 0, as t→ +∞.

A set A ⊂ V is called positively invariant if T (t)A ⊂ A for all t ≥ 0. A is an invariant
set if T (t)A = A for t ≥ 0. A compact invariant set A is a global attractor for {T (t)} in
V if A attracts bounded subsets of V . The latter means that

∀B⊂V, B bounded sup
x∈T (t)B

inf
y∈A

distV (T (t)B,A)→ 0, as t→ +∞.
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Corollary 1. Let the assumptions of Theorem 2 hold. If for u0 ∈ V each global
mild Xα-solution to (1) is unique and V ⊂ Xα is closed and positively invariant, then
the problem (1) generates a continuous semigroup T (t) : V → V , t ≥ 0, of global mild
Xα-solutions which has a global attractor in V .

Proof. Setting T (t)u0 := u(t, u0), u0 ∈ V , we shall show that T (t) : V → V is a
continuous semigroup, that is: (i) T (0) = Id on V , (ii) T (t + s) = T (t)T (s) for t, s ≥ 0,
(iii) For arbitrary t ≥ 0 the mapping T (t) : V → V is continuous in the Xα-norm.

Fulfillment of conditions (i) and (ii) is a consequence of (2), uniqueness of the solution
and the property that u ∈ C([0, σ), Xα) for arbitrary σ > 0 (cf. [L-M, p. 278]). We need
only explain that the condition (iii) is satisfied.

Let {un} ⊂ V , un → u0 in Xα. Following the proof of Theorem 1 one may show that
{T (t)un, n ∈ N} is equicontinuous on [η, τ ] in Xα, for each 0 < η < τ < +∞ (cf. [L-M,
Lemma 7]). Moreover, since un → u0 in Xα, it is easy to see that {T (t)un, n ∈ N} is
equicontinuous at t = 0 in Xα. We shall next observe that {T (t)un, n ∈ N, t ∈ [η, τ ]} is
precompact in Xα for each 0 < η < τ < +∞. In particular, the maps T (t) are compact
in Xα for arbitrarily fixed t > 0. Indeed, estimating in (2) with the aid of [HE, Theorem
1.4.3], we find:

‖u(t, u0)‖Xα+ε ≤ cε
e−at

tε
‖u0‖Xα +

∫ t

0

cα+ε
e−a(t−s)

(t− s)α+ε
‖F (u(s, u0))‖Xds, (18)

where ε > 0 and α+ ε < 1. Using (6) we obtain

sup
t∈[0,τ ]

tε‖T (t)u0‖Xα+ε ≤ const.(τ,R), ‖u0‖Xα ≤ R.

This shows that {T (t)u0, ‖u0‖ ≤ R, η ≤ t ≤ τ}, as a bounded subset of Xα+ε (ε > 0,
α+ε < 1) is precompact in Xα (cf. [HE, Theorem 1.4.8]). In particular, T (t) : Xα → Xα

is a compact map for each t > 0.
The above considerations allow us to use the Ascoli-Arzela theorem. Let {ξk}k∈N

be a sequence of nonnegative numbers dense in [0,+∞). If {un′} is any subsequence of
{un}, then based on the above considerations one may choose a diagonal subsequence
{un′′} of {un′} such that T (ξk)un′′ is convergent in Xα for each k ∈ N . Since the family
{T (·)un′′} is equicontinuous on compact subintervals of (0,+∞), there is an element
v ∈ C((0,+∞), Xα) such that T (t)un′′ → v(t) uniformly on compact subintervals of
(0,+∞). Since also {T (·)un′′} is equicontinuous at 0, v(h)→ u0 as h→ 0+, which ensures
that v ∈ C([0,+∞), Xα). Passing to the limit in the integral equation (2) written for
initial data un′′ we deduce the formula:

v(t) = e−Atu0 +
∫ t

0

e−A(t−s)F (v(s))ds, t ≥ 0.

Therefore, by uniqueness,
v(t) = T (t)u0, t ≥ 0.

The above considerations show that from each subsequence {un′} of {un} one may choose
a subsequence {un′′} such that, for any t ≥ 0, T (t)un′′ → T (t)u0 in Xα. Consequently,
T (t)un converges to T (t)u0 in Xα, which ensures that the maps T (t) : V → V , t ≥ 0, are
continuous.
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Finally, under condition (8), the continuous semigroup {T (t)} is point dissipative in
V whereas the estimate (6) guarantees that orbits of bounded sets are bounded. By [LA,
Theorem 2.2], {T (t)} possesses a global attractor in V . The proof is complete.

For slowly growing nonlinearities the existence of a global attractor will be shown
without assuming the condition (H). We then have:

Corollary 2. Let the Assumption (A) hold, α ∈ (0, 1), and let F : Xα → X satisfy
the condition

‖F (v)‖X ≤ const.(1 + ‖v‖θXα), for v ∈ Xα, (19)

with some θ ∈ [0, 1) and const. independent on v. Let further, for u0 ∈ W , each global
mild Xα-solution to (1) be unique, where W ⊂ X is closed and positively invariant.
Then the problem (1) generates a C0-semigroup S(t) : W → W , t ≥ 0, of global mild
Xα-solutions which has a global attractor in W .

Proof. Based on Proposition 2 the existence of a compact C0-semigroup {S(t)} on
W is straightforward (cf. [L-M, Remark 2]). It thus suffices to prove that {S(t)} is point
dissipative.

