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1. Introduction. The aim of this note is to indicate how inequalities concerning the
integral of |∇u|2 on the subsets where |u(x)| is greater than k (k ∈ IR+) can be used
in order to prove summability properties of u (joint work with Daniela Giachetti). This
method was introduced by Ennio De Giorgi and Guido Stampacchia for the study of the
regularity of the solutions of Dirichlet problems.

In some joint works with Thierry Gallouet, inequalities concerning the integral of
|∇u|2 on the subsets where |u(x)| is less than k (k ∈ IR+) or where k ≤ |u(x)| < k + 1
were used in order to prove estimates in Sobolev spaces larger than W 1,2

0 (Ω) for solutions
of Dirichlet problems with irregular data.

2. Integral inequalities and summability of u. I recall the following regularity
theorem by Guido Stampacchia concerning solutions of linear Dirichlet problems.

Let Ω be a bounded subset of IRN (N > 1). Consider a bounded elliptic matrix A(x)
and a function f which belongs to Lq(Ω), q > 2N

N+2 and the related boundary value
problem

u ∈ H1
0 (Ω) : −div(A(x)Du) = f(x).

Guido Stampacchia proved that:{
q > N

2 ⇒ u ∈ L∞(Ω) ;
2N
N+2 < q < N

2 ⇒ u ∈ Lq∗∗(Ω), q∗∗ = (q∗)∗ = qN
N−2q .

If the matrix A is symmetric, the solution u of the previous equation can be seen as
the unique minimum on H1

0 (Ω) of the functional

J(v) =
1
2

∫
Ω

A(x)∇v∇v −
∫
Ω

f v, v ∈ H1
0 (Ω).
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Thus, the Stampacchia regularity theorem can be stated in the following way: if f ∈ Lq(Ω)
and q > N

2 , the minimum u of J belongs to L∞(Ω), if 2N
N+2 < q < N

2 , the minimum
belongs to Lq

∗∗
(Ω). The Stampacchia method uses as important tool, in both cases, the

test function u− Tk(u), where Tk(u) is the truncation at the levels +k and −k.

In order to prove the Ls-estimate of solutions to some variational problems (minima
of integral functionals, solutions of nonlinear elliptic equations), our main tool is Lemma
2.3, below. Closely related ideas are contained in the work of Guido Stampacchia, who
earlier established regularity results in Marcinkiewicz spaces (and then in Ls, in the linear
setting) using integral inequalities (Lemma 2.2).

Recall that (p = 2 for sake of simplicity):

Lemma 2.1 [G. Stampacchia]. Let u ∈W 1,2
0 (Ω), ϕ ∈ Lr(Ω), r > N

2, satisfy

∫
{x∈Ω:|u(x)|≥k}

|∇u|2 ≤
[ ∫
{x∈Ω:|u(x)|≥k}

ϕ
2N

N+2

]N+2
N

.

Then u is bounded.

Lemma 2.2 [G. Stampacchia]. Let u ∈W 1,2
0 (Ω), ϕ ∈Mr(Ω), 2N

N+2 < r < N
2, satisfy

∫
{x∈Ω:|u(x)|≥k}

|∇u|2 ≤
[ ∫
{x∈Ω:|u(x)|≥k}

ϕ
2N

N+2

]N+2
N

.

Then u belongs to Mr∗∗(Ω).

As important consequence, thanks to the combined use of the previous lemma and
the linear interpolation, Guido Stampacchia proved that, if u is the solution of a linear
elliptic boundary value problem with right hand side f(x), with f in Lr(Ω), then u

belongs to Lr
∗∗

(Ω).

We proved the following lemma.

Lemma 2.3. Let u ∈W 1,2
0 (Ω), ϕ ∈ Lr(Ω), 2N

N+2 < r < N
2, satisfy

∫
{x∈Ω:|u(x)|≥k}

|∇u|2 ≤
[ ∫
{x∈Ω:|u(x)|≥k}

ϕ
2N

N+2

]N+2
N

.

Then u belongs to Lr
∗∗

(Ω).

Sketch of the proof. The previous inequality implies that, for every k > 0,

k2γ−1

∫
{x∈Ω:|u(x)|≥k}

|∇u|2 ≤ k2γ−1

[ ∫
{x∈Ω:|u(x)|≥k}

ϕ
2N

N+2

]N+2
N

.
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Then we use that
∞∑
k=0

k2γ−1

∫
{x∈Ω:|u(x)|≥k}

Ψ =
∞∑
k=0

k2γ−1
∞∑
j=k

∫
{x∈Ω:j≤|u(x)|<j+1}

Ψ

=
∞∑
j=0

∫
{x∈Ω:j≤|u(x)|<j+1}

Ψ
j∑

k=0

k2γ−1 ≤ c+ c

∫
Ω

ψ |u|2γ .

As a consequence of the previous lemma we proved the following regularity results.

Theorem 2.4. Consider the nonlinear boundary value problem

u ∈ H1
0 (Ω) : −div(a(x, u,∇u)) = f(x),

where f belongs to Lq(Ω), 2N
N+2 < q < N

2 . Under standard assumptions on a, u belongs
to Lq

∗∗
(Ω).

Moreover

Theorem 2.5. Under standard assumptions on j, the minima u of the functional

(∗∗) J(v) =
∫
Ω

j(x, v,∇v)−
∫
Ω

f v, v ∈ H1
0 (Ω).

belong to Lq
∗∗

(Ω), if f belongs to Lq(Ω), 2N
N+2 < q < N

2 .

Developments of our method ([3]) can be found in [5] (regularity of minimizing se-
quences), in [6] (local regularity of minima of functionals), and in [4] and [7] (parabolic
equations: global or local case).

3. Integral inequalities and estimates in Marcinkiewicz spaces. Integral ine-
qualities of the type ∫

{x∈Ω:|u(x)|<k}

|∇u|2 ≤ c0 k

arise in Dirichlet problems with irregular data (e.g. right hand side measures) and have
been used to give estimates in Marcinkiewicz spaces on u and ∇u.

Lemma 3.1. Let u be such that, for every k > 0,∫
{x∈Ω:|u(x)|<k}

|∇u|2 ≤ c0 k.

Then u belongs to the Marcinkiewicz space M
N

N−2 (Ω) and ∇u belongs to the Marcinkiewicz
space M

N
N−1 (Ω).

Sketch of the proof. The Sobolev inequality implies that

c0 k ≥
(∫

Ω

|Tk(u)|2
∗
) 2

2∗

≥
( ∫
k<|u|

k2∗
) 2

2∗

= k2meas{k < |u|} 2
2∗ .
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Thus u ∈M
N

N−2 (Ω). Moreover

meas{h < |∇u|} ≤ meas{h < |∇u|, |u| ≤ k}+ meas{k < |u|} ≤ c1
k

h2
+ c2

1

k
N

N−2

and the estimate on ∇u follows by minimization on k.
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