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Abstract. We study boundary value problems for quasilinear parabolic equations when
the initial condition is replaced by periodicity in the time variable. Our approach is to relate
the theory of such problems to the classical theory for initial-boundary value problems. In the
process, we generalize many previously known results.

1. Introduction. Let P be the quasilinear operator defined by

Pu = −ut + aij(X,u,Du)Diju+ a(X,u,Du)

for a positive definite matrix-valued function aij and a scalar-valued function a. In the
standard theory for such equations [7, 11], the usual problem to study is the initial-
boundary value problem

Pu = 0 in Ω, u = ϕ on SΩ,(1)

u = u0 on ω(2)
for some domain Ω ⊂ Rn+1 with lateral boundary SΩ and initial surface ω. (The usual
example for Ω is Ω = ω × (0, T ) in which case SΩ = ∂ω × (0, T ).) Alternatively, the
Dirichlet condition u = ϕ may be replaced by the nonlinear operator condition Nu = 0
with N defined by

Nu = b(X,u,Du)
and N is assumed to be an oblique derivative condition, that is

∂b

∂p
(X, z, p) · γ > 0

where γ is the unit inner spatial normal to SΩ. (If Ω = ω × (0, T ), then γ is just the
inner normal to ω.) Under suitable general conditions on the functions aij , a, and b,
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it is well-known that (1), (2) has a solution, which is globally smooth under appropri-
ate compatibility conditions on the data. On the other hand, if we modify the initial
condition (2), such problems are largely unexplored.

In [13], we discussed the case in which the Dirichlet condition is prescribed on SΩ
and (2) is replaced by the periodic condition u(x, 0) = u(x, T ) for all x ∈ ω. In this paper,
we consider the corresponding periodic problem with an oblique derivative boundary
condition. Of course, this problem has been studied for some time [1, 4, 15, 17] (see
also the discussion in Section 3.5 of [20]), but those works are primarily concerned with
semilinear problems (so aij depends only on X and u, and b depends linearly on p). We
shall consider the more general structure indicated above, that is, we study the problem

Pu = 0 in Ω, Nu = 0 on SΩ, u(·, 0) = u(·, T ) in ω.(3)

Moreover, we shall show that, in the case of semilinear problems, the hypotheses in these
works can be relaxed. As in [13], we follow the basic idea from [16] of using a priori
estimates similar to those for initial-boundary value problems.

We present a priori estimates of solutions of (3) in Sections 2, 3, and 4 under general
structure conditions on the operators P and N . Specifically, we prove L∞ estimates
for the solutions in Section 2 and L∞ estimates for the gradients of the solutions are
given in Sections 3. Section 4 is concerned with Hölder gradients. These estimates form
the basis for our existence program, which we also present there. Section 5 gives an
application of our results to semilinear problems, in which case some of the estimates can
be derived more simply and some hypotheses can be relaxed. Finally, Section 6 discusses
the problem in one spatial dimension; again, this special structure makes the estimates
and corresponding existence result simpler.

We follow the notation in [11, 13] and we refer the reader to Section 2 of [13] for the
definition of periodic domains as well as for the definitions of the various function spaces.
In a future paper, we study problem (3) in a conormal form; this means that P can be
written in divergence form, that is,

Pu = −ut + divA(X,u,Du) +B(X,u,Du)

for some vector-valued function A and scalar-valued function B, that N has the form

Nu = A(X,u,Du) · γ + ψ(X,u)

for some scalar-valued function ψ (so N is oblique if P is parabolic), and that Ω =
ω× (0, T ) for some domain ω ⊂ Rn. (The significance of this last assumption is discussed
in [11, Section 6.10].)

In addition, we write λ(X, z, p) and Λ(X, z, p) for the minimum and maximum eigen-
values, respectively, of the matrix (aij(X, z, p)). We also write Γ = Ω × Rn × R, Γ′ =
SΩ×Rn ×R, and we write Γ′′ for the subset of Γ′ on which p · γ = 0.

2. Pointwise bounds. Our first step in the existence program is to prove a bound
in L∞ for solutions of (3). We begin with two cases that are immediate consequences of
known results.