For u0 ∈W the integral equation written for S(1)u0 has the form

S(t)S(1)u0 = e−AtS(1)u0 +
∫ t

0

e−A(t−s)F (S(s)S(1)u0)ds, t > 0,

where S(1)u0 ∈ Xα. As in Theorem 2 we obtain that the orbit of each point enters to
and remains inside a fixed ball in Xα. Therefore, {S(t)} is point dissipative in W , which
completes the proof.

4. Applications

Example 1 (General semilinear initial boundary value problem). We first describe
a large class of problems for which Proposition 1 is applicable. There will be the initial
boundary value problems of the type:

ut = −Au+ f(x, dm0u), (t, x) ∈ R+ × Ω,
B0u = B1u = . . . = Bm−1u = 0 on ∂Ω,
u(0, x) = u0(x) in Ω,

(20)

with 2m-th order uniformly strongly elliptic operator A (cf. [FR, p. 2]) and continuous
function f : Ω×Rd0 → R. Here Ω is a bounded domain in Rn and dm0u, m0 ≤ 2m− 1,
denotes the vector (u, ∂u∂x1

, . . . , ∂u∂xn ,
∂2u
∂x2

1
, . . . , ∂

m0u
∂x
m0
n

) of the spatial partial derivatives of u

of order less or equal m0; consequently, d0 = (n+m0)!
n!(m0)! .

Whenever (A, {Bj},Ω) forms a regular elliptic boundary value problem, equation (20)
admits abstract formulation (1) with A sectorial, positive in X = Lp(Ω) (p ∈ (1,+∞))
and such that the resolvent of A is compact (cf. [FR, p. 101]).

If we set α ∈ [0, 1) and 2mα− n
p > m0, then Xα ⊂ Cm0(Ω) (cf. [HE, p. 39]). For such

a choice of parameters, if u varies in a bounded subset of Xα, then the argument dm0u

will vary in a bounded subset of Rd0 . Since f is uniformly continuous on compact sets
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Ω× [−M,M ]d0 , the values of

F (u) = f(·, dm0u(·))
will be bounded in C0(Ω), and hence also in Lp(Ω). Therefore, the assumptions of Propo-
sition 1 hold and the existence of local mild Xα-solutions to (20) follows.

Example 2. Consider now special case of (20), the diffusion equation with strong
absorption term: 

ut = ∆u− λ|u|θ, λ > 0, θ ∈ (0, 1),
u = 0 on ∂Ω,
u(0, x) = u0(x) in Ω.

(21)

For α ∈ [0, 1), p ∈ [2,+∞) satisfying 2α > n
p , Proposition 2 ensures the existence of a

global mild Xα-solution u(·, u0) through each u0 ∈ Lp(Ω). Following [L-M, Theorem 2],
such a solution is a limit of a sequence uzn = u(·, zn) of global mild Xα-solutions such
that ‖zn − u0‖Lp(Ω) → 0 and {zn} ⊂ Xα.

Let ∂Ω be of class C2+ε, ε > 0, and define

D+ = {φ ∈ C2+ε(Ω); φ|∂Ω = 0,∆φ|∂Ω = 0, φ ≥ 0}.

As shown in [DL, Theorem 1], for z ∈ D+, the problem (21) possesses a unique positive
Hölder solution vz = vz(t, x). That is, there exists a unique vz ≥ 0 satisfying (21) in the
classical sense and such that vz ∈ C1+ ε

2 ,2+ε([0, τ ]× Ω) for each τ > 0. It is clear that vz
may be treated as an element of C1((0,+∞), X)∩C([0,+∞), Xα). In particular, vz is a
global mild Xα-solution to (21).

Choose u0 ∈W := clLp(Ω)D
+. Following [L-M, Theorem 2], a global mild Xα-solution

through u0 may be thus obtained as the limit of the sequence {vzn(t, ·)} of Hölder solutions
through zn ∈ D+, where zn → u0 in Lp(Ω). If zn, wn ∈ D+ and vzn , vwn are corresponding
nonnegative Hölder solutions to (21), then

(vzn − vwn)t = ∆(vzn − vwn)− λ(vθzn − v
θ
wn). (22)

Multiply (22) in L2(Ω) by (vzn − vwn), integrate by parts and use the condition

sgn(vθzn − v
θ
wn) = sgn(vzn − vwn),

to get an estimate

‖vzn(t, ·)− vwn(t, ·)‖L2(Ω) ≤ ‖zn − wn‖L2(Ω), zn, wn ∈ D+, t ≥ 0.

This shows the uniqueness of the limit solution v(·, u0) through u0 ∈ W . In particular
the problem (21) generates on W a C0-semigroup {T (t)} of global mild Xα-solutions. As
a consequence of Corollary 2, {T (t)} possesses a global attractor A in W . Indeed, since

‖F (v)‖Lp(Ω) = ‖|v|θ‖Lp(Ω) = ‖v‖θLpθ(Ω), v ∈ L
p(Ω),

condition (19) follows as a result of Sobolev inclusions Xα ⊂ Lp(Ω) ⊂ Lpθ(Ω) where
θ ∈ (0, 1) and α ∈ [0, 1).

Remark 2. We remark that W = clLp(Ω)D
+ is the cone of nonnegative elements of

Lp(Ω). Also, in this example the attractor A is trivial. Moreover, bounded subsets of W
are absorbed by {0} in a finite time (cf. [DL, Theorem 2]). We finally recall that, as a
result of [PA 1, Theorem 5.2], mild solutions considered above in Example 2 are actually
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strong solutions of the abstract sectorial differential equation corresponding to (21). That
is, u(t, u0) is strongly continuously differentiable for t > 0, u(t) ∈ D(A) for t > 0, and
u(t)→ u0 in X as t→ 0+.
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