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We consider the Einstein-Boltzmann system [1, 2]:

P foa = Tlup!p" f i = QU f), (1.1)
G,uu = 11;/,1/7 (12)

THY — v |g|1/2
= [ p'p"f(t,x,p)
Po

where Q(f, f) is the collision operator and TH" is the energy-momentum tensor. The
first equation (1.1), called the Boltzmann equation, determines the distribution function
f(t,x,p) of gas particles. To describe f we need a submanifold P(M) of the tangent
bundle T'M of the pseudoriemannian manifold M which is defined by the constraint:

Py(p) : g2(p,p) = gappr®p’ =1 (o, 6=0,1,2,3), (2)
where g, is a metric of M given by the Einstein equations (1.2). Then f: P(M) — R.

We assume that the spacetime is spatially homogeneous and isotropic. The symmetry
implies that the metric simplifies to the form

ds* = dt* — R*(t)((dz*)* + (dz?)* + (dz®)?), (3)
where R(t) > 0 and the distribution function f(¢, %, p) does not depend on x and depends

only on p = |p| (f(t,Z,p) = f(t,p))-
We consider the initial value problem in such a case. The aim of this paper is to show

dp, (1.3)

a global in time mild solution. For the proof we use methods similar to ones applied for
the classical spatially homogeneous Boltzmann equation [4].

Local in time results for the Einstein-Boltzmann system in a general case have been
considered in [1, 3, 6].
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With the above assumptions, the Einstein-Boltzmann system reads [1, 2]:

R 1

fo—2ppfy=5QU f), (4.1)
. 2
(g) = Too, (4.2)
where
/f (t, p)p°dp, (4.3)
Qf,9) =Q*(f,9) —Q (f.9), (4.4)
QH(fg) = [ 4 [ s 6h)old)S0.0.5.0). (4.5)
R
- B R3dz7 _

@ (fo)= [ TE [ dorwle@Se.00.7) (4.6)
P=p—(w,p—qw, (4.7)
7 =q+ w,p—qw, (4.8)
p’ =1+ R2p2, (4.9)
0<S(,-,-,)<Ch, (4.10)

where w € S2, O is constant and S(p, q,p’,q’) is the cross section for the collisions.
We examine the initial value problem for system (4) with initial data:

R(0) =Ry >0, 0= f(0,p) = fo(p) = folp) € L'(R?). ()

Because of (4.2) the above initial data do not ensure uniqueness. We have to add the
extra initial condition R(0) < 0 or R(0) > 0

First we define the mild solution to system (4). To reach our aim we have to reformu-
late the problem. For the Boltzmann equation (4.1) we apply the characteristic method.
Thus we solve the following system

D) _ 5By, (6.1
H(ty) 1
dt - pTQ(fv f)(tvy)7 (62)

where
P’ =1+ R (1)p*(t,y).
Equation (6.1) gives the characteristic:

plt) = Lo )

It’s easily seen that the jacobian of the transformation p — y is equal to:

o (3) - (28
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In (¢,y) coordinates we have

4 6
P’ =po=4/1+ IR;((?; y? and Ty = ]Ize,(((z))/fpody. (8)

From (6.2) and from the property of the collision operator ([ Q(f, f)dy = 0, see [3]) we
get

R%(0) odf
/R?’(t)podtdy

So by (8) we obtain

O

d
—T 3— T d_ =0. 9
gp oo + 00 + 5(7) Y 9)
Setting L = %, from (4.2) and (9) we get
R*(0) 2
RG(O) RZ(1) Yy
L L2 dij = 0. 10

By (8) and (10) we have two 1nequahtles
L+%L2 <0 and L+2L? > 0.

Solving them we obtain

— <L) L ————.
oy +2t Ty T &t
By the definition of L we get

Notation

T = (J}l,l‘Q, 333),

0
U= Uy,

ox ’
Xr:{fEO: f(:v)dxgr},
R3

ul| = / fdg, [l = / Juldp.

RO(t) RO(t)
d7 - d7 = — .
The main result is the following theorem:
THEOREM. Let fo(p) € X, for r >0, Ry > 0, [p°fo(p)R3dp < oo and R(0) > 0.
Then the Cauchy problem for the system (4) has a unique global in time nonnegative mild
solution such that

f€C(0,00; L"(RY))



178 P. B. MUCHA

and R(-) is an increasing function satisfying the estimate

d d
R(0)exp { ———— b < R(t) < R(0) exp § ———=—
+ 2s 5
Too(o) T()()(O)

REMARK. This paper can be treated as an erratum to [7]. In eq. (4.1) in [7] there
should have been factor 2 in the second term of l.h.s. Therefore we cannot compute
explicitly R(t) ((10) and (11) in [7] are wrong). But since we have (11), all proofs of
lemmas and Proof of the Theorem from [7] are correct.

