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1. Introduction and Theorem. In the present paper we consider the time local
well-posedness in minimal regularity of the Cauchy problem for the coupled system of
nonlinear wave equations with different paropagation speeds in three space dimensions:

∂2
t u−∆u = f(u, ∂u, v, ∂v), t ∈ [−T, T ], x ∈ R3,(1.1)

∂2
t v − c2∆v = g(u, ∂u, v, ∂v), t ∈ [−T, T ], x ∈ R3,(1.2)

u(0, x) = u0(x), ∂tu(0, x) = u1(x),(1.3)

v(0, x) = v0(x), ∂tv(0, x) = v1(x),

where ∂t = ∂/∂t, c is a propagation speed of equation (1.2) with 0 < c < 1, T is the
existence time of local solutions with T > 0 and ∂ = (∂t,∇x). We assume that the
nonlinear functions f and g are quadratic with respect to (u, ∂u, v, ∂v). In the present
paper, we study the problem about what the least regularity of initial data is for the time
local well-posedness of (1.1)-(1.3).

Let D = F−1|ξ|F , where F and F−1 denote the Fourier transform and the inverse
Fourier transform, respectively. In order to make the setting of the above problem simple,
we consider the following three cases.
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(Case 0) Assume that f and g are any of the following functions f0j and g0j , j = 1, 2,
respectively.

f01 = uv, f02 = v2,

g01 = uv, g02 = u2.

(Case 1) Assume that f and g are any of the following functions f1j and g1j , j = 1, 2, 3,
respectively.

f11 = uDv, f12 = vDu, f13 = vDv,

g11 = uDv, g12 = vDu, g13 = uDu.

(Case 2) Assume that f and g are any of the following functions f2j and g2j , j = 1, 2,
respectively.

f21 = (Du)(Dv), f22 = (Dv)2,

g21 = (Du)(Dv), g22 = (Du)2.

Here, we give an example of the coupled system of nonlinear wave equations with
different propagation speeds. The following system is called the Klein-Gordon-Zakharov
equations, which appear in the plasma physics (see [7] and [27]).

∂2
t u−∆u+ u = −nu, x ∈ R3,

∂2
t n− c2∆n = ∆|u|2, x ∈ R3,

where 0 < c < 1. If we put v = D−1n, then the above system is transformed into
(1.1)-(1.2) with f = −u(Dv)−u and g = −D(|u|2), whose local solvability can essentially
be reduced to that of (1.1)-(1.2) with f = f11 and g = g13. The above system was studied
in [21].

Remark 1.1. (i) In Cases 1 and 2, we can replace the nonlocal operator D by the
usual derivatives ∂t and ∂xj . It does not matter in our argument below at all.

(ii) We exclude the case that the nonlinear functions f and g are the terms consisting
only of (u,Du) and (v,Dv), respectively. Because such nonlinear terms have the same
property as in the case of c = 1.

Before we proceed to our problem, we briefly recall the known results for the case of
c = 1. Because those suggest what happens to our problem. For simplicity, we take the
following single equation:

∂2
t u−∆u = f(u,Du), t ∈ [−T, T ], x ∈ R3,(1.4)

(u(0), ∂tu(0)) = (u0, u1) ∈ Hs ⊕Hs−1.(1.5)

In [23], Ponce and Sideris proved that if f = u2, the Cauchy problem (1.4)-(1.5) is time
locally well-posed for s > 0, that if f = uDu, the Cauchy problem (1.4)-(1.5) is time
locally well-posed for s > 1, and that if f = (Du)2, the Cauchy problem (1.4)-(1.5) is
time locally well-posed for s > 2. Their proof in [23] is based on the Strichartz estimate
and the standard energy estimate (for the Strichartz estimate, see, e.g., [24], [22], [20]
and [9]). On the other hand, in [18] and [19], Lindblad proved that if f = u2, the Cauchy
problem (1.4)-(1.5) is ill-posed for s ≤ 0, that if f = u(∂t − ∂x1)u, the Cauchy problem
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(1.4)-(1.5) is ill-posed for s ≤ 1, and that if f = ((∂t − ∂x1)u)2, the Cauchy problem
(1.4)-(1.5) is ill-posed for s ≤ 2. So it may safely be said that sj = j, 0 ≤ j ≤ 2 are
critical for f = u2, f = uDu and f = (Du)2, respectively, when we consider the time
local well-posedness of (1.4)-(1.5).

Remark 1.2. (i) As is suggested by the proof of Ponce and Sideris [23], the breakdown
of the Strichartz estimate for the limiting case causes the ill-posedness in a low regularity
space (see also the introduction in [14]).