QUASILINEAR PERIODIC PARABOLIC EQUATIONS 165

Lemma 2.1. Let u be a solution of (3), and suppose that there are nonnegative con-
stants µ1 and µ2 and an increasing function M1 such that

(sgn z)a(X, z, p) ≤ λ(X, z, p)[µ1|p|+ µ2](4)

for all (X, z, p) ∈ Γ, and

(sgn z)b(X, z, p) < 0(5)

for all (X, z, p) ∈ Γ′ with |z| ≥M1(|p|). If SΩ ∈ H2, then sup |u| ≤ C(µ1, µ2,M1,Ω).

Proof. We follow the proof of [8, Lemma 3.1] using the strong maximum principle
as in [13, Lemma 3.3].

For our next lemma, we note (by combining the discussions from p. 51 of [8] and
Section 10.3 of [11]) that if SΩ ∈ H2, then there is a function ρ ∈ C2,1(Ω) ∩ H2(Ω)
which vanishes on SΩ and is positive in Ω. We write ρ0 for the maximum of ρ, ρ1 for the
maximum of |ρt|, and ρ2 for sup |D2ρ|.

Lemma 2.2. Let u be a solution of (3) with SΩ ∈ H2, and suppose that there are
nonnegative constants µ3 and M2 such that

b(X, z,−(sgn z)µ3γ)(sgn z) < 0(6)

for all (X, z) ∈ SΩ×R with |z| ≥M2 and

[ρ1 + ρ2Λ(X, z, p)]µ3 + (sgn z)a(X, z, p) < 0(7)

for all (X, z, p) ∈ Γ with |z| ≥M2 and |p| ≤ µ3. Then sup |u| ≤M2 + ρ0µ3.

Proof. Now we follow the proof of [8, Lemma 3.2] and use the strong maximum
principle.

For our general existence theory, we shall use a modification of Lemma 2.2 when a

has a special form and the operator P is uniformly parabolic.

Lemma 2.3. Let SΩ ∈ H1+α for some constant α ∈ (0, 1), let P have the form

Pu = aij(X,u,Du)Diju− u+ f(X),(8)

and suppose there are constants a0, M3, λ0, and Λ0, such that

Λ(X, z, p) ≤ Λ0, λ(X, z, p) ≥ λ0(9)

for all (X, z, p) ∈ Γ with |z| ≥M3,

|f | ≤ a0λ0d
α−1.(10)

Suppose also that there is a constant µ3 such that (6) holds for |z| ≥ M3. Then there is
a constant C determined only by a0, M3, λ0, Λ0, µ3, and Ω such that |u| ≤ C in Ω.

Proof. We first recall from [11, Section 4.5] that there is a proper regularized distance
ρ. This means that ρ/d is bounded above and below in Ω and that there is a positive
constant ε1 such that |Dρ| ≥ 1 wherever d < ε1. Moreover

|Dρ| ≤ 2 and |ρt|+ |D2ρ| ≤ C(Ω)dα−1 in Ω.
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Now we set v = −µ3ρ−Kρ1+α + v0 with

K =
(C(Ω)Λ0 + 1)µ3

λ0α
+
a0

2α
+ 1

and v0 a constant chosen so that supΩ(u−v) = 0. To prove an upper bound for u we need
only bound v0 from above, so we may assume without loss of generality that v0 ≥M3. As
in [8], it follows that the maximum cannot occur on SΩ. To study the interior maximum,
we define the operator L by Lw = −wt + aijDijw − w. If d < ε1, then we have

Lv ≤ −a0λ0ρ
α−1 + C(Ω)(Λ + 1)ρ2α−1 + µ3ρ+Kρ1+α − α(1 + α)λρα−1,

so Lv ≤ −f wherever d < ε for a suitably small constant ε. Once d ≥ ε, we have
Lv ≤ C1−v0 for some C1(a0, α, ε, λ0,Λ0, µ3). It follows that u−v cannot have an interior
maximum if v0 ≥ C1 and hence v0 ≤ C1. A lower bound for u is proved similarly.

3. Gradient estimates. The usual gradient bound is a local one (see e.g. [11, Section
13.3], [2], [19]), so these results can be applied to the periodic case. First, we apply [11,
Theorem 13.13] to the periodic case (although we point out that condition (13.49) there
should be replaced by the more general condition (12) below).