To prove the theorem we need some lemmas. Since R~! is a decreasing function, all
constants below are independent of time.

LEmMA 1. If f,g € X, then

| QT - plOQ+(g,g)H < NI — gl (12)
| SCNINIE plocng,g)H < NOIIf — gl (13)

and N(r) = Cqr.

LEMMA 2. For any r > 0 there exists n(r) > 0 such that the equation:
1
nu — EQ(u,u) = (14)

with v € X, has a unique nonnegative solution u belonging to L*(R?) for any n > n(r).
DEFINITION. Let R(n,Q) = (n — p%Q)’1 : X, — X, for n > n(r).
For R(n, Q) we prove the following estimates:

LEMMA 3. If g,h € X, and n > max{8N(r),1} then
1+¢
18(n, Q)gll < ——llgll, (15)

4N
where € = % and

1R(n, @)nu — R(n, Q)nwl| < Ni(r)l[u -], (16)
where N1(r) < 2.

DEFINITION. We define the Yosida approximation of the operator p%Q by
1
Qn =nR(n,Q)n—n= EQR(TL, Q)n. (17)

LEMMA 4. For Q,, defined by (17) we have lim,, oo Q, = I%Q in L'(R3).

The solution of the Boltzmann equation (6.2) will be approximated by the solution
of the equation on the intervals [to, to + t]:
to+t

fn(t0+t7y) :fn(t07y)+ Qn(fnvfn)(svy)ds (18)

to
LEMMA 5. There exists a unique solution f,(t,y) of equation (18) in C(tg,to +
L LYRP)) such that || fu(to + )] < 1551 fa(to)l] for 0 <t < 2 and § = 2207,

3n? n
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Proof of the Theorem. We can construct an approximation of the solution of the
Boltzmann equation (6.2) on the interval [0, 7] for any T > 0 and small § > 0. We take
ny = [AN(r)] + 1 = ko + 1, where [ is such that

AN(2 1
exp 2N Cr)

—. 1

ko S1-0 (19)

Then from Lemma 5 we get a unique solution of (18) on the interval [0,7}], where
T = i = W’ we denote this solution by f,,. By Lemma 5 we get for 0 <t < Ti:

1 1
[ fn[I(2) < WHJCOH < 1zlwﬂfoﬂ-

’I’Ll - (k0+1)2

Solving (18) with to = T} and greater n we obtain Ts etc.
Precisely, we construct Fy, - the approximation of the solution on [0, T7:
1. Fko|[0,T1] = f’nlv where ny = kO + ]-7 T] = mv fnl (07y) = fO(y) and

1
sup || fn, (O] < ——5z |1foll-
0<t<Ty " 1—%

2. Fiolir, 15) = fras where ng = ko +2, Ty = T1 + m, froa(Th,y) = fn, (Th,y) and

1
sup || fn, (t ||<HT(QT)||fo||~
nistsTy =11 Tt

T. Fk0|[TL 1,75 fnlaWhere n; = k0+iaE:Ti—1+mafni(E—lv ) fnl 1( i— 1ay)
and

sup Hf’rh |<H 4N(2r HfOH

Ti 1 <t<T; j= 11 = hods)2

nK- Fk0|[TK 1, Tr] = T, where ng = ko+ K, Tk = TK*l"”Wa an(TnK—uy) =
fric 1 (Tng_y,y) and

sup anK |<H 4N(2r HfOH

Tk 1<t<Tk j= 1 (k0+])2

where K is so large that Tk > T or 1K ;> T (it is always possible) and from

j=1 3(k0+j
(19) H] 1 W m ( Z% = 00 and Z n2 OO) And this lmphes that
(ko+3)
sup ||, || < 3= I1foll- (20)
te[0,T7]

Thus we have constructed Fj,. By Lemmas 1 and 4 we can show that for small fixed T

lim Fy, = f in C(0,T;L'(R?)),

ko— o0
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hence we have obtained the solution of (4). Since § > 0 can be arbitrarily chosen we get
sup || f(®)lly < [I£(O)]ly- (21)
te[0,T]

By (21) and (11) we can continue the solution in intervals [T, 2T, [2T,3T], ..., etc. Thus
we constructed the solution of (4) for any 7'
Proofs of the lemmas one can find in [7].
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