(ii) For the solution u of (1.4)-(1.5), we take the following scaling:

uη = ηαu(ηt, ηx), η > 0.

If f = u2 and α = 2, uη also satisfies equation (1.4) and ‖uη(0)‖Ḣ−1/2 + ‖∂tuη(0)‖Ḣ−3/2

is invariant for any η > 0. If f = uDu and α = 1, uη also satisfies equation (1.4) and
‖uη(0)‖Ḣ1/2 + ‖∂tuη(0)‖Ḣ−1/2 is invariant for any η > 0. If f = (Du)2 and α = 0, uη
also satisfies equation (1.4) and ‖uη(0)‖Ḣ3/2 + ‖∂tuη(0)‖Ḣ1/2 is invariant for any η > 0.
Here, Ḣs denotes the homogeneous Sobolev space of order s (for the precise definition of
this space, see, e.g., [3]). Accordingly, the scaling suggests that sc = −1/2, 1/2, 3/2 are
critical for f = u2, f = uDu and f = (Du)2, respectively. However, sc are not really
critical in the case of nonlinear wave equations, as described above.

(iii) In a series of their papers [14]-[16], Klainerman and Machedon show that if the
nonlinearity satisfies the null condition, the time local well-posedness of (1.1)-(1.3) holds
even for sc < s ≤ sj . Because the null condition compensates the breakdown of the
Strichartz estimate for the limiting case. Their results suggest that a special structure of
nonlinearity could recover the Strichartz estimate of the limiting case, which would lead
to the time local well-posedness in a low regularity space.

So the following question naturally arises: Can the discrepancy of propagation speeds
compensate the breakdown of the Strichartz estimate for the critical regularity s = sj?
Regarding this question, we have the following theorem.

Theorem 1. Assume that

(u0, u1), (v0, v1) ∈ Hs ⊕Hs−1.

(i) (Case 0) If g 6= g02, then the Cauchy problem (1.1)-(1.3) is time locally well-posed
for s = 0.

(ii) (Case 1) If f 6= f12, then the Cauchy problem (1.1)-(1.3) is time locally well-posed
for s = 1.

(iii) (Case 2) If f 6= f21, then the Cauchy problem (1.1)-(1.3) is time locally well-posed
for s = 2.

Theorem 1 (ii) is proved in [26], [21] and [25]. In section 2, we state the bilinear
estimates needed for the proof of Theorem 1 and we also show that the bilinear estimates
corresponding to the cases excluded in Theorem 1 are false. These results show that the
discrepancy of propagation speeds is helpful for the proof of the time local well-posedness
in most nonlinearity, but that it is not helpful in certain nonlinearity.
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2. Sketch of proof of Theorem 1. For b, s ∈ R and λ > 0, we define the spaces
Xλ,±
b,s as follows:

Xλ,±
b,s = {f ∈ S ′(R4); ‖f‖Xλ,±

b,s
<∞},

where

‖f‖Xλ,±
b,s

=
(∫

R4
(1 + |τ ± λ|ξ||)2b(1 + |ξ|)2s|f̂(τ, ξ)|2 dτdξ

)1/2

.

We put

〈f, g〉 =
∫
R4
f(t, x) g(t, x) dtdx.

The spacesXλ,±
b,s are introduced by Bourgain [4] and [5] to study the nonlinear Schrödinger

equation and the KdV equation. The Fourier restriction norm method developed by Bo-
urgain was simplified and improved for the one dimensional case by Kenig, Ponce and
Vega [11] and [12]. Recently, this method has been applied to various nonlinear disper-
sive wave equations (see, e.g., [1], [2], [6], [10], [11] and [13]). The related method was
developed by Klainerman and Machedon [14]-[17] for the nonlinear wave equations.

The crucial part of proof of Theorem 1 is essentially redeuced to Proposition 2 below.
In fact, once we have Proposition 2, we can prove Theorem 1 by the contraction argument
(for the scheme of the Fourier restriction norm method, see, e.g., Bourgain [5, 6], Kenig,
Ponce and Vega [11, 12] and Klainerman and Machedon [15]).

Proposition 2. (i) Assume that 0 < a < 1/2 < b < 1 ,and λ > 1 or 0 < λ < 1. Let
a and b be close enough to 1/2. Then the following inequalities hold.

|〈w, vu〉| ≤ C‖w‖Xλ,ja,0
‖v‖X1,k

b,0
‖u‖Xλ,l

b,1
,(2.1)

|〈w, vu〉| ≤ C‖w‖X1,j
a,0
‖v‖Xλ,k

b,0
‖u‖Xλ,l

b,1
,(2.2)

where j, k and l denote either of + or − sign. Furthermore, if λ < 1, we have the
following inequalities.