Theorem 3.1. Suppose that there are positive constants b0, b1, M , β0, λ, Λ, Λ1, Λ2,
and Λ3 such that aij and a satisfy

aijξiξj ≥ λ |ξ|2 ,
∣∣aij∣∣ ≤ Λ, |a| ≤ Λ1(1 + |p|2)(11)

for all (X, z, p) ∈ Γ,
±b(X, z, p′ ± β0(1 + |p′|)γ) > 0(12)

for all (X, z, p′) ∈ Γ′′,

|p|2
∣∣aijp ∣∣ + |p|

∣∣aijz ∣∣ +
∣∣aijx ∣∣ ≤ Λ2 |p| ,(13)

|p|2 |ap|+ |ax| ≤ Λ3 |p|3 ,(14)

|p| az ≤ Λ3 |p|2(15)

for all (X, z, p) ∈ Γ with |p| ≥M , and

|bp| ≤ b0bp · γ,(16)

|p|2 |bz|+ |p| |bx|+ |bt| ≤ b1 |p|3 bp · γ,(17)

for all (X, z, p) ∈ Γ′ with |p| ≥ M . If u ∈ C2,1(Ω) is a solution of (3) and if SΩ ∈ H3,
then there is a positive constant C determined only by b0, b1, n, β0, λ, Λ, Λ1, Λ2, Λ3,
Ω, and oscu such that supΩ |Du| ≤ C.

In fact, the regularity of SΩ can be relaxed to SΩ ∈ H2+α with α > 0 by using the
ideas at the end of [14, Section 3].

If we follow the approach in [19], we can remove the differentiability assumptions on
a and we can relax the smoothness of SΩ provided we assume more regularity for b. To
state the additional structure conditions, we introduce the vector differential operator δ
defined by δf(X, z, p) = fz(X, z, p)p+ fx(X, z, p).

Theorem 3.2. Suppose there are positive constants b0, b1, Λ1, Λ2, and Λ3 such that
aij and a satisfy (11) for all (X, z, p) ∈ Γ and (13) for all (X, z, p) ∈ Γ with |p| ≥ M .
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Suppose also that b satisfies (12) for all (X, z, p′) ∈ Γ′′ and (16), (17) for all (X, z, p) ∈ Γ′

with |p| ≥M . Suppose also that

|p′||bpp| ≤ b2bp · γ,(18)

|p|2|δbp|+ |p||δbz|+ |δbx| ≤ b2|p|3bp · γ(19)

for all (X, z, p) ∈ Γ′ with |p| ≥ M . If u ∈ C2,1(Ω) is a solution of (3) and if SΩ ∈ H2,
then there is a positive constant C determined only by b0, b1, b2, n, λ, Λ, Λ1, Λ2, Ω, and
oscu such that supΩ |Du| ≤ C.

We note here that some of the assumptions in Theorem 3.2 can be further weakened,
and we refer the interested reader to [19] for details.

4. Hölder gradient estimates and existence theorems. Since the usual Hölder
gradient estimates for quasilinear equations are local in nature, they immediately apply
to the periodic case. We shall quote the results in [11] because they are in a particu-
larly convenient form for our purposes. To state these results, we note that the equation
b(X,u,Du) = 0 can be rewritten as Du · γ = g(X,u,D′u) for a function g under suitable
hypotheses, in particular, if there is an increasing function h such that

±b(X, z, p′ ± h(|z|+ |p′|)γ) > 0(20)

for all (X, z, p′) ∈ Γ′′. This condition is satisfied, for example, if (12) holds. Moreover g
is uniformly Lipschitz with respect to p′ if |bp| ≤ Cbp · γ.

Theorem 4.1. Suppose there are positive constants a0, K, R, α, λ, λ0, Λ, µ, µ1 such
that SΩ ∈ H1+α,

aijξiξj ≥ λ |ξ|2 ,
∣∣aij∣∣ ≤ Λ,(21) ∣∣aijp ∣∣ ≤ λ0,(22)

|a| ≤ a0d
α−1(23)

for all (X, z, p) ∈ Γ with |z|+ |p| ≤ K, and

|gp′(X, z, p′)| ≤ µ,(24)

|g(X, z, p′)− g(Y,w, p′)| ≤ µ1(|X − Y |α + |z − w|α)(25)

for all (X, z, p′) and (Y,w, p′) in Γ′′ with max{|z| , |w|} + |p′| ≤ K. Suppose also that
there is a continuous, nonnegative increasing function ζ with ζ(0) = 0 such that∣∣aij((x, t), z, p)− aij((y, t), w, p)∣∣ ≤ ζ(|x− y|+ |z − w|)(26)

for all ((x, t), z, p) and ((y, t), w, p) in Γ with max{|z| , |w|} + |p| ≤ K. If u ∈ C2,1(Ω)
with Du ∈ C(Ω) is a periodic solution of

−ut + aij(X,Du)Diju+ a(X) = 0 in Ω(27)

Du · γ − g(X,D′u) = 0 on SΩ,(28)

such that |u|+ |Du| ≤ K, then there is a positive constant θ determined only by K, n, α,
λ, λ0, Λ, µ, µ1 and ζ such that

|Du|θ ≤ C(K,n, α, λ, λ0,Λ, ζ,Ω)(1 + a0 + µ1).(29)
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Proof. By a standard localization argument and known results for interior estimates,
it suffices to prove (29) in a neighborhood N of a point in SΩ. Since SΩ ∈ H1+α,
our hypotheses are invariant under a suitable change of coordinates which transforms
N ∩ Ω to the half-cylinder Q+ = {X : |x| ≤ 1,−1 < t < 0, xn > 0} and N ∩ SΩ to
Q0 = {X : |x| ≤ 1,−1 < t < 0, xn = 0}. The Hölder estimate in this case is just [11,
Lemma 13.22] once we note that we may allow Aij in [11, Lemma 13.21] to depend on t

without changing the proof or result of that lemma.

For our existence theory, it will be useful to prove a Hölder gradient estimate under
slightly different hypotheses, which is a simple modification of Theorem 4.1.

Lemma 4.2. Let u ∈ C2,1(Ω) be periodic with Du ∈ C(Ω) for some Ω with SΩ ∈
H1+α. Suppose that u solves

−ut + aij(X)Diju+ a(X) = 0 in Ω, γ ·Du = g(X,D′u) on SΩ(30)

for functions aij, a, and g satisfying (21), (23), (24),

|g(X, p′)− g(Y, p′)| ≤ µ1[1 + |p′|]1+α|X − Y |α,(31)

|aij(x, t)− aij(y, t)| ≤ ζ(|x− y|)(32)
for positive constants a0, λ, Λ, µ, µ1 and a continuous, nonnegative, increasing function
ζ with ζ(0) = 0. Then there is a constant θ ∈ (0, α] determined only by n, Ω, α, λ, and
Λ such that Du ∈ Hθ and

|Du|θ ≤ C(n,Ω, λ,Λ, α, a0, µ1, |u|0).(33)

Proof. We introduce the notation

Q[R](X0) = {X ∈ Ω : |X −X0| < R, t < t0}

for R a positive number and X0 ∈ Ω. We also recall the weighted Hölder seminorm

[w]∗θ;Q[R](X0) = sup
r<R

(R− r)θ[w]θ;Q[r](X0).

¿From the explicit form of the Hölder estimate in [11, Lemma 13.18] (with µ1 there
replaced by µ1[1 + supΣ+(R) |Dv|]α), it is easy to see that

[Dv]∗θ;Q[R](X0) ≤ C1(1 +M1R)(1 +M1)(34)

where M1 = supQ[R] |Dv| and C1 is determined by the same quantities as C in (33).
(In particular, this estimate guarantees that Dv ∈ Hθ.) From [11, Corollary 7.36], we
have also a Hölder estimate for u and then the obvious parabolic analog of Trudinger’s
interpolation inequality [18, Lemma 1] gives a uniform bound for Dv. Another application
of (34) gives the desired result.