(2.3) |〈w, vu〉| ≤ C‖w‖Xλ,ja,0
‖v‖Xλ,k

b,0
‖u‖X1,l

b,1
,

where j, k and l denote either of + or − sign.
(ii) Assume that λ > 1 and s ≤ 1. Let a and b be arbitrary real numbers. Then, the

following inequalities are false.

|〈w, vu〉| ≤ C‖w‖Xλ,j
a,1−s
‖v‖Xλ,k

b,s−1
‖u‖X1,l

b,s
,(2.4)

|〈w, vu〉| ≤ C‖w‖X1,j
a,1−s
‖v‖X1,k

b,s−1
‖u‖X1,l

b,s
,(2.5)

where j = k = l = + or −.

Remark 2.1. (i) Proposition 2 (i) gives the estimates needed for the proof of Theorem
1 (ii), that is, for Case 1. For Case 2, if we differentiate equations (1.1) and (1.2), the
estimate in L2 of nonlinear terms of the resulting equations can be redeuced to the
estimate of Case 1. This gives the estimate in H1 of the original nonlinear terms and so
this shows the estimate in H2 of solution for Case 2. Therefore, Proposition 2 (i) also
implies the estimates needed for the proof of Theorem (iii). After a slight modification of
Proposition 2 (i), we have Theorem (i) by the duality argument.
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(ii) The breakdown of (2.4) suggests that the discrepancy between propagation speeds
is not always helpful for the proof of the well-posedness. The breakdown of (2.5) cor-
responds to the counterexamples by Lindblad [18] and [19] for the case of the single
equation.

Proof of Proposition 2. The proof of part (i) can be found in [21] and [25] and so we
omit it. We consider part (ii). We first prove the failure of estimate (2.4) for the case of
j = k = l = −. The proof for the + sign case is the same as in the − sign case.

Let N be a natural number to be chosen large enough later. Let Cj , 1 ≤ j ≤ 4 be
four sufficiently large positive numbers. We put θλ = cos−1 (1/λ), 0 < θλ < π/2. For
ξ = (ξ̃1, ξ̃2, ξ̃3) ∈ R3, let θ be an angle between ξ and the ξ̃3 axis. Let û denote the Fourier
transform in both time and spatial variables of u. We define v̂(τ, ξ), û(τ, ξ) and ŵ(τ, ξ)
as follows.

v̂(τ, ξ) =

 |ξ|
−2, 2N/2 ≤ |ξ| ≤ 2N , θλ − |ξ|−1 ≤ θ ≤ θλ + |ξ|−1,

|τ − |ξ|| ≤ 1,
0, otherwise,

û(τ, ξ) =

 1, 4N − C12N ≤ |ξ| ≤ 4N + C22N , 0 ≤ θ ≤ C32−N ,
|τ − λ|ξ|| ≤ C4,

0, otherwise,

ŵ(τ, ξ) =


1, ξ = (ξ̃1, ξ̃2, ξ̃3), 4N − 2N ≤ ξ̃3 ≤ 4N ,

√
ξ̃21 + ξ̃22 ≤ 2N ,

|τ − λ|ξ|| ≤ 1,
0, otherwise.

We also define the relation f(τ, ξ;N) ∼ g(τ, ξ;N) as follows: For some C0 > 0 independent
of τ , ξ and N ,

C−1
0 |f(τ, ξ;N)| ≤ |g(τ, ξ;N)| ≤ C0|f(τ, ξ;N)|.

We now show that

(2.6) û(τ − τ1, ξ − ξ1) = 1, (τ, ξ) ∈ supp ŵ, (τ1, ξ1) ∈ supp v̂.

In fact, we note that

(2.7) λ|ξ| − λ|ξ − ξ1| − |ξ1| =
−(2λ|ξ||ξ1|(1− λ cos θ̃) + (λ2 − 1)|ξ|2)

λ|ξ| − |ξ1|+ λ|ξ − ξ1|
,

where θ̃ is an angle between ξ and ξ1. We also note that |θ̃−θλ| ∼ |ξ1|−1 for (τ, ξ) ∈ supp ŵ
and (τ1, ξ1) ∈ supp v̂. Accordingly, we have by the definitions of ŵ and v̂

|τ − τ1 − λ|ξ − ξ1|| ≤ |τ − λ|ξ||+ |τ1 − |ξ1||+ |λ|ξ| − λ|ξ − ξ1| − |ξ1|| ≤ C

for (τ, ξ) ∈ supp ŵ and (τ1, ξ1) ∈ supp v̂. Furthermore, we note that ||ξ| − 4N | ≤ C2N

for (τ, ξ) ∈ supp ŵ and that |ξ1| ≤ C2N for (τ1, ξ1) ∈ supp v̂. Hence, we easily see that