From these estimates we can prove several existence theorems, depending on the
specifics of the equation and boundary condition. Our first step is an existence theorem
for linear equations with nonlinear boundary conditions. To state this result, we recall
the definition of the “starred” seminorms and norms from [10]:

[u]∗(b)α = sup
(x,t),(y,t) in Ω

(min{d(x, t), d(y, t)})α+b|u(x, t)− u(y, t)|/|x− y|α,

|u|∗(b)α = [u]∗(b)α + |u|α+b
0 , |u|∗α = |u|∗(−α)

α .
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Proposition 4.3. Let SΩ ∈ H1+α, and suppose aij ∈ H∗(0)
β (Ω) and a ∈ H∗(1−α)

β for
some constants α and β in (0, 1). Suppose also that aij satisfies (21) and (32). If, finally,
g satisfies conditions (24) and (31), then there is a unique periodic solution of

−ut + aijDiju+ a− u = 0 in Ω, Du · γ = g(X,D′u) on SΩ.(35)

Proof. Suppose first that aij and a are in H∗β , that g ∈ H3, and that SΩ ∈ H2+β .
The argument of, for example, [9, Theorem 1] (in conjunction with the linear theory in
[12]) shows that (35) has a solution in H2+β provided we can show that any solution
of (35) satisfies an estimate of the form

|u|0 + |Du|θ ≤ C(36)

for some θ ∈ (0, 1) and the constant C depends on a only through the norm |a|∗β . A bound
on |u|0 is immediate from Lemma 2.1, and then |Du|θ ≤ C from Lemma 4.2.

To complete the proof, we note that we can approximate the coefficients in (35) along
with SΩ so that the hypotheses of this proposition are satisfied uniformly and such that
the approximating coefficients and domain are as smooth as we wish. It suffices to show
that the solutions to these approximating problems satisfy (36) with a uniform constant
C. By virtue of Lemma 4.2, we are reduced to proving a uniform L∞ estimate, and this
estimate follows from Lemma 2.3.

From this existence result, we can infer a conditional existence theorem for oblique
derivative problems along the lines suggested by [14, Theorem 7.6].

Theorem 4.4. Let SΩ ∈ H1+α, and suppose aij and a are functions in H∗α(K) for
any compact subset K of Γ. Suppose g ∈ Hα(K ′) for any compact subset K ′ of Γ′′.
Suppose also that g is (globally) Lipschitz with respect to p and that there is an increasing
function µ1 such that

|g(X, z, p)− g(Y,w, p)| ≤ µ1(|z|+ |w|)(1 + |p|)[(1 + |p|)α|X − Y |α + |z − w|α](37)

for any (X, z, p) and (Y,w, p) in Γ′′. Suppose finally that there are functions aijτ (X, z, p),
aτ (X, z, p), and gτ (X, z, p) for 0 ≤ τ ≤ 1 such that

(i) aij1 (X, z, p) = aij(X, z, p), a1(X, z, p) = a(X, z, p), g1(X, z, p) = g(X, z, p);
(ii) The maps T1 and T2 defined on [0, 1] by T1(τ) = aijτ , T2(τ) = aτ are continuous
into H∗α(K) for any compact subset K of Γ and the map T3 defined on [0, 1] by
T3(τ) = gτ is continuous into Hα(K ′) for any compact subset K ′ of Γ′′;

(iii) (aijτ (X, z, p)) is positive definite for all τ ∈ [0, 1];
(iv) a0(X, z, p) = −z and g0(X, z, p′) = 0;
(v) gτ satisfies condition (37).

If there are constants C and θ with θ ∈ (0, α] such that any periodic solution of the
problem

−ut + aijτ (X,u,Du)Diju+ aτ (X,u,Du) = 0 in Ω,(38)

Du · γ = gτ (X,u,D′u) on SΩ,(39)

with τ ∈ [0, 1], satisfies the estimate |u|0 + |Du|θ ≤ C, then there is a solution of (3).
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Proof. Let B be the Banach space of all functions u with |u|0 + |Du|1+θ/2 finite,
and define the map J : B × [0, 1]→ B by letting u = J(v, τ) be the unique solution of

−ut + aijτ (X, v,Dv)Diju+ aτ (X, v,Dv) + v − u = 0 in Ω,

Du · γ = gτ (X, v,D′u) on SΩ

given by Proposition 4.3. It is easy to check that J is a compact mapping and that
J(v, 0) = 0 for all v ∈ B. It follows from [3, Theorem 11.6] that there is an element u ∈ B
such that u = J(u, 1), and this u is our desired solution.

In general, the choice for the homotopy in Theorem 4.4 will be made to take into
account the specific structure of the operators in question. For the uniformly parabolic
problems studied here, we make a simple choice. First we take aijτ = aij . Next, we define
aτ by

aτ (X, z, p) = τa(X, z, p) + (1− τ)z.

Finally, we assume that b satisfies (20) for an increasing function h, and then we define
gτ = τg. For notational convenience, we also define bτ in terms of g as

bτ (X, z, p) = p · γ − τg(X, z, p′).

We can now state our basic existence results.

Theorem 4.5. Let SΩ ∈ H3, and suppose that either conditions (4) and (5) or con-
ditions (6) and (7) are satisfied. Suppose also that conditions (11)–(17) are satisfied and
that

Λ(X, z, p) = o(|z|)(40)

as |z| → ∞ uniformly for X ∈ Ω and p in any bounded subset of Rn. Then there is a
solution u of (3). Moreover, u ∈ H2+α for any α ∈ (0, 1).

Proof. If b satisfies (6), then sgn zg(X, z, 0) < µ3 for |z| ≥ M2, so (6) holds for bτ .
In addition, if aij and a satisfy (7) whenever |z| ≥M2 and |p| ≤ µ3 and if (40) holds only
for |p| ≤ µ3, then aijτ and aτ satisfy (7) with M2 replaced by a sufficiently large constant
(specifically, by M3 such that M3 ≥M2 + 2ρ1 and

Λ(X, z, p) ≤ |z|/(2ρ2µ3)

if |z| ≥M3.). On the other hand, if conditions (4), (5), and (40) are satisfied, we consider
separately the cases τ ≤ 1/2 and τ > 1/2. In the first case, we see that (6) holds (with
bτ in place of b) for M2 ≥ M1(0) and µ3 = 0 and that (7) holds (with aτ in place of a)
for M2 ≥ 2ρ1. In the second case we see that (4) holds for all (X, z, p) ∈ Γ and that (5)
holds if |z| ≥ M1(2|p|). In either case, we note that if aij , a and b satisfy (11)–(17)
and (20), then so do aijτ , aτ , and bτ . We then obtain the uniform estimate as required in
Theorem 4.4.

Theorem 4.6. Let SΩ ∈ H2, and suppose that either conditions (4) and (5) or con-
ditions (6) and (7) are satisfied. Suppose also that conditions (11), (18), (19), and (40)
are satisfied. If a ∈ Hα(K) for any bounded subset K of Γ, then there is a solution u

of (3). Moreover, u ∈ H(−1−β)
2+α for any β ∈ (0, 1).
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5. Semilinear equations with nonlinear boundary conditions. Now we con-
sider problem (3) when aij does not depend on p. We suppose that SΩ ∈ H1+α for some
α ∈ (0, 1) and that there are positive constants M0 and µ such that aij , a and b satisfy
the conditions

[ρ1 + ρ2Λ(X, z)]µ+ (sgn z)a(X, z, p) < 0
for all (X, z, p) ∈ Γ with |z| ≥M0 and |p| ≤ µ (with ρ1 and ρ2 as in Lemma 2.2),

b(X, z,−(sgn z)µγ)(sgn z) < 0

for all (X, z) ∈ SΩ with |z| ≥M0 and (12) holds. Suppose also that there is an increasing
function θ1 such that

Λ(X, z) ≤ θ1(|z|), λ(X, z) ≥ 1/θ1(|z|)

for all (X, z) ∈ Ω×R,
|a(X, z, p)| ≤ θ1(|z|)[|p|2 + dα−1]

for all (X, z, p) ∈ Γ, and

|bp(X, z, p)|[1 + |p|3] + |bz(X, z, p)|[1 + |p|2] + |bx(X, z, p)|[1 + |p|]
+|bt(X, z, p)| ≤ θ1(|z|)bp(X, z, p) · γ[1 + |p|3]

for all (X, z, p) ∈ Γ′ with b(X, z, p) = 0. Finally suppose that for any K > 0, there is a
continuous, increasing function ζK with ζK(0) = 0 such that

|aij((x, t), z)− aij((y, t), w)| ≤ ζK(|x− y|+ |z − w|)