4N − C2N ≤ |ξ − ξ1| ≤ 4N + C2N , 0 ≤ θ ≤ C2−N

for (τ, ξ) ∈ supp ŵ and (τ1, ξ1) ∈ supp v̂, where θ is the angle between the vector ξ − ξ1
and the third axis. These show (2.6).
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We put I(τ, ξ) = û ∗ v̂. Here and hereafter, ∗ denotes the convolution with respect to
the time and the spatial variables. For (τ, ξ) ∈ supp ŵ, we have by (2.6)

I(τ,ξ) =
∫
R4
û(τ − τ1, ξ − ξ1) v̂(τ1, ξ1) dτ1dξ1

∼
∫ 2N

2N/2

∫ θλ+|ξ1|−1

θλ−|ξ1|−1
|ξ1|−2 sin θ dθ |ξ1|2 d|ξ1|

∼
∫ 2N

2N/2
|ξ1|−1 d|ξ1| =

N

2
log 2 ∼ N.

Therefore, we obtain

(2.8) 〈ŵ, û ∗ v̂〉 ∼ (2N )2 × (2N )×N ∼ N(2N )3.

On the other hand, simple calculations yield

‖(1 + |τ − λ|ξ||)b(1 + |ξ|)1−sŵ‖L2(2.9)

∼ [(4N )2(1−s) × (2N )2 × (2N )]1/2 ∼ (2N )3/2+2(1−s),

‖(1 + |τ − λ|ξ||)a(1 + |ξ|)s−1û‖L2(2.10)

∼ [(4N )2(s−1) × (4N )2 × (2N )× (2−N )2]1/2 ∼ (2N )3/2+2(s−1).

In addition, if s = 1, we have

‖(1 + |τ − λ|ξ||)a(1 + |ξ|)v̂‖L2(2.11)

∼
[∫ 2N

2N/2

∫ θλ+|ξ1|−1

θλ−|ξ1|−1
|ξ1|−4 sin θ dθ (1 + |ξ1|)2|ξ1|2 d|ξ1|

]1/2
∼
[∫ 2N

2N/2
|ξ1|−1 d|ξ1|

]1/2
= [

N

2
log 2]1/2 ∼ N1/2.

If s < 1, we have

‖(1 + |τ − λ|ξ||)a(1 + |ξ|)sv̂‖L2(2.12)

∼
[∫ 2N

2N/2

∫ θλ+|ξ1|−1

θλ−|ξ1|−1
|ξ1|−4 sin θ dθ (1 + |ξ1|)2s|ξ1|2 d|ξ1|

]1/2
∼
[∫ 2N

2N/2
|ξ1|−1−2(1−s) d|ξ1|

]1/2
∼ 2−N(1−s)/2.

Therefore, if (2.4) is true, we must have by the Plancherel theorem and (2.8)-(2.12)

(2N )3N ≤ C(2N )3 ×
{
N1/2, s = 1,
2−N(1−s)/2, s < 1.

where C is a positive constant independent of N . But this inequality fails as N → ∞,
which is a contradiction to the validity of (2.4).

We can prove the failure of (2.5) similarly and so we briefly describe how to adjust
the above proof to the case of (2.5). Let û and ŵ be as in the above proof of failure of
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(2.4) except for λ = 1. We take θλ = 0 and we define v̂ as follows.

v̂(τ, ξ) =

 |ξ|
−2, 2N/2 ≤ |ξ| ≤ 2N , 0 ≤ θ ≤ |ξ|−1/2,

|τ − |ξ|| ≤ 1,
0, otherwise.

Then (2.7) is replaced by

(2.13) |ξ| − |ξ − ξ1| − |ξ1| =
−(2|ξ||ξ1|(1− cos θ̃))
|ξ| − |ξ1|+ |ξ − ξ1|

,

where θ̃ is an angle between ξ and ξ1. Here we note that |1− cos θ̃| ∼ |ξ1|−1 for (τ, ξ) ∈
supp ŵ and (τ1, ξ1) ∈ supp v̂. Hence, the absolute value of the right hand side of (2.13)
is bounded by a constant independent of τ , ξ, τ1 and ξ1 for (τ, ξ) ∈ supp ŵ and (τ1, ξ1) ∈
supp v̂. The rest of the proof of failure of (2.5) is the same as above.
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