for all (x, t) and (y, t) in Ω and all z and w in [−K,K]. We note first that the hypotheses of
Lemma 2.1 are satisfied so we obtain a pointwise bound for u. Next, from condition (12),
we infer that the boundary condition can be written in the form Du · γ = g(X,u,D′u)
and that g satisfies the condition

|g(X, z, p′)| ≤ β0(1 + |p′|),

so [11, Corollary 7.36] gives a Hölder estimate for u. Next, it is easy to check that

|gz|(1 + |p|)2 + |gx|(1 + |p|) + |gt| ≤ θ1(|z|)(1 + |p|)3

and hence that (37) holds. An argument like that in Lemma 4.2 then gives the Hölder
gradient bound without the use of the gradient bound from Section 3. In addition, these
estimates hold uniformly for solutions of (38), (39). If also aij ∈ H∗β(K0) for any bounded
subset K0 of Ω×R, and a ∈ H∗β(K) for any bounded subset K of Γ, then Theorem 4.4
gives the existence of a solution to (3). To remove these conditions, we approximate aij

and a by smooth functions satisfying the given conditions and note that the solutions of
the approximating problems are uniformly bounded in H1+θ for some θ ∈ (0, 1) and also
in W 2,1

p (Ω′) for any p ∈ (1,∞) and any domain Ω′ whose closure is in Ω. By taking a
convergent subsequence, it follows that the (periodic) limit function satisfies the differ-
ential equation almost everywhere in Ω and the boundary condition everywhere on SΩ.
In other words, the limit function solves (3).

A similar result was proved by different methods by Nkashama [15], who assumes in
addition that Ω is cylindrical and that b is linear with respect to p. Further, Nkashama
made stronger regularity hypotheses on SΩ, aij , a, and b. To complete our comparison
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of results to that paper, we note that the use of subsolutions and supersolutions there in
place of our results in Section 2 is easily modified to the current case as in [5] (see also
[13, Section 7]). Moreover, when b is linear with respect to p, the regularity of b can be
further relaxed. Specifically, suppose b(X, z, p) = β(X, z) · p + β0(X, z) for functions β
and β0 in Hα(K ′′) for any bounded subset K ′′ of SΩ×R with β(X, z) · (X) > 0. From
Lemma 4.1, we infer the Hölder gradient estimate with some exponent θ ∈ (0, 1). Next,
we note that, when g in [11, Lemma 13.17] is a linear function, then the exponent θ in
that lemma can be chosen arbitrarily in the range (0, 1). It follows that θ in [11, Lemma
13.18] can be taken equal to α, so our solution is in H1+α.

Because our results improve those of Nkashama, they also improve those of Amann [1].
Note also that our method relies on a simple linear existence theory [12] which only uses
the Poincaré map in the space of continuous functions C(Ω) unlike Amann’s, which uses
the Poincaré map on a more complicated Banach space. In addition (like Nkashama but
unlike Amann), we may consider time-dependent boundary conditions.

6. One space dimension. When problem (3) is presented with only one space di-
mension, the gradient estimates can be streamlined considerably; the ideas are very sim-
ilar to those in [6] so we only mention the results. First we note that the boundary
condition can be solved in the form ux = g(X,u). As discussed on page 351 of [11], a
gradient bound follows from a pointwise bound under the conditions

|a(X, z, p)| ≤ θ1(|z|)a11(X, z, p)[1 + |p|2], |g(X, z)| ≤ θ1(|z|)
for some increasing function θ1. If we also assume that g is Hölder with respect to X and
z, then, since w = ux is a weak solution of the equation

−wt + (a11(X,u,Du)wx + a(X,u, ux))x = 0,

we obtain a Hölder gradient estimate. This estimate depends on

inf
K
a11(X, z, p), sup

K
a11(X, z, p), sup

K
|a(X, z, p)|,

where K = {(X, z, p) ∈ Γ : |z| ≤ |u|0, |p| ≤ |Du|0}, and on

[g]α;Σ×[−|u|0,|u|0].

A pointwise bound follows from, say, conditions (4), (5); in this context, they can be
rewritten as sgn zg(X, z) ≤ µ for |z| ≥M and

ρ1 + ρ2a
11(X, z, p)µ+ (sgn z)a(X, z, p) < 0

for |z| ≥M and |p| ≤ µ.